1
|
Yang X, Wang J, Liu W. Molecular markers of type II alveolar epithelial cells in acute lung injury by bioinformatics analysis. Sci Rep 2023; 13:17797. [PMID: 37853056 PMCID: PMC10584938 DOI: 10.1038/s41598-023-45129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
In this study, we aimed to identify molecular markers associated with type II alveolar epithelial cell injury in acute lung injury (ALI) models using bioinformatics methods. The objective was to provide new insights for the diagnosis and treatment of ALI/ARDS. We downloaded RNA SEQ datasets (GSE109913, GSE179418, and GSE119123) from the Gene Expression Omnibus (GEO) and used R language package to screen differentially expressed genes (DEGs). DEGs were annotated using Gene Ontology (GO), and their pathways were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG). DEGs were imported into the STRING database and analyzed using Cytoscape software to determine the protein network of DEGs and calculate the top 10 nodes for the hub genes. Finally, potential therapeutic drugs for the hub genes were predicted using the DGIdb database. We identified 78 DEGs, including 70 up-regulated genes and 8 down-regulated genes. GO analysis revealed that the DEGs were mainly involved in biological processes such as granulocyte migration, response to bacterial-derived molecules, and cytokine-mediated signaling pathways. Additionally, they had cytokine activity, chemokine activity, and receptor ligand activity, and functioned in related receptor binding, CXCR chemokine receptor binding, G protein-coupled receptor binding, and other molecular functions. KEGG analysis indicated that the DEGs were mainly involved in TNF signaling pathway, IL-17 signaling pathway, NF-κB signal pathway, chemokine signal pathway, cytokine-cytokine receptor interaction signal pathway, and others. We identified eight hub genes, including IRF7, IFIT1, IFIT3, PSMB8, PSMB9, BST2, OASL2, and ZBP1, which were all up-regulated genes. We identified several hub genes of type II alveolar epithelial cells in ALI mouse models using bioinformatics analysis. These results provide new targets for understanding and treating of ALI.
Collapse
Affiliation(s)
- Xiaoting Yang
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jing Wang
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Zhang W, Li Y, Xin S, Yang L, Jiang M, Xin Y, Wang Y, Cao P, Zhang S, Yang Y, Lu J. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology. J Med Virol 2023; 95:e28259. [PMID: 36305096 DOI: 10.1002/jmv.28259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
The interferon-inducible protein with tetrapeptide repeats 3 (IFIT3) is one of the most important members in both the IFIT family and interferon-stimulated genes family. IFIT3 has typical features of the IFIT family in terms of gene and protein structures, and is able to be activated through the classical PRRs-IFN-JAK/STAT pathway. A variety of viruses can induce the expression of IFIT3, which in turn inhibits the replication of viruses, with the underlying mechanism showing its crucial role in antiviral innate immunity. Emerging studies have also identified that IFIT3 is involved in cellular biology changes, including cell proliferation, apoptosis, differentiation, and cancer development. In this review, we summarize the characteristics of IFIT3 with respect to molecular structure and regulatory pathways, highlighting the role of IFIT3 in antiviral innate immunity, as well as its diverse biological roles. We also discuss the potential of IFIT3 as a biomarker in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| |
Collapse
|
3
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
4
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. GENE REPORTS 2020; 21:100956. [PMID: 33553808 PMCID: PMC7854084 DOI: 10.1016/j.genrep.2020.100956] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.
Collapse
Key Words
- Bioinformatics
- CBL, Cbl proto-oncogene
- DEGs, differentially expressed genes
- Diagnosis
- GO, Gene ontology
- ISG15, ISG15 ubiquitin like modifier
- Key genes
- NEDD4, NEDD4 E3 ubiquitin protein ligase
- PML, promyelocyticleukemia
- PPI, protein-protein interaction
- Pathways
- REL, REL proto-oncogene, NF-kB subunit
- ROC, receiver operating characteristic
- SARS-CoV-2 infection
- SARS-CoV-2, Severe acute respiratory syndrome corona virus 2
Collapse
|
6
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Cui YH, Liu Q, Xu ZY, Li JH, Hu ZX, Li MJ, Zheng WL, Li ZJ, Pan HW. Quantitative proteomic analysis of human corneal epithelial cells infected with HSV-1. Exp Eye Res 2019; 185:107664. [PMID: 31085182 DOI: 10.1016/j.exer.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
HSV-1 infection in corneal epithelium initiates the process of herpes simplex keratitis. We investigated the dynamic change of the host proteins in corneal epithelial cells infected with HSV-1 to understand the virus-host interaction. iTRAQ coupled with LC-MS/MS was applied to quantitatively analyze the protein profiles in HSV-1 infected corneal epithelial cells at 6 and 24 h post-infection (hpi), and the results were validated by multiple reaction monitoring (MRM). We also performed bioinformatic analysis to investigate the potentially important signal pathways and protein interaction networks in the host response to HSV-1 infection. We identified 292 proteins were up-regulated and 168 proteins were down-regulated at 6 hpi, while 132 proteins were up-regulated and 89 proteins were down-regulated at 24 hpi, which were validated by MRM analysis. We found the most enriched GO terms were translational initiation, cytosol, poly(A) RNA binding, mRNA splicing via spliceosome and extracellular exosome for the dysregulated proteins. KEGG pathway analysis revealed significant changes in metabolism pathway characterized by decreased tricarboxylic acid cycle activity and increased glycolysis. Proteins interaction network analysis indicated several proteins including P4HB, ACLY, HSP90AA1 and EIF4A3, might be critical proteins in the host-virus response. Our study for the first time analyzed the protein profile of HSV-1 infected primary corneal epithelial cells by quantitative proteomics. These findings help to better understand the host-virus interaction and the pathogenesis of herpes simplex keratitis.
Collapse
Affiliation(s)
- Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jia-Hui Li
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zi-Xuan Hu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zhi-Jie Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula. Chin J Nat Med 2018; 16:241-251. [DOI: 10.1016/s1875-5364(18)30054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 01/28/2023]
|
9
|
Zhu SL, Chen X, Wang LJ, Wan WW, Xin QL, Wang W, Xiao G, Zhang LK. Global quantitative proteomic analysis profiles host protein expression in response to Sendai virus infection. Proteomics 2017; 17. [PMID: 28067018 DOI: 10.1002/pmic.201600239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/11/2022]
Abstract
Sendai virus (SeV) is an enveloped nonsegmented negative-strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV-infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV-induced innate immune response process, system-wide evaluations of SeV-host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV-host interaction, a global quantitative proteomic analysis was performed on SeV-infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in "interferon type I (IFN-I) signaling pathway" and "defense response to virus," suggesting that these processes play roles in SeV infection. Further RNAi-based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV-induced IFN-I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV-induced innate immune response process.
Collapse
Affiliation(s)
- Sheng-Lin Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xi Chen
- The Laboratory of Biological Mass Spectrometry, Wuhan Institute of Biotechnology, Wuhan, P. R. China.,Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Liang-Jie Wang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, P. R. China
| | - Wei-Wei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Qi-Lin Xin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
10
|
Zhao Y, Jamaluddin M, Zhang Y, Sun H, Ivanciuc T, Garofalo RP, Brasier AR. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of Respiratory Syncytial Virus-Induced Lower Respiratory Tract Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:3345-3364. [PMID: 28258195 DOI: 10.4049/jimmunol.1601291] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Mohammad Jamaluddin
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| |
Collapse
|
11
|
Jackson VE, Ntalla I, Sayers I, Morris R, Whincup P, Casas JP, Amuzu A, Choi M, Dale C, Kumari M, Engmann J, Kalsheker N, Chappell S, Guetta-Baranes T, McKeever TM, Palmer CNA, Tavendale R, Holloway JW, Sayer AA, Dennison EM, Cooper C, Bafadhel M, Barker B, Brightling C, Bolton CE, John ME, Parker SG, Moffat MF, Wardlaw AJ, Connolly MJ, Porteous DJ, Smith BH, Padmanabhan S, Hocking L, Stirrups KE, Deloukas P, Strachan DP, Hall IP, Tobin MD, Wain LV. Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12. Thorax 2016; 71:501-9. [PMID: 26917578 PMCID: PMC4893124 DOI: 10.1136/thoraxjnl-2015-207876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Background Several regions of the genome have shown to be associated with COPD in genome-wide association studies of common variants. Objective To determine rare and potentially functional single nucleotide polymorphisms (SNPs) associated with the risk of COPD and severity of airflow limitation. Methods 3226 current or former smokers of European ancestry with lung function measures indicative of Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 COPD or worse were genotyped using an exome array. An analysis of risk of COPD was carried out using ever smoking controls (n=4784). Associations with %predicted FEV1 were tested in cases. We followed-up signals of interest (p<10−5) in independent samples from a subset of the UK Biobank population and also undertook a more powerful discovery study by meta-analysing the exome array data and UK Biobank data for variants represented on both arrays. Results Among the associated variants were two in regions previously unreported for COPD; a low frequency non-synonymous SNP in MOCS3 (rs7269297, pdiscovery=3.08×10−6, preplication=0.019) and a rare SNP in IFIT3, which emerged in the meta-analysis (rs140549288, pmeta=8.56×10−6). In the meta-analysis of % predicted FEV1 in cases, the strongest association was shown for a splice variant in a previously unreported region, SERPINA12 (rs140198372, pmeta=5.72×10−6). We also confirmed previously reported associations with COPD risk at MMP12, HHIP, GPR126 and CHRNA5. No associations in novel regions reached a stringent exome-wide significance threshold (p<3.7×10−7). Conclusions This study identified several associations with the risk of COPD and severity of airflow limitation, including novel regions MOCS3, IFIT3 and SERPINA12, which warrant further study.
Collapse
Affiliation(s)
| | - Ioanna Ntalla
- Department of Health Sciences, University of Leicester, Leicester, UK William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Richard Morris
- School of Social & Community Medicine, University of Bristol, Bristol, UK Department of Primary Care & Population Health, UCL, London, UK
| | - Peter Whincup
- Population Health Research Institute, St George's, University of London, London, UK
| | - Juan-Pablo Casas
- University College London, Farr Institute of Health Informatics, London, UK Cochrane Heart Group, London, UK
| | - Antoinette Amuzu
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Minkyoung Choi
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Caroline Dale
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Meena Kumari
- ISER, University of Essex, Colchester, Essex, UK Department of Epidemiology and Public Health, UCL, London, UK
| | | | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Tricia M McKeever
- Division of Epidemiology and Public Health, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Colin N A Palmer
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Roger Tavendale
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Avan A Sayer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK Victoria University, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bethan Barker
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Chris Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Charlotte E Bolton
- Nottingham Respiratory Research Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Michelle E John
- Nottingham Respiratory Research Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Stuart G Parker
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Miriam F Moffat
- Department of Molecular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew J Wardlaw
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Martin J Connolly
- Freemasons' Department of Geriatric Medicine, University of Auckland, New Zealand
| | - David J Porteous
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health Sciences, University of Dundee, Dundee, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Lynne Hocking
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Department of Haematology, University of Cambridge, Cambridge, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Dapat C, Oshitani H. Novel insights into human respiratory syncytial virus-host factor interactions through integrated proteomics and transcriptomics analysis. Expert Rev Anti Infect Ther 2016; 14:285-97. [PMID: 26760927 PMCID: PMC4819838 DOI: 10.1586/14787210.2016.1141676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The lack of vaccine and limited antiviral options against respiratory syncytial virus (RSV) highlights the need for novel therapeutic strategies. One alternative is to develop drugs that target host factors required for viral replication. Several microarray and proteomics studies had been published to identify possible host factors that are affected during RSV replication. In order to obtain a comprehensive understanding of RSV-host interaction, we integrated available proteome and transcriptome datasets and used it to construct a virus-host interaction network. Then, we interrogated the network to identify host factors that are targeted by the virus and we searched for drugs from the DrugBank database that interact with these host factors, which may have potential applications in repositioning for future treatment options of RSV infection.
Collapse
Affiliation(s)
- Clyde Dapat
- a Department of Virology , Tohoku University Graduate School of Medicine , Sendai , Miyagi Prefecture , Japan
| | - Hitoshi Oshitani
- a Department of Virology , Tohoku University Graduate School of Medicine , Sendai , Miyagi Prefecture , Japan
| |
Collapse
|
13
|
Sedano CD, Sarnow P. Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 2015; 16:257-264. [PMID: 25121753 DOI: 10.1016/j.chom.2014.07.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/23/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
The abundant, liver-specific microRNA miR-122 forms extensive base-pairing interactions with the 5' noncoding region of the hepatitis C virus (HCV) RNA genome, protecting the viral RNA from degradation. We discovered that the 5'-3' exoribonuclease Xrn2, which plays a crucial role in the transcription termination of RNA polymerase II, modulates HCV RNA abundance in the cytoplasm, but is counteracted by miR-122-mediated protection. Specifically, Xrn2 depletion results in increased accumulation of viral RNA, while Xrn2 overexpression diminishes viral RNA abundance. Depletion of Xrn2 did not alter translation or replication rates of HCV RNA, but affected viral RNA stability. Importantly, during sequestration of miR-122, Xrn2 depletion restored HCV RNA abundance, arguing that Xrn2 depletion eliminates the miR-122 requirement for viral RNA stability. Thus, Xrn2 has a cytoplasmic, antiviral function against HCV that is counteracted by HCV's subversion of miR-122 to form a protective oligomeric complex at the 5' end of the viral genome.
Collapse
Affiliation(s)
- Cecilia D Sedano
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter Sarnow
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Dave KA, Norris EL, Bukreyev AA, Headlam MJ, Buchholz UJ, Singh T, Collins PL, Gorman JJ. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection. Mol Cell Proteomics 2014; 13:3250-69. [PMID: 25106423 PMCID: PMC4256481 DOI: 10.1074/mcp.m114.041129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/16/2014] [Indexed: 11/06/2022] Open
Abstract
Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious agents on host cells.
Collapse
Affiliation(s)
- Keyur A Dave
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Emma L Norris
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Alexander A Bukreyev
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Madeleine J Headlam
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Ursula J Buchholz
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Toshna Singh
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Peter L Collins
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| |
Collapse
|
15
|
Zhou T, Zhang Y, Wu P, Sun Q, Guo Y, Yang Y. Potential biomarkers and latent pathways for vasculitis based on latent pathway identification analysis. Int J Rheum Dis 2014; 17:671-8. [PMID: 24867262 DOI: 10.1111/1756-185x.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tao Zhou
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yudong Zhang
- Department of Peripheral Vascular; Affiliated Hospital of Shandong Traditional Chinese Medicine University; Jinan Shandong Province China
| | - Peng Wu
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Qiang Sun
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanan Guo
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanfei Yang
- The Second Hospital of Shandong University; Jinan Shandong Province China
| |
Collapse
|
16
|
UPLC–MSE application in disease biomarker discovery: The discoveries in proteomics to metabolomics. Chem Biol Interact 2014; 215:7-16. [DOI: 10.1016/j.cbi.2014.02.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/14/2014] [Accepted: 02/28/2014] [Indexed: 01/05/2023]
|
17
|
Ørntoft NW, Thorsen K, Benn CS, Lemvik G, Nanque JR, Aaby P, Østergaard L, Agergaard J. Leukocyte transcript alterations in West-African girls following a booster vaccination with diphtheria-tetanus-pertussis vaccine. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:349-54. [PMID: 23668887 DOI: 10.3109/00365513.2013.783229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Observational studies from low-income countries have shown that the vaccination against diphtheria, tetanus and pertussis (DTP) is associated with excess female mortality due to infectious diseases. METHODS To investigate possible changes in gene expression after DTP vaccination, we identified a group of nine comparable West African girls, from a biobank of 356 children, who were due to receive DTP booster vaccine at age 18 months. As a pilot experiment we extracted RNA from blood samples before, and 6 weeks after, vaccination to analyze the coding transcriptome in leukocytes using expression microarrays, and ended up with information from eight girls. The data was further analyzed using dedicated array pathway and network software. We aimed to study whether DTP vaccination introduced a systematic alteration in the immune system in girls. RESULTS We found very few transcripts to alter systematically. Those that did mainly belonged to the Interferon (IFN) signalling pathway. We scrutinized this pathway as well as the Interleukin (IL) pathways. Two out of eight showed a down-regulated IFN pathway and two showed an up-regulated IFN pathway. The two with down-regulated IFN pathway had also down-regulated IL-6 pathway. In the study of networks, two of the girls stood out as not having the inflammatory response as top altered network. CONCLUSION The transcriptome changes following DTP booster vaccination were subtle, but although the material was small, it was possible to identify sub groups that deviate from each other, mainly in the IFN response.
Collapse
Affiliation(s)
- Nikolaj W Ørntoft
- a Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital , Aarhus, Denmark
| | - Kasper Thorsen
- b Department of Molecular Medicine, Aarhus University Hospital , Aarhus, Denmark
| | - Christine S Benn
- c Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut , Copenhagen, Denmark
| | - Grethe Lemvik
- d Bandim Health Project , Bissau, Guinea-Bissau, West Africa
| | - Joao R Nanque
- d Bandim Health Project , Bissau, Guinea-Bissau, West Africa
| | - Peter Aaby
- c Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut , Copenhagen, Denmark.,d Bandim Health Project , Bissau, Guinea-Bissau, West Africa
| | - Lars Østergaard
- e Department of Infectious Diseases, Aarhus University Hospital , Aarhus, Denmark
| | - Jane Agergaard
- e Department of Infectious Diseases, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
18
|
Berard A, Kroeker AL, Coombs KM. Transcriptomics and quantitative proteomics in virology. Future Virol 2012. [DOI: 10.2217/fvl.12.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Creskey MC, Li C, Wang J, Girard M, Lorbetskie B, Gravel C, Farnsworth A, Li X, Smith DGS, Cyr TD. Simultaneous quantification of the viral antigens hemagglutinin and neuraminidase in influenza vaccines by LC-MSE. Vaccine 2012; 30:4762-70. [PMID: 22643214 DOI: 10.1016/j.vaccine.2012.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/17/2022]
Abstract
Current methods for quality control of inactivated influenza vaccines prior to regulatory approval include determining the hemagglutinin (HA) content by single radial immunodiffusion (SRID), verifying neuraminidase (NA) enzymatic activity, and demonstrating that the levels of the contaminant protein ovalbumin are below a set threshold of 1 μg/dose. The SRID assays require the availability of strain-specific reference HA antigens and antibodies, the production of which is a potential rate-limiting step in vaccine development and release, particularly during a pandemic. Immune responses induced by neuraminidase also contribute to protection from infection; however, the amounts of NA antigen in influenza vaccines are currently not quantified or standardized. Here, we report a method for vaccine analysis that yields simultaneous quantification of HA and NA levels much more rapidly than conventional HA quantification techniques, while providing additional valuable information on the total protein content. Enzymatically digested vaccine proteins were analyzed by LC-MS(E), a mass spectrometric technology that allows absolute quantification of analytes, including the HA and NA antigens, other structural influenza proteins and chicken egg proteins associated with the manufacturing process. This method has potential application for increasing the accuracy of reference antigen standards and for validating label claims for HA content in formulated vaccines. It can also be used to monitor NA and chicken egg protein content in order to monitor manufacturing consistency. While this is a useful methodology with potential for broad application, we also discuss herein some of the inherent limitations of this approach and the care and caution that must be taken in its use as a tool for absolute protein quantification. The variations in HA, NA and chicken egg protein concentrations in the vaccines analyzed in this study are indicative of the challenges associated with the current manufacturing and quality control testing procedures.
Collapse
Affiliation(s)
- Marybeth C Creskey
- Centre for Vaccine Evaluation, Health Canada, 251 Sir Frederick Banting Driveway, Locator 2201E, Tunney's Pasture, Ottawa, ON K1A 0L2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|