1
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
2
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
4
|
Ye HL, Zhi MF, Chen BY, Lin WZ, Li YL, Huang SJ, Zhou LJ, Xu S, Zhang J, Zhang WC, Feng Q, Duan SZ. Alterations of oral and gut viromes in hypertension and/or periodontitis. mSystems 2024; 9:e0116923. [PMID: 38108668 PMCID: PMC10804974 DOI: 10.1128/msystems.01169-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.
Collapse
Affiliation(s)
- Hui-Lin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Meng-Fan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Verma RK, Gangwar AK. Characterization of Fowlpox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:55-74. [PMID: 38801571 DOI: 10.1007/978-3-031-57165-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The complex cytoplasmic DNA virus known as the fowlpox virus (FWPV) is a member of the avipoxvirus genus, Subfamily Chordopoxvirinae, and Family Poxviridae. The large genome size of FWPV makes it a potential vector for the creation of vaccines against a range of serious veterinary and human ailments. It also allows for multiple gene insertion and the generation of abortive infection in mammalian cells. The virus, which causes fowlpox in chickens and turkeys, is mainly transmitted to poultry through aerosols or biting insects. Fowlpox is a highly contagious disease that affects both domestic and wild birds, causing cutaneous and/or diphtheritic illnesses. To control the illness, strict hygiene practices and immunization with FWPV attenuated strains or antigenically similar pigeon pox virus vaccines are employed. Recent years have seen an increase in fowlpox outbreaks in chicken flocks, primarily due to the introduction of novel forms of FWPV. It is believed that the pathogenic characteristics of these strains are enhanced by the integration of reticuloendotheliosis virus sequences of variable lengths into the FWPV genome. The standard laboratory diagnosis of FPV involves histopathological analysis, electron microscopy, virus isolation on chorioallantoic membrane (CAM) of embryonated chicken eggs or cell cultures, and serologic techniques. For quick and consistent diagnosis, polymerase chain reaction (PCR) has proven to be the most sensitive method. PCR is used in concert with restriction endonuclease enzyme analysis (REA) to identify, differentiate, and characterize the molecular makeup of isolates of the fowlpox virus. Sequencing of the amplified fragments is then done.
Collapse
Affiliation(s)
- Rajesh Kumar Verma
- Assistant Professor (Veterinary Microbiology), College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224229, India.
| | - A K Gangwar
- Professor and Head Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224229, India
| |
Collapse
|
6
|
Galvin AN, Pandit PS, English SG, Quock RC, Bandivadekar RR, Colwell RR, Robinson BW, Ernest HB, Brown MH, Sehgal RNM, Tell LA. Evaluation of minimally invasive sampling methods for detecting Avipoxvirus: Hummingbirds as a case example. Front Vet Sci 2022; 9:924854. [PMID: 36090172 PMCID: PMC9450938 DOI: 10.3389/fvets.2022.924854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Avian pox is a common avian virus that in its cutaneous form can cause characteristic lesions on a bird's dermal surfaces. Detection of avian pox in free-ranging birds historically relied on observations of visual lesions and/or histopathology, both which can underestimate avian pox prevalence. We compared traditional visual observation methods for avian pox with molecular methods that utilize minimally invasive samples (blood, toenail clipping, feathers, and dermal swabs) in an ecologically important group of birds, hummingbirds. Specifically, avian pox prevalence in several species of hummingbirds were examined across multiple locations using three different methods: (1) visual inspection of hummingbirds for pox-like lesions from a long-term banding data set, (2) qPCR assay of samples from hummingbird carcasses from wildlife rehabilitation centers, and (3) qPCR assay of samples from live-caught hummingbirds. A stark difference in prevalences among these three methods was identified, with an avian pox prevalence of 1.5% from banding data, 20.4% from hummingbird carcasses, and 32.5% from live-caught hummingbirds in California. This difference in detection rates underlines the necessity of a molecular method to survey for avian pox, and this study establishes one such method that could be applied to other wild bird species. Across all three methods, Anna's hummingbirds harbored significantly higher avian pox prevalence than other species examined, as did males compared with females and birds caught in Southern California compared with Northern California. After hatch-year hummingbirds also harbored higher avian pox prevalences than hatch-year hummingbirds in the California banding data set and the carcass data set. This is the first study to estimate the prevalence of avian pox in hummingbirds and address the ecology of this hummingbird-specific strain of avian pox virus, providing vital information to inform future studies on this charismatic and ecologically important group of birds.
Collapse
Affiliation(s)
- Aoife N. Galvin
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Pranav S. Pandit
- EpiCenter for Disease Dynamics, One Health Insititute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Simon G. English
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel C. Quock
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Ruta R. Bandivadekar
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rita R. Colwell
- Hummingbird Monitoring Network, Patagonia, AZ, United States
| | | | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Mollie H. Brown
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ravinder N. M. Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, United States
- *Correspondence: Ravinder N. M. Sehgal
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Lisa A. Tell
| |
Collapse
|
7
|
Zhao M, Yue C, Yang Z, Li Y, Zhang D, Zhang J, Yang S, Shen Q, Su X, Qi D, Ma R, Xiao Y, Hou R, Yan X, Li L, Zhou Y, Liu J, Wang X, Wu W, Zhang W, Shan T, Liu S. Viral metagenomics unveiled extensive communications of viruses within giant pandas and their associated organisms in the same ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153317. [PMID: 35066043 DOI: 10.1016/j.scitotenv.2022.153317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cross-species transmission events were commonplace, with numerous cases of host-switching during the viral evolutionary history, but relatively little evidence for onward transmission in different species living in the same ecosystem. For understanding the communications of viruses in giant pandas (Ailuropoda melanoleuca) and their associated organisms, based on a large size of samples (N = 2305) collected between 2015 and 2020 from giant panda (N = 776) and other four giant panda-associated organisms in the same ecosystem, red pandas (N = 700), stray cats (N = 32), wild rats (N = 42), and mosquitoes (N = 755), viromics was used for the virus identification and subsequent virus traceability. The results showed that a feline panleukopenia virus (FPV) was found in giant pandas with clinical signs of vomiting and mild diarrhea. Meanwhile, the same FPV strain was also prevalent in the healthy red panda (Ailurus fulgens) population. From the viromes of the five different organisms, 250 virus genomes were determined. Our data revealed that besides FPV, other putative pathogenic viruses, such as red panda amdoparvoviruses (RPAVs) and Getah viruses (GETVs) were responsible for previous disease or death of some red pandas. We also demonstrated that a number of viruses were involved in potential interspecies jumping events between giant pandas and their associated species. Collectively, our results shed light on the genetic diversity and relationship of diverse viral pathogens in 'Giant pandas-Associated animals-Arthropods' and report some cases of possible viral host-switching among these host species living in the same ecosystem.
Collapse
Affiliation(s)
- Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Zijun Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Ju Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Rui Ma
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Yuqing Xiao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Yanshan Zhou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Jiabin Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Wu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China.
| |
Collapse
|
8
|
Outbreaks of Avipoxvirus Clade E in Vaccinated Broiler Breeders with Exacerbated Beak Injuries and Sex Differences in Severity. Viruses 2022; 14:v14040773. [PMID: 35458503 PMCID: PMC9028998 DOI: 10.3390/v14040773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Avipoxvirus affects chickens and wild birds, and it is characterized by lesions on the nonfeathered parts of the body (the cutaneous form), or necrotic lesions in the upper respiratory tract (the diphtheritic form). In poultry farming, avian pox is usually controlled by live attenuated vaccines. However, there have been many reports of outbreaks, even in flocks of vaccinated birds. In the present study, different outbreaks of the emerging clade E avipoxvirus were detected in commercial breeder flocks of chickens vaccinated against fowlpox virus in Southeast Brazil. Clinical manifestations of these outbreaks included a marked prevalence of moderate to severe progressive lesions in the beaks of affected birds, especially in roosters with increased mortality (up to 8.48%). Also, a reduced hatchability (up to 20.77% fewer hatching eggs) was observed in these flocks. Analysis of clinical samples through light and transmission electron microscopy revealed the presence of Bollinger bodies and poxvirus particles in epithelial cells and affecting chondrocytes. PCR, sequencing, and phylogenetic analysis of major core protein (P4b) and DNA polymerase (pol) genes identified this virus as clade E avipoxvirus. We also developed qPCR assays for open reading frames (ORFs) 49, 114, and 159 to detect and quantify this emergent virus. These results show the arrival and initial spread of this pathogen in the poultry industry, which was associated with harmful outbreaks and exacerbated clinical manifestations in vaccinated commercial breeder flocks. This study also highlights the relevance of permanent vigilance and the need to improve sanitary and vaccination programs.
Collapse
|
9
|
Bertelloni F, Ceccherelli R, Marzoni M, Poli A, Ebani VV. Molecular Detection of Avipoxvirus in Wild Birds in Central Italy. Animals (Basel) 2022; 12:ani12030338. [PMID: 35158662 PMCID: PMC8833646 DOI: 10.3390/ani12030338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Avipoxviruses (APVs) are responsible for diseases in domestic and wild birds. Currently, the disease in domestic animals is under control in many Countries by biosafety and vaccination. In wild birds, small disease events are frequently reported worldwide, but large outbreaks are generally rare. Nevertheless, some aspects of the epidemiology of these viruses are still unclear. In this study, we explored, through molecular investigations, the diffusion of APVs among wild birds, of different orders and species, without typical macroscopic lesions. A high percentage (43.33%) of positive specimens was detected, suggesting high diffusion of the viruses and a possible role of avian wildlife as a reservoir. Aquatic birds, mainly Anseriformes, were more often infected, probably in relation to the environment where they live; in fact, APVs are frequently transmitted by mosquitos, particularly abundant in humid areas. Abstract Avipoxviruses (APVs) are important pathogens of both domestic and wild birds. The associated disease is characterized by skin proliferative lesions in the cutaneous form or by lesions of the first digestive and respiratory tracts in the diphtheritic form. Previous studies investigated these infections in symptomatic wild birds worldwide, including Italy, but data about the circulation of APVs in healthy avian wildlife are not available. The present study tested spleen samples from 300 wild birds without typical lesions to detect Avipoxvirus DNA. Overall, 43.33% of the samples scored positive. Aquatic birds were more frequently infected (55.42%) than other animals (26.40%), and in Anseriformes, high positivity was found (52.87%). The obtained results suggest that wild birds could be asymptomatic carriers of Avipoxviruses, opening new possible epidemiological scenarios.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (M.M.); (A.P.)
| | | | - Margherita Marzoni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (M.M.); (A.P.)
| | - Alessandro Poli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (M.M.); (A.P.)
| | - Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (M.M.); (A.P.)
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
10
|
Umar BN, Adamu J, Ahmad MT, Ahmad KH, Sada A, Orakpoghenor O. Fowlpox virus: an overview of its classification, morphology and genome, replication mechanisms, uses as vaccine vector and disease dynamics. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. N. Umar
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - J Adamu
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - M. T Ahmad
- Avian and Fish Health Unit, Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - K. H. Ahmad
- Diagnostic Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - A. Sada
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
- Central Diagnostic Unit, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - O. Orakpoghenor
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
11
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
12
|
Abstract
Poxviruses comprise many members that infect both vertebrate and invertebrate animals, including humans. Despite the eradication of the historically notorious smallpox, poxviruses remain significant public health concerns and serious endemic diseases. This short review briefly summarizes the present, historical, and future threats posed by poxviruses to public health, wildlife and domestic animals, the role poxviruses have played in shaping modern medicine and biomedical sciences, the insight poxviruses have provided into complex life processes, and the utility of poxviruses in biotechniques and in fighting other infectious diseases and cancers. It is anticipated that readers will appreciate the great merit and need for continued strong support of poxvirus research; research which benefits not only the expansion of fundamental biological knowledge but also the battle against diverse diseases.
Collapse
Affiliation(s)
- Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA. .,Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Mark Gray
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Lake Winter
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Abstract
Avian pox is a widespread infection in birds caused by genus Avipoxvirus pathogens. It is a noteworthy, potentially lethal disease to wild and domestic hosts. It can produce two different conditions: cutaneous pox, and diphtheritic pox. Here, we carry out an exhaustive review of all cases of avian pox reported from wild birds to analyze the effect and distribution in different avian species. Avian poxvirus strains have been detected in at least 374 wild bird species, a 60% increase on a 1999 review on avian pox hosts. We also analyze epizootic cases and if this disease contributes to wild bird population declines. We frequently observe very high prevalence in wild birds in remote island groups, e.g., Hawaii, Galapagos, etc., representing a major risk for the conservation of their unique endemic avifauna. However, the difference in prevalence between islands and continents is not significant given the few available studies. Morbidity and mortality can also be very high in captive birds, due to high population densities. However, despite the importance of the disease, the current detection rate of new Avipoxvirus strains suggests that diversity is incomplete for this group, and more research is needed to clarify its real extent, particularly in wild birds.
Collapse
|
14
|
Discovery of a phylogenetically distinct poxvirus in diseased Crocodilurus amazonicus (family Teiidae). Arch Virol 2021; 166:1183-1191. [PMID: 33580379 PMCID: PMC7952365 DOI: 10.1007/s00705-021-04975-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
A novel poxvirus was discovered in Crocodilurus amazonicus (Teiidae) presenting with a debilitating skin disease. The generated first genome sequence of a reptilian poxvirus revealed the closest phylogenetic relationship to avipoxviruses, highlighting potential virus exchanges between avian and reptilian species.
Collapse
|
15
|
Emergence of a Novel Pathogenic Poxvirus Infection in the Endangered Green Sea Turtle ( Chelonia mydas) Highlights a Key Threatening Process. Viruses 2021; 13:v13020219. [PMID: 33572619 PMCID: PMC7911307 DOI: 10.3390/v13020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
Emerging viral disease is a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including reptiles, and often pose a major threat to vulnerable species. However, whilst a large number of viruses have been described in turtles, information on poxvirus in cheloniids remains scarce, with no molecular sequence data available to date. This study characterizes, for the first time, a novel poxvirus, here tentatively designated cheloniid poxvirus 1 (ChePV-1). The affected cutaneous tissue, recovered from a green sea turtle (Chelonia mydas) captured off the Central Queensland coast of Australia, underwent histological examination, transmission electron microscopy (TEM), DNA extraction and genomic sequencing. The novel ChePV-1 was shown to be significantly divergent from other known poxviruses and showed the highest sequence similarity (89.3%) to avipoxviruses (shearwater poxvirus 2 (SWPV2)). This suggests the novel ChePV-1 may have originated from a common ancestor that diverged from an avipoxvirus-like progenitor. The genome contained three predicted unique genes and a further 15 genes being truncated/fragmented compared to SWPV2. This is the first comprehensive study that demonstrates evidence of poxvirus infection in a marine turtle species, as well as a rare example of an avipoxvirus crossing the avian-host barrier. This finding warrants further investigations into poxvirus infections between species in close physical proximity, as well as in vitro and in vivo studies of pathogenesis and disease.
Collapse
|
16
|
Song H, Kim H, Kim S, Kwon Y, Kim H. Research Note: Simultaneous detection of infectious laryngotracheitis virus, fowlpox virus, and reticuloendotheliosis virus in chicken specimens. Poult Sci 2021; 100:100986. [PMID: 33647723 PMCID: PMC7921870 DOI: 10.1016/j.psj.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022] Open
Abstract
Infectious laryngotracheitis (ILT), fowlpox (FP), and reticuloendotheliosis are important poultry diseases caused by gallid herpesvirus 1 (ILTV), fowlpox virus (FWPV), and reticuloendotheliosis virus (REV), respectively. Coinfections with ILTV and FWPV occur naturally in chickens, and FP in its more virulent wet form is characterized by diphtheritic lesions and easily confused with ILT. Moreover, the insertion of only partial REV-LTR or a nearly full-length REV into the FWPV genome, located between the ORF 201 and ORF 203, has increased recently in wild-type field FWPV isolates. Therefore, it is critical to detect ILTV, FWPV, REV-integrated FWPV, and REV early and accurately. In this study, we successfully developed a multiplex PCR assay for the simultaneous detection of ILTV, FWPV, REV-integrated FWPV, and REV, and the detection limits was 1 × 54 copies/tube. When used to test clinical samples, the results of the multiplex PCR were in 100% agreement with singleplex PCRs and sequencing. This new multiplex PCR is a simple, rapid, sensitive, specific, and cost-effective method for detection of 4 viruses in clinical specimens.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, GimCheon, Republic of Korea
| | - HyeonSu Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, GimCheon, Republic of Korea
| | - SiHyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, GimCheon, Republic of Korea
| | - YongKuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, GimCheon, Republic of Korea
| | - HyeRyoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, GimCheon, Republic of Korea.
| |
Collapse
|
17
|
Molecular Detection of Reticuloendotheliosis Virus 5' Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. BIOLOGY 2020; 9:biology9090257. [PMID: 32878059 PMCID: PMC7563266 DOI: 10.3390/biology9090257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Avipoxviruses (APVs) are among the most complex viruses that infect a wide range of birds’ species. The infection by APVs is often associated with breathing and swallowing difficulties, reduced growth, decreased egg production, and high mortalities in domestic poultry. In the present study, 200 cutaneous nodular samples were collected from different avian species (chicken, pigeon, turkey, and canary) suspected to be infected with APVs from Dakahlia Governorate, Egypt. Pooled samples (n = 40) were prepared and inoculated in embryonated chicken eggs (ECEs). APVs were then identified by polymerase chain reaction (PCR) and sequence analysis of the APV P4b gene. Furthermore, the forty strains of APVs were screened for the presence of reticuloendotheliosis virus (REV)-5′LTR in their genomes. Interestingly, the phylogenic tree of the APV P4b gene was separated into 2 clades: clade 1, in which our fowlpox virus (FWPV), turkeypox virus (TKPV), and canarypox virus (CNPV) isolates were grouped, along with reference FWPVs and TKPVs retrieved from GenBank, whereas, in clade2, the pigeonpox virus (PGPV) isolate was grouped with PGPVs retrieved from GenBank. Likewise, REV-5′LTR was amplified from 30 strains isolated from chicken, turkey, and canary, while PGPV strains were free from REV-5′LTR integration. To the best of our knowledge, this study involved the detection and characterization of REV-5′LTR insertions in the APVs field isolates in Egypt for the first time. Given the above information, further future research seems recommended to understand the impact of the resulting REV-5′LTR insertions on the pathogenesis, virulence, and inadequate vaccine protection against APVs.
Collapse
|
18
|
Baek HE, Bandivadekar RR, Pandit P, Mah M, Sehgal RNM, Tell LA. TaqMan quantitative real-time PCR for detecting Avipoxvirus DNA in various sample types from hummingbirds. PLoS One 2020; 15:e0230701. [PMID: 32526768 PMCID: PMC7289624 DOI: 10.1371/journal.pone.0230701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Background Avian pox is a viral disease documented in a wide range of bird species. Disease-related detrimental effects can cause dyspnea and dysphagia, and birds with high metabolic requirements, such as hummingbirds, are thus especially vulnerable to the pathogen. Hummingbirds have a strong presence in California, especially in urban environments. However, little is understood regarding the impact of pox virus on hummingbird populations. Currently, diagnosing a pox infection relies on obtaining a tissue biopsy, which poses significant risks to birds and challenges in the field. Understanding the ecology of hummingbird pox viral infections could be advanced by a minimally invasive ante-mortem diagnostic method. Our aim was to address whether pox infections can be diagnosed using integumentary system samples besides tissue biopsies. To meet this goal, we tested multiple integumentary sample types using a quantitative real-time PCR assay. A secondary study goal was to determine which sample types (ranging from minimally to highly invasive sampling) were optimal for identifying infected birds. Methodology and principal findings Pox-like lesion tissue, pectoral muscle, feathers, toenail clippings, blood, and swabs (both pox-like lesion tissue and non pox-like lesion tissue) were taken from live birds and carcasses of two species of hummingbirds found in California. To maximize successful diagnosis, especially for samples with low viral load, a real-time quantitative PCR assay was developed for detecting the hummingbird-specific Avipoxvirus 4b core protein gene. Avipoxvirus DNA was successfully amplified from all sample types obtained from 27 individuals. These results were compared to those of conventional PCR and comparisons were also made among sample types, utilizing lesion tissue samples as the gold standard. Conclusions and significance Hummingbird avian pox can be diagnosed without relying on tissue biopsies. We identify that feather samples, of which contour feathers yielded the best results, can be used for diagnosing infected birds, thus reducing sampling risk. In sum, the real-time PCR assay detected viral DNA in various integumentary system sample types and will be useful in future studies of hummingbird disease ecology.
Collapse
Affiliation(s)
- Hanna E Baek
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Ruta R Bandivadekar
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Michelle Mah
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
19
|
Kurihara T, Hirata A, Yamaguchi T, Okada H, Kameda M, Sakai H, Haridy M, Yanai T. Avipoxvirus infection in two captive Japanese cormorants (Phalacrocorax capillatus). J Vet Med Sci 2020; 82:817-822. [PMID: 32378644 PMCID: PMC7324821 DOI: 10.1292/jvms.19-0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cormorant fishing is a traditional Japanese fishing method using captive Japanese cormorants (Phalacrocorax capillatus). Between June and July 2017, an avian pox outbreak was reported in captive cormorant populations throughout several distant cities in Japan. We examined the lesions obtained from two such affected cormorants, which were raised in distant cities. The affected cormorants were grossly characterized by the development of cutaneous nodules around the base of the beak. Histopathologically, these nodules consisted of marked epidermal hyperplasia with ballooning degeneration of spinous cells and eosinophilic intracytoplasmic inclusions (Bollinger bodies). The lesions displayed 4b core protein (P4b) of Avipoxvirus (APV) and DNA polymerase genes, which were detected by PCR. Moreover, the nucleotide sequences detected from both cormorants were found to be identical. No identical sequence was found in any international database. These findings suggest that both examined cormorants were infected with an identical APV, which has never been previously reported. According to the phylogenetic analysis, the detected sequences were observed to cluster in subclade A3, which consists mainly of the sequences detected from several marine birds, including other cormorant species. This observation suggests that the viruses might be maintained in Japanese cormorants in nature.
Collapse
Affiliation(s)
- Takumi Kurihara
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.,Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsuyoshi Yamaguchi
- Laboratory of Veterinary Hygiene, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Harue Okada
- Laboratory of Veterinary Hygiene, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Miho Kameda
- Laboratory of Veterinary Hygiene, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mohie Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Tokuma Yanai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.,Current affiliation: Laboratory of Wildlife and Forensic Pathology, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
20
|
Dunn JR, Dimitrov KM, Miller PJ, Garcia M, Turner-Alston K, Brown A, Hartman A. Evaluation of Protective Efficacy When Combining Turkey Herpesvirus-Vector Vaccines. Avian Dis 2020; 63:75-83. [PMID: 31251522 DOI: 10.1637/11979-092818-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
Turkey herpesvirus (HVT) is widely used as a vaccine against Marek's disease in chickens and recently as a vector for foreign genes from infectious bursal disease virus, Newcastle disease (ND) virus, infectious laryngotracheitis (ILT) virus, and avian influenza virus. Advantages of HVT-vector vaccines are that the vaccines do not contain live respiratory viruses or live infectious bursal disease virus able to replicate and cause disease or embryo mortality, they can be administered at hatch or in ovo, and they are relatively insensitive to interference from maternally derived antibodies. As producers have tried to combine HVT-vector vaccines to protect against additional diseases, reports have indicated that applying two vectored vaccines using the same HVT vector is reported to reduce the efficacy of one or both vaccines. To confirm this interference, we evaluated commercial vaccines from multiple companies, including products with inserts designed to protect against ND, infectious ILT, and infectious bursal disease (IBD). Using a standard dosage, we found that the ILT product was most severely affected by the addition of other vaccines, as demonstrated by a significant increase in clinical signs, significant decrease in weight gain, and increase in quantity of challenge virus observed from tracheal swabs collected from Days 3-5 postchallenge. The ND and IBD products were also affected by the addition of other vaccines, although in most cases differences compared to vaccination with the vector alone were not statistically significant. This study demonstrates the importance of following manufacturer guidelines and the need for validating alternative strategies to benefit from the high level of protection offered by vector vaccines.
Collapse
Affiliation(s)
- John R Dunn
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823,
| | - Kiril M Dimitrov
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| | - Patti J Miller
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| | - Maricarmen Garcia
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | |
Collapse
|
21
|
Dan W, Jin Y, Tang Z, Li Y, Yao H. Nucleotide composition and synonymous codon usage of open reading frames in Norovirus GII.4 variants. J Biomol Struct Dyn 2019; 38:4764-4773. [PMID: 31684837 DOI: 10.1080/07391102.2019.1689171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Norovirus GII.4 variants, a genotype in genogroup II belonging to the genus Norovirus, is a single-strand positive sense RNA containing three open reading frames (ORF1, ORF2 and ORF3) and is the most important pathogen causing nonbacterial gastroenteritis outbreaks. By using bioinformatic softwares such as Codon W, SPSS and so on, a total of 292 strains of the viruses isolated from 1974 to 2016 were analyzed for nucleotide composition and synonymous codon usage in each ORF. The result shows that it is enriched for A over the other bases in nucleotide composition, G behind the other bases in the 3rd site of all synonymous codons in the three ORFs. The patterns of nucleotide composition and codon bias of ORF2 are similar to those of ORF3 and different from those of ORF1. There are generally UpA motif and CpG motif in the codons with the lowest proportion. Correspondence analysis indicates that the codon usage may be changing over a certain time period for ORF1 in 2006 and 2012, ORF2 in 2012, and ORF3 in 2013. ENC (effective number of codons) plot and other analyses indicate that both natural selection and mutational pressure play partly roles in the ORFs, but natural selection is more important for ORF2 and ORF3. Besides, we also found all optimal codons in the ORFs. The study provides a basic understanding of the mechanism for norovirus GII.4 codon usage bias. AbbreviationsORFOpen Reading FrameENCEffective Number of CodonsCOAcorrespondence analysisRSCURelative Synonymous Codon UsageCAICodon Adaptation IndexCBICodon Bias IndexFopfrequency of optimal codonsL_symnumber of synonymous codonsL_aalength amino acidsGRAVYgrand average of hydropathicityAromaaromaticityCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wei Dan
- College of Life Science, Sichuan Agriculture University, Ya'an, Sichuan, China
| | - Yan Jin
- College of Life Science, Sichuan Agriculture University, Ya'an, Sichuan, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, Sichuan, China
| | - Yongmin Li
- College of Life Science, Sichuan Agriculture University, Ya'an, Sichuan, China
| | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, Sichuan, China
| |
Collapse
|
22
|
Staley M, Bonneaud C, McGraw KJ, Vleck CM, Hill GE. Detection of Mycoplasma gallisepticum in House Finches ( Haemorhous mexicanus) from Arizona. Avian Dis 2019; 62:14-17. [PMID: 29620468 DOI: 10.1637/11610-021317-reg.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 1994, an endemic poultry pathogen, Mycoplasma gallisepticum (MG), was identified as the causative agent of a novel disease in house finches ( Haemorhous mexicanus). After an initial outbreak in Maryland, MG spread rapidly throughout eastern North American populations of house finches. Subsequently, MG spread slowly through the northern interior of North America and then into the Pacific Northwest, finally reaching California in 2006. Until 2009, there were no reports of MG in the southwestern United States east of California. In August 2011, after reports of house finches displaying conjunctivitis characteristic of MG infection in Arizona, we trapped house finches at bird feeders in central Arizona (Tempe) and southern Arizona (Tucson and Green Valley) to assay for MG infection. Upon capture, we noted whether birds exhibited conjunctivitis, and we collected choanal swabs to test for the presence of MG DNA using PCR. We detected MG in finches captured from Green Valley (in ∼12% of birds captured), but not in finches from Tucson or Tempe. Based on resampling of house finches at these sites in July 2014, we suggest that central Arizona finches likely remain unexposed to MG. We also suggest that low urban connectivity between arid habitats of southern and central Arizona or a reduction in the prevalence of MG after its initial arrival in Arizona may be limiting the spread of MG from south to north in Arizona. In addition, the observed conjunctivitis-like signs in house finches that were negative for MG by PCR may be caused primarily by avian pox virus.
Collapse
Affiliation(s)
- Molly Staley
- A Department of Biological Sciences, Auburn University, Auburn, AL 36849.,B Chicago Zoological Society, Brookfield, IL 60513
| | - Camille Bonneaud
- D Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EF, United Kingdom
| | - Kevin J McGraw
- E School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Carol M Vleck
- F Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011
| | - Geoffrey E Hill
- A Department of Biological Sciences, Auburn University, Auburn, AL 36849
| |
Collapse
|
23
|
Characterization of Iranian canarypox and pigeonpox virus strains. Arch Virol 2019; 164:2049-2059. [PMID: 31123965 DOI: 10.1007/s00705-019-04277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
Avipoxviruses (APVs) are large DNA viruses that are detected widely in many species of birds. Little information is available regarding genetic variations in these host-specific viruses. In the present study, nine canarypox virus and five pigeonpox virus isolates were collected from northeastern Iran and isolated via the chorioallantoic membrane of chicken embryos. Further investigations were conducted using analysis of virus growth in chicken embryo fibroblasts, histopathology, electron microscopy, and molecular techniques such as polymerase chain reaction (PCR) combined with sequencing and phylogenetic analysis to investigate variations in the highly conserved P4b gene of poxviruses. Virus replication and pock lesions were evident, and microscopic examination revealed eosinophilic intracytoplasmic inclusion bodies and biconcave enveloped virus particles with randomly arranged surface filaments, which are characteristic features of poxviruses. PCR results confirmed the presence of an APV-specific 578-bp fragment in all of the samples. Sequence analysis and phylogenetic analysis of 578-bp P4b fragments of eight isolates confirmed that our canary and pigeon isolates clustered with previously reported isolates. The similarity between the nucleotide sequences of most of our isolates and those isolated previously in other countries could be due to the high degree of conservation of these fragments. However, the FZRC6V isolate from a canary in this study did not have a canarypox virus origin according to the sequence analysis, and might have originated from cross-infection with different strains of avipoxviruses.
Collapse
|
24
|
A flow cytometric granularity assay for the quantification of infectious virus. Vaccine 2019; 37:7090-7099. [PMID: 31630940 DOI: 10.1016/j.vaccine.2019.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023]
Abstract
A flow cytometry-based assay was developed to assess the infective titer of two recombinant viruses: a recombinant herpes simplex type 2 (rHSV-2) and a recombinant canary pox (rALVAC.gfp). This method uses granularity of infected Vero and QT-35 cells, respectively, and correlates this to the infectious titer of virus samples. The percent of the cell populations with a high level of granularity could accurately be correlated to viral titers obtained through a traditional plaque assay, with R2 values greater than 0.8 using a semi-logarithmic scale. This approach offers a rapid, high-throughput method for infectious virus titration with similar accuracy to a traditional plaque assay.
Collapse
|
25
|
Avian Poxvirus Infection in Polish Great Tits (Parus Major). J Vet Res 2019; 62:427-430. [PMID: 30729198 PMCID: PMC6364157 DOI: 10.2478/jvetres-2018-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Avian poxvirus infections are widespread in the domestic poultry population but are also reported in wild birds. In poultry, these infections cause significant economic losses, while wild birds may be a reservoir for poxvirus which affects breeding poultry. However, wild birds may also exhibit characteristic anatomopathological changes. This study concerns the infection of wild-living great tits (Parus major) with the avian poxvirus in Poland. Material and Methods Samples of internal organs and skin collected from great tits were homogenised and total cellular DNA was isolated. In PCR, the primers complementary to gene encoding the core protein 4b of the HP44 strain of fowl poxvirus (FPV) were used. Results After electrophoresis in 2% agarose gel, the PCR product of 578 bp characteristic for FPV was obtained in DNA samples isolated from skin lesions and the heart. The analysis of the nucleotide sequence of the virus strain showed 99% similarity to many poxviruses previously isolated from great tits and other free birds at various sites in the world. Conclusions This paper is the first clinically documented evidence obtained in laboratory conditions of avian poxvirus cases in great tits in Poland.
Collapse
|
26
|
de Araujo JL, Plumlee Q, Kleinschmidt L, Hoppes SM, Rech RR. Pathology in Practice. J Am Vet Med Assoc 2018; 253:1421-1424. [PMID: 30451622 DOI: 10.2460/javma.253.11.1421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Kochhar S, Excler JL, Bok K, Gurwith M, McNeil MM, Seligman SJ, Khuri-Bulos N, Klug B, Laderoute M, Robertson JS, Singh V, Chen RT. Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines. Vaccine 2018; 37:5796-5802. [PMID: 30497831 PMCID: PMC6535369 DOI: 10.1016/j.vaccine.2018.08.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting "near real-time" prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators.
Collapse
Affiliation(s)
- Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; Erasmus MC, University Medical Center, Rotterdam, the Netherlands; University of Washington, Seattle, USA
| | | | - Karin Bok
- National Vaccine Program Office, Office of the Assistant Secretary for Health, US Department of Health and Human Services, Washington DC, USA
| | | | - Michael M McNeil
- Immunization Safety Office, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, NY, USA; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Disease, Jordan University Hospital, Amman, Jordan
| | - Bettina Klug
- Division Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - James S Robertson
- Independent Adviser (formerly of National Institute for Biological Standards and Control), Potters Bar, UK
| | - Vidisha Singh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), USA
| | - Robert T Chen
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), USA; Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | | |
Collapse
|
28
|
Murer L, Westenhofen M, Kommers GD, Furian TQ, Borges KA, Kunert-Filho HC, Streck AF, Lovato M. Identification and phylogenetic analysis of clade C Avipoxvirus in a fowlpox outbreak in exotic psittacines in southern Brazil. J Vet Diagn Invest 2018; 30:946-950. [PMID: 30199325 DOI: 10.1177/1040638718775146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fowlpox is one of the oldest diseases reported in birds. The causative genus Avipoxvirus affects ~232 domestic and wild species. We present herein the history, clinical findings, and macroscopic and histologic lesions caused by a clade C poxvirus in an exotic psittacine breeding colony in southern Brazil. Clinical signs included yellow nodular lesions at the commissure of the beak and on the periocular skin, loss of appetite, and death. Fifty birds were autopsied, and fragments of periocular skin, tongue, and trachea were examined histologically, which revealed hyperkeratosis associated with eosinophilic intracytoplasmic inclusion bodies. Tracheal fragments and periocular skin were subjected to nested PCR and phylogenetic analyses. The sequenced strain showed 99.58% identity with the nucleotide sequences of Avipoxvirus strains AY53011, KC018069, AM050383, and AM05382 isolated from birds in Germany, United States, and United Kingdom. The strain was grouped under clade C, which represents isolates exclusively from the Psittacidae family. The infection caused by clade C Avipoxvirus in the exotic psittacines examined ( Platycercus sp. and Psephotus haematonotus) demonstrates the circulation of this clade in this breeding colony.
Collapse
Affiliation(s)
- Laurete Murer
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Moisés Westenhofen
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Glaucia D Kommers
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Thales Q Furian
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Karen A Borges
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Hiran C Kunert-Filho
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - André F Streck
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Maristela Lovato
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| |
Collapse
|
29
|
Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7278459. [PMID: 30175140 PMCID: PMC6098882 DOI: 10.1155/2018/7278459] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
Collapse
|
30
|
Mapaco LP, Lacerda Z, Monjane IVA, Gelaye E, Sussuro AH, Viljoen GJ, Dundon WG, Achá SJ. Identification of Clade E Avipoxvirus, Mozambique, 2016. Emerg Infect Dis 2018; 23:1602-1604. [PMID: 28820373 PMCID: PMC5572868 DOI: 10.3201/eid2309.161981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Analysis of scab samples collected from poultry during outbreaks of fowlpox in Mozambique in 2016 revealed the presence of clade E avipoxviruses. Infected poultry were from flocks that had been vaccinated against fowlpox virus. These findings require urgent reevaluation of the vaccine formula and control strategies in this country.
Collapse
|
31
|
Abstract
This brief review discusses some recent advances in vaccine technologies with particular reference to their application within veterinary medicine. It highlights some of the key inactivated/killed approaches to vaccination, including natural split-product and subunit vaccines, recombinant subunit and protein vaccines, and peptide vaccines. It also covers live/attenuated vaccine strategies, including modified live marker/differentiating infected from vaccinated animals vaccines, live vector vaccines, and nucleic acid vaccines.
Collapse
Affiliation(s)
- Michael James Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, Buckinghamshire HP7 0DQ, UK.
| |
Collapse
|
32
|
Catania S, Carnaccini S, Mainenti M, Moronato ML, Gobbo F, Calogero T. Isolation of Avipoxvirus from Tongue of Canaries ( Serinus canaria) Show Severe Localized Proliferative Glossitis. Avian Dis 2018; 61:531-535. [PMID: 29337622 DOI: 10.1637/11713-071417-case.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poxvirus was the causative agent of two unusual outbreaks of proliferative glossitis in canary ( Serinus canaria forma domestica) breeders in the Northern Italy. A total of 45, 7-9-mo-old canaries were submitted in fair postmortem conditions to the Istituto Zooprofilattico Sperimentale delle Venezie at the beginning of November 2005 for diagnostic investigation. Birds belonged to two unrelated and geographically distant aviaries in northern Italy, herein identified as Aviary A and Aviary B. The two breeder flocks had both attended the same bird exposition held at the beginning of October and started experiencing an onset of high mortality 3 wk after the show. Twelve red factor-melanin canaries from Aviary A (Mantua) and 33 dominant white and recessive white canaries from Aviary B (Vicenza) were submitted for laboratory investigations. Clinical signs were unspecific and consisted of depression, ruffling of the feathers, epistaxis, and anorexia due to decreased feed and water intake. Postmortem findings revealed a severe increase in volume, thickening, and hardening of the tongue, which had turned pinkish to dark brown. No apparent gross lesions were noticed in integumentary, respiratory, and digestive systems or other internal organs. Histopathologic evaluation of the tongue revealed severe proliferation of the stratified squamous epithelium containing numerous large eosinophilic intracytoplasmic inclusion bodies (Bollinger bodies) displacing the nuclei of the cells peripherally. Severe ulceration of the surface epithelium, fibrinoheterophilic plaque formation, and moderate basal lymphoplasmacytic infiltrations were also associated with the proliferative lesion. Poxvirus was successfully isolated from the lesions in tissue cultures but not in specific-pathogen-free chicken embryonated eggs. Typical large, brick-shaped viral particles of 300-450 nm were also observed in affected tongues by transmission electron microscopy. This is the first report of multiple outbreaks of "poxvirus glossitis" in canaries.
Collapse
Affiliation(s)
- Salvatore Catania
- A Istituto Zooprofilattico Sperimentale di Padova, Viale dell'Università 10, Legnaro, PD, 35020, Italy
| | - Silvia Carnaccini
- B Poultry Diagnostic and Research Center, The University of Georgia, 953 College Station Road, Athens, GA 30602
| | - Marta Mainenti
- A Istituto Zooprofilattico Sperimentale di Padova, Viale dell'Università 10, Legnaro, PD, 35020, Italy
| | - Maria Luisa Moronato
- A Istituto Zooprofilattico Sperimentale di Padova, Viale dell'Università 10, Legnaro, PD, 35020, Italy
| | - Federica Gobbo
- A Istituto Zooprofilattico Sperimentale di Padova, Viale dell'Università 10, Legnaro, PD, 35020, Italy
| | - Terregino Calogero
- A Istituto Zooprofilattico Sperimentale di Padova, Viale dell'Università 10, Legnaro, PD, 35020, Italy
| |
Collapse
|
33
|
MOLECULAR EPIDEMIOLOGY OF AVIAN POXVIRUS IN THE ORIENTAL TURTLE DOVE (STREPTOPELIA ORIENTALIS) AND THE BITING MIDGE (CULICOIDES ARAKAWAE) IN THE REPUBLIC OF KOREA. J Wildl Dis 2017; 53:749-760. [PMID: 28700322 DOI: 10.7589/2016-10-230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A total of 600 wild birds were analyzed for the causes of mortality in the Republic of Korea (ROK) from 2011 to 2013. Avian poxvirus (APV) infections were identified as the primary cause of mortality in 39% (29/74) Oriental Turtle Doves (Streptopelia orientalis). At necropsy, all 29 S. orientalis birds, of which, 76% (22/29) were juveniles, had severe diphtheritic lesions in their oral and nasal cavities and on their eyelids, which were the lesions of APV that resulted in mortality. We detected APV infection by chorioallantoic membrane inoculation and molecular study of the partial region of the P4b gene. All isolates belonged to the same APV strain and were identical to strains isolated from several different pigeon species in South Africa. Phylogenetically, the APV strain identified in S. orientalis belonged to subclade A2, which includes isolates from several species of pigeons from different parts of the world, including the United Kingdom, Germany, India, Egypt, Hawaii, Georgia, Hungary, South Africa, Tanzania, and the ROK. This identity indicated that this diphtheritic APV strain may be a potential pathogen of other pigeon species in the ROK and neighboring countries throughout the range of S. orientalis. However, reticuloendotheliosis virus insertion into the APV genome was not detected by PCR in any of the 29 APV infections. An identical strain of APV observed in S. orientalis was also detected in Culicoides arakawae (biting midge), with annual peak populations corresponding to the presence of APV in S. orientalis. Culicoides arakawae may be a primary vector of APV in S. orientalis. Active surveillance of APVs in wild birds and C. arakawae is needed to better understand the epidemiology of APVs, host-vector relationships, and its ecological effects on S. orientalis in the ROK.
Collapse
|
34
|
Novel Nonreplicating Vaccinia Virus Vector Enhances Expression of Heterologous Genes and Suppresses Synthesis of Endogenous Viral Proteins. mBio 2017; 8:mBio.00790-17. [PMID: 28588133 PMCID: PMC5461411 DOI: 10.1128/mbio.00790-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo, and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which was used successfully as a live vaccine to eradicate smallpox, has been further attenuated and adapted as a recombinant vector for immunization against other pathogens. However, since the initial description of this vector system, only incremental improvements largely related to safety have been implemented. Here we described novel modifications of the platform that increased expression of the heterologous target gene and decreased expression of endogenous vaccinia virus genes while providing safety by preventing replication of the candidate vaccine except in complementing cells used for vector propagation.
Collapse
|
35
|
Garanzini D, Del Médico-Zajac MP, Calamante G. Development of Recombinant Canarypox Viruses Expressing Immunogens. Methods Mol Biol 2017; 1581:15-28. [PMID: 28374241 DOI: 10.1007/978-1-4939-6869-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Canarypox viruses (CNPV) are excellent candidates to develop recombinant vector vaccines due to both their capability to induce protective immune responses and their incompetence to replicate in mammalian cells (safety profile). In addition, CNPV and the derived recombinants can be manipulated under biosafety level 1 conditions. There is no commercially available system to obtain recombinant CNPV; however, the methodology and tools required to develop recombinant vaccinia virus (VV), prototype of the Poxviridae family, can be easily adapted. This chapter provides protocols for the generation, plaque isolation, molecular characterization, amplification and purification of recombinant CNPV.
Collapse
Affiliation(s)
- Débora Garanzini
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield, 563, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Del Médico-Zajac
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Calamante
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Arcia D, Acevedo-Sáenz L, Rugeles MT, Velilla PA. Role of CD8 + T Cells in the Selection of HIV-1 Immune Escape Mutations. Viral Immunol 2016; 30:3-12. [PMID: 27805477 DOI: 10.1089/vim.2016.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection represents one of the biggest public health problems worldwide. The immune response, mainly the effector mechanisms mediated by CD8+ T cells, induces the selection of mutations that allows the virus to escape the immune control. These mutations are generally selected within CD8+ T cell epitopes restricted to human leukocyte antigen class I (HLA-I), leading to a decrease in the presentation and recognition of the epitope, decreasing the activation of CD8+ T cells. However, these mutations may also affect cellular processing of the peptide or recognition by the T cell receptor. Escape mutations often carry a negative impact in viral fitness that is partially or totally compensated by the selection of compensatory mutations. The selection of either escape mutations or compensatory mutations may negatively affect the course of the infection. In addition, these mutations are a major barrier for the development of new therapeutic strategies focused on the induction of specific CD8+ T cell responses.
Collapse
Affiliation(s)
- David Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Paula A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
37
|
AVIAN POXVIRUS INFECTION IN A FLAMINGO (PHOENICOPTERUS RUBER) OF THE LISBON ZOO. J Zoo Wildl Med 2016; 47:161-74. [PMID: 27010277 DOI: 10.1638/2011-0101.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avian poxviruses (APV) are very large viruses spread worldwide in a variety of hosts. They are responsible for a disease usually referred to as pox, mainly characterized by nodular lesions on feather-free regions of the body. On May 2010, a young American flamingo (Phoenicopterus ruber) of the Lisbon Zoo (Portugal) developed a nodular lesion suggestive of poxvirus infection on its right foot. Avipoxvirus was isolated from the lesion and a fragment of the P4b-encoding gene was amplified by polymerase chain reaction. The nucleotide sequence of the amplicon was determined and analyzed. A close relationship (100% identity) was observed between the flamingo poxvirus and isolates from great bustard (Hungary 2005), house sparrow (Morocco 2009), MacQueen's bustard (Morocco 2011), and Houbara bustard (Morocco 2010 and 2011), suggesting interspecies transmission as a possible source of infection. To strengthen the investigation, the 5' and 3' ends of genes cnpv186 and cnpv 187, respectively, were also analyzed. The cnpv186-187 fragment exhibited 100% identity with MacQueen's bustard and Houbara bustard isolates, both from Morocco 2011. Phylogenetic analyses based in both fragments grouped the flamingo isolate consistently within clade B2 of canarypox. However, the phylogenetic relationships among the different representatives of avian poxviruses were more comprehensive in the tree based on the concatenated coding sequences of the cnpv186-187 fragment, rather than on the P4b-coding gene. The clearer displacement and distribution of the isolates regarding their host species in this last tree suggests the potential usefulness of this genomic region to refine avian poxvirus classification.
Collapse
|
38
|
Zanetti FA, Cardona R, Federico CR, Chimeno-Zoth S, Calamante G. Recombinant canarypox virus expressing the VP2 protein of infectious bursal disease virus induces protection in vaccinated SPF chickens. Virol Sin 2016; 31:266-9. [PMID: 27007879 DOI: 10.1007/s12250-015-3680-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Flavia Adriana Zanetti
- Ciudad Autónoma de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia, 1917 (C1033AAJ), Argentina
| | - Romina Cardona
- Ciudad Autónoma de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia, 1917 (C1033AAJ), Argentina
| | - Carlos Rodolfo Federico
- Ciudad Autónoma de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia, 1917 (C1033AAJ), Argentina
| | - Silvina Chimeno-Zoth
- Ciudad Autónoma de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia, 1917 (C1033AAJ), Argentina.,Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Gabriela Calamante
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.
| |
Collapse
|
39
|
AN EPIZOOTIC OF EMERGING NOVEL AVIAN POX IN CARRION CROWS (CORVUS CORONE) AND LARGE-BILLED CROWS (CORVUS MACRORHYNCHOS) IN JAPAN. J Wildl Dis 2016; 52:230-41. [PMID: 26967129 DOI: 10.7589/2015-07-172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 2006-10, an epizootic of emerging avian pox occurred in Carrion Crows ( Corvus corone ) and Large-billed Crows ( Corvus macrorhynchos ), leading to mortality of juvenile crows in Hokkaido, the northernmost island of Japan. We diagnosed 27 crows with proliferative skin lesions (19 carcasses and eight biopsied cases [one in zoo captivity]) as avian pox clinically, histopathologically by detection of Avipoxvirus-specific 4b core protein (P4b) gene, and epidemiologically. The fatal cases demonstrated intensively severe infection and aggressive lesions with secondary bacterial infection. Since the first identification of avian pox in Sapporo, Japan, in 2006, the frequency of mortality events has increased, peaking in 2007-08. Mortalities have subsequently occurred in other areas, suggesting disease expansion. In Sapporo, prevalence of avian pox evaluated by field censuses during 2007-12 was 17.6% (6.6-27.2%), peaked during 2007-08 and 2008-09, and then decreased. All diseased crows were juveniles, except for one adult. The number of crows assembling in the winter roosts had been stable for >10 yr; however, it declined in 2007-08, decreased by about 50% in 2008-09, and recovered to the previous level in 2009-10, correlated with the avian pox outbreak. Thus, avian pox probably contributed to the unusual crow population decline. All P4b sequences detected in six specimens in Sapporo were identical and different from any previously reported sequences. The sequence detected in the zoo-kept crow was distinct from any reported clades, and interspecies transmission was suspected. This report demonstrates an emerging novel avian pox in the Japanese avifauna and in global populations of Carrion Crows and Large-billed Crows. Longitudinal monitoring is needed to evaluate its impact on the crow population.
Collapse
|
40
|
Bányai K, Palya V, Dénes B, Glávits R, Ivanics É, Horváth B, Farkas SL, Marton S, Bálint Á, Gyuranecz M, Erdélyi K, Dán Á. Unique genomic organization of a novel Avipoxvirus detected in turkey (Meleagris gallopavo). INFECTION GENETICS AND EVOLUTION 2015; 35:221-9. [PMID: 26282613 DOI: 10.1016/j.meegid.2015.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Avipoxviruses are emerging pathogens affecting over 200 bird species worldwide. Genetic characterization of avipoxviruses is performed by analysis of genomic regions encoding the 4b and DNA polymerase. Whole genome sequence data are limited to a few avipoxvirus isolates. Based on phylogenetic analysis three major genetic clades are distinguished. In this study we report a novel avipoxvirus strain causing skin lesions in domestic turkey. The virus was identified in Hungary during 2011 in a flock of turkey vaccinated against avipoxvirus infection. The genome of the isolated strain, TKPV-HU1124/2011, was uniquely short (∼188.5kbp) and was predicted to encode reduced number of proteins. Phylogenetic analysis of the genes encoding the 4b and DNA polymerase separated TKPV-HU1124/2011 from other turkey origin avipoxviruses and classified it into a new genetic clade. This study permits new insight into the genetic and genomic heterogeneity of avipoxviruses and pinpoints the importance of strain diversity in vaccine efficacy.
Collapse
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | - Béla Dénes
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Róbert Glávits
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Éva Ivanics
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Balázs Horváth
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| |
Collapse
|
41
|
Hatcher EL, Wang C, Lefkowitz EJ. Genome variability and gene content in chordopoxviruses: dependence on microsatellites. Viruses 2015; 7:2126-46. [PMID: 25912716 PMCID: PMC4411693 DOI: 10.3390/v7042126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.
Collapse
Affiliation(s)
- Eneida L Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA.
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| |
Collapse
|
42
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
43
|
Gilhare VR, Hirpurkar SD, Kumar A, Naik SK, Sahu T. Pock forming ability of fowl pox virus isolated from layer chicken and its adaptation in chicken embryo fibroblast cell culture. Vet World 2015; 8:245-50. [PMID: 27047081 PMCID: PMC4774827 DOI: 10.14202/vetworld.2015.245-250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/16/2022] Open
Abstract
Aim: The objective of the present study was to examine pock forming ability of field strain and vaccine strain of fowl pox virus (FPV) in chorioallantoic membrane (CAM) of embryonated chicken eggs and its adaptation in chicken embryo fibroblast (CEF) cell culture. Materials and Methods: Dry scabs were collected from 25 affected birds in glycerin-saline and preserved at 4°C until processed. Virus was isolated in 10-day-old embryonated chicken eggs by dropped CAM method. The identity of the virus is confirmed by clinical findings of affected birds, pock morphology and histopathology of infected CAM. In addition one field isolate and vaccine strain of FPV was adapted to CEF cell culture. CEF cell culture was prepared from 9-day-old embryonated chicken eggs. Result: Clinical symptoms observed in affected birds include pox lesion on comb, wattle, eyelids and legs, no internal lesions were observed. All field isolates produced similar findings in CAM. Pocks produced by field isolates ranged from 3 mm to 5 mm at the third passage while initial passages edematous thickening and necrosis of CAM was observed. Pocks formed by lyophilized strain were ranges from 0.5 mm to 2.5 mm in diameter scattered all over the membrane at the first passage. Intra-cytoplasmic inclusion bodies are found on histopathology of CAM. At third passage level, the CEF inoculated with FPV showed characteristic cytopathic effect (CPE) included aggregation of cells, syncytia and plaque formation. Conclusion: FPV field isolates and vaccine strain produced distinct pock lesions on CAMs. Infected CAM showed intracytoplasmic inclusion bodies. The CEF inoculated with FPV field isolate as well as a vaccine strain showed characteristic CPE at third passage level.
Collapse
Affiliation(s)
- Varsha Rani Gilhare
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - S D Hirpurkar
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Ashish Kumar
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Surendra Kumar Naik
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Tarini Sahu
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| |
Collapse
|
44
|
Construction and characterization of novel fowlpox virus shuttle vectors. Virus Res 2014; 197:59-66. [PMID: 25529440 DOI: 10.1016/j.virusres.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
Abstract
Viral vectors are important vehicles in vaccine research. Avipoxviruses including fowlpox virus (FPV) play major roles in viral vaccine vector development for the prevention and therapy of human and other veterinary diseases due to their immunomodulatory effects and safety profile. Recently, we analyzed the genomic and proteomic backgrounds of the Chinese FPV282E4 strain. Based on analysis of the whole genome of FPV282E4, the FPV150 and FPV193 loci were chosen as insertion sites for foreign genes, and two shuttle vectors with a triple-gene expression cassette were designed and constructed. Homologous recombination between the FPV virus genome and sequences within the shuttle plasmids in infected cells was confirmed. The recombinants were obtained through several rounds of plaque purification using enhanced green fluorescent protein as a reporter and evaluated for the correct expression of foreign genes in vitro using RT-PCR, real-time PCR and Western blotting. Morphogenesis and growth kinetics were assayed via transmission electron microscopy and viral titering, respectively. Results showed that recombinant viruses were generated and correctly expressed foreign genes in CEF, BHK-21 and 293T cells. At least three different exogenous genes could be expressed simultaneously and stably over multiple passages. Additionally, the FPV150 mutation, FPV193 deletion and insertion of foreign genes did not affect the morphogenesis, replication and proliferation of recombinant viruses in cells. Our study contributes to the improvement of FPV vectors for multivalent vaccines.
Collapse
|
45
|
Existence of variant strains Fowlpox virus integrated with Reticuloendotheliosis virus in its genome in field isolates in Tanzania. Trop Anim Health Prod 2014; 46:711-6. [PMID: 24557589 DOI: 10.1007/s11250-014-0552-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Fowlpox virus (FPV) is one example of poultry viruses which undergoes recombination with Reticuloendotheliosis virus (REV). Trepidation had been raised, and it was well established on augmented pathogenicity of the FPV upon integration of the full intact REV. In this study, we therefore intended at assessing the integration of REV into FPV genome of the field isolates obtained in samples collected from different regions of Tanzania. DNA extraction of 85 samples (scabs) was performed, and FPV-specific PCR was done by the amplification of the highly conserved P4b gene. Evaluation of FPV-REV recombination was done to FPV-specific PCR positively identified samples by amplifying the env gene and REV long terminal repeats (5' LTR). A 578-bp PCR product was amplified from 43 samples. We are reporting for the first time in Tanzania the existence of variant stains of FPV integrated with REV in its genome as 65 % of FPV identified isolates were having full intact REV integration, 21 % had partial FPV-REV env gene integration and 5 % had partial 5' LTR integration. Despite of the fact that FPV-REV integrated stains prevailed, FPV-REV-free isolates (9 %) also existed. In view of the fact that full intact REV integration is connected with increased pathogenicity of FPV, its existence in the FPV genome of most field isolates could have played a role in increased endemic, sporadic and recurring outbreaks in selected areas in Tanzania.
Collapse
|
46
|
Williams RAJ, Escudero Duch C, Pérez-Tris J, Benítez L. Polymerase chain reaction detection of avipox and avian papillomavirus in naturally infected wild birds: comparisons of blood, swab and tissue samples. Avian Pathol 2014; 43:130-4. [PMID: 24456300 DOI: 10.1080/03079457.2014.886326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian poxvirus (avipox) is widely reported from avian species, causing cutaneous or mucosal lesions. Mortality rates of up to 100% are recorded in some hosts. Three major avipox clades are recognized. Several diagnostic techniques have been reported, with molecular techniques used only recently. Avipox has been reported from 278 different avian species, but only 111 of these involved sequence and/or strain identification. Collecting samples from wild birds is challenging as only few wild bird individuals or species may be symptomatic. Also, sampling regimes are tightly regulated and the most efficient sampling method, whole bird collection, is ethically challenging. In this study, three alternative sampling techniques (blood, cutaneous swabs and tissue biopsies) from symptomatic wild birds were examined. Polymerase chain reaction was used to detect avipoxvirus and avian papillomavirus (which also induces cutaneous lesions in birds). Four out of 14 tissue samples were positive but all 29 blood samples and 22 swab samples were negative for papillomavirus. All 29 blood samples were negative but 6/22 swabs and 9/14 tissue samples were avipox-positive. The difference between the numbers of positives generated from tissue samples and from swabs was not significant. The difference in the avipox-positive specimens in paired swab (4/6) and tissue samples (6/6) was also not significant. These results therefore do not show the superiority of swab or tissue samples over each other. However, both swab (6/22) and tissue (8/9) samples yielded significantly more avipox-positive cases than blood samples, which are therefore not recommended for sampling these viruses.
Collapse
Affiliation(s)
- Richard A J Williams
- a Department of Zoology and Physical Anthropology, Faculty of Biological Sciences , Universidad Complutense de Madrid , Madrid , Spain
| | | | | | | |
Collapse
|
47
|
Quinan BR, Daian DSO, Coelho FM, da Fonseca FG. Modified vaccinia virus Ankara as vaccine vectors in human and veterinary medicine. Future Virol 2014. [DOI: 10.2217/fvl.13.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT: Disease prevention through vaccination is one of the most important achievements of medicine. Today, we have a substantial number of vaccines against a variety of pathogens. In this context, poxviruses and vaccinology are closely related, as the birth of modern vaccinology was marked by the use of poxviruses as immunogens and so was the eradication of smallpox, one of the world's most feared diseases ever. Nowadays, poxviruses continue to notoriously contribute to vaccinology since their use as vaccine vectors has become popular and widespread. One of the most promising vectors is the modified vaccinia ankara. In this review we provide an overview of the contribution of poxvirus to vaccine immunology, particularly focusing on modified vaccinia ankara-based vaccines developed to date.
Collapse
Affiliation(s)
- Bárbara R Quinan
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle SO Daian
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana M Coelho
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
- Av. Antônio Carlos 6627, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia. Belo Horizonte, MG, Brazil, 31270-901
| |
Collapse
|
48
|
Niemeyer C, Favero CM, Kolesnikovas CKM, Bhering RCC, Brandão P, Catão-Dias JL. Two different avipoxviruses associated with pox disease in Magellanic penguins (Spheniscus magellanicus) along the Brazilian coast. Avian Pathol 2013; 42:546-51. [PMID: 24164638 DOI: 10.1080/03079457.2013.849794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel avipoxvirus caused diphtheritic lesions in the oesophagus of five and in the bronchioli of four Magellanic penguins (Spheniscus magellanicus) and also cutaneous lesions in eight Magellanic penguins housed in outdoor enclosures in a Rehabilitation Centre at Florianópolis, Santa Catarina State, Brazil. At the same time, another avipoxvirus strain caused cutaneous lesions in three Magellanic penguins at a geographically distinct Rehabilitation Centre localized at Vila Velha, Espírito Santo State, Brazil. Diagnosis was based on clinical signs, histopathology and use of the polymerase chain reaction (PCR). Clinical signs in the penguins included cutaneous papules and nodules around eyelids and beaks, depression and restriction in weight gain. The most common gross lesions were severely congested and haemorrhagic lungs, splenomegaly and cardiomegaly. Histological examination revealed Bollinger inclusion bodies in cutaneous lesions, mild to severe bronchopneumonia, moderate periportal lymphocytic hepatitis, splenic lymphopenia and lymphocytolysis. Other frequent findings included necrotizing splenitis, enteritis, oesophagitis, dermatitis and airsacculitis. Cytoplasmic inclusion bodies were seen within oesophageal epithelial cells in five birds and in epithelial cells of the bronchioli in four penguins. DNA from all samples was amplified from skin tissue by PCR using P4b-targeting primers already described in the literature for avipoxvirus. The sequences showed two different virus strains belonging to the genus Avipoxvirus of the Chordopoxvirinae subfamily, one being divergent from the penguinpox and avipoxviruses already described in Magellanic penguins in Patagonia, but segregating within a clade of canarypox-like viruses implicated in diphtheritic and respiratory disease.
Collapse
Affiliation(s)
- Claudia Niemeyer
- a Laboratório de Patologia Comparada de Animais Selvagens, Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo , Cidade Universitária São Paulo , São Paulo , Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Campagnolo ER, Lind LR, Long JM, Moll ME, Rankin JT, Martin KF, Deasy MP, Dato VM, Ostroff SM. Human exposure to rabid free-ranging cats: a continuing public health concern in Pennsylvania. Zoonoses Public Health 2013; 61:346-55. [PMID: 24134434 DOI: 10.1111/zph.12077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/28/2022]
Abstract
Rabid free-ranging cats have been a public health concern in Pennsylvania since raccoon variant rabies first was recognized in the state in the early 1980s. Over the last decade, between 1.5 and 2.5% of cats submitted to Pennsylvania's state laboratories for rabies testing have been positive. In this report, we describe the extent of rabies in free-ranging cats in Pennsylvania. We also present two examples of human exposure to rabid free-ranging cats that occurred in Pennsylvania during 2010-2011 and the public health actions taken to address rabies exposure in the humans and animals. We then describe the concerns surrounding the unvaccinated and free-ranging cat population in Pennsylvania and possible options in managing this public and animal health problem.
Collapse
Affiliation(s)
- E R Campagnolo
- Centers for Disease Control and Prevention, Office of Public Health Preparedness and Response, Office of Science and Public Health Practice, Atlanta, GA, USA; Pennsylvania Department of Health, Bureau of Epidemiology, Harrisburg, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bentley K, Armesto M, Britton P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS One 2013; 8:e67875. [PMID: 23840781 PMCID: PMC3694013 DOI: 10.1371/journal.pone.0067875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
The avian coronavirus infectious bronchitis virus (IBV) is the causative agent of the respiratory disease infectious bronchitis of domestic fowl, and is controlled by routine vaccination. To explore the potential use of IBV as a vaccine vector a reverse genetics system was utilised to generate infectious recombinant IBVs (rIBVs) expressing the reporter genes enhanced green fluorescent protein (eGFP) or humanised Renilla luciferase (hRluc). Infectious rIBVs were obtained following the replacement of Gene 5 or the intergenic region (IR) with eGFP or hRluc, or the replacement of ORFs 3a and 3b with hRluc. The replacement of Gene 5 with an IBV codon-optimised version of the hRluc gene also resulted in successful rescue of infectious rIBV. Reporter gene expression was confirmed by fluorescence microscopy, or luciferase activity assays, for all successfully rescued rIBVs following infection of primary chick kidney (CK) cells. The genetic stability of rIBVs was analysed by serial passage on CK cells. Recombinant IBV stability varied depending on the genome region being replaced, with the reporter genes maintained up to at least passage 8 (P8) following replacement of Gene 5, P7 for replacement of the IR and P5 for replacement of ORFs 3a and 3b. Codon-optimisation of the hRluc gene, when replacing Gene 5, resulted in an increase in genome stability, with hRluc expression stable up to P10 compared to P8 for standard hRluc. Repeated passaging of rIBVs expressing hRluc at an MOI of 0.01 demonstrated an increase in stability, with hRluc expression stable up to at least P12 following the replacement of Gene 5. This study has demonstrated that heterologous genes can be incorporated into, and expressed from a range of IBV genome locations and that replacement of accessory Gene 5 offers a promising target for realising the potential of IBV as a vaccine vector for other avian pathogens.
Collapse
Affiliation(s)
- Kirsten Bentley
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Maria Armesto
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|