1
|
Wahl V, Olson VA, Kondas AV, Jahrling PB, Damon IK, Kindrachuk J. Variola Virus and Clade I Mpox Virus Differentially Modulate Cellular Responses Longitudinally in Monocytes During Infection. J Infect Dis 2024; 229:S265-S274. [PMID: 37995376 PMCID: PMC10965214 DOI: 10.1093/infdis/jiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.
Collapse
Affiliation(s)
- Victoria Wahl
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Victoria A Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley V Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Inger K Damon
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jason Kindrachuk
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Rosa RB, Ferreira de Castro E, Vieira da Silva M, Paiva Ferreira DC, Jardim ACG, Santos IA, Marinho MDS, Ferreira França FB, Pena LJ. In vitro and in vivo models for monkeypox. iScience 2023; 26:105702. [PMID: 36471873 PMCID: PMC9712139 DOI: 10.1016/j.isci.2022.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.
Collapse
Affiliation(s)
- Rafael Borges Rosa
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Emilene Ferreira de Castro
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Murilo Vieira da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-302, Brazil
| | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
| |
Collapse
|
3
|
Sharma A, Pant K, Pande A, Sinha S, Pant B. Modeling novel Anti-Viral peptides (AVPs) with in-silico docking simulations against corona virus. ACTA ACUST UNITED AC 2021; 46:11169-11176. [PMID: 33680868 PMCID: PMC7914030 DOI: 10.1016/j.matpr.2021.02.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The havoc created by Corona virus has been dealt with using various integrative approaches adopted by laboratories through-out the world. Use of anti-viral peptides (AVPs) although new but has shown tremendous potential against many pathogens. Previously AVPs have been designed against spike protein of corona virus which is the major entry mediating molecule. Using various in-silico strategies, in this research work AVPs have been modeled against lesser studied viral proteins namely ORF7a protein, Envelope protein (E), Nucleoprotein (N), and Non-Structural protein (Nsp1 and Nsp2). The predicted AVPs have been docked against various host as well as viral proteins. The interaction of small AVPs seems capable of interfering with binding between viral protein and its host counterpart. Therefore, these AVPs can act as a deterrent against novel corona virus, which requires further validation through laboratory techniques.
Collapse
Affiliation(s)
- Aditi Sharma
- Deparment of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Akshara Pande
- Department of Computer Sciences, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Bhasker Pant
- Department of Computer Sciences, Graphic Era Hill University, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Interferon therapies in small animals. Vet J 2021; 271:105648. [PMID: 33840487 DOI: 10.1016/j.tvjl.2021.105648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023]
Abstract
Interferons (IFNs) are cytokines that play an important role in the immune response of animals and humans. A number of studies reviewed here have evaluated the use of human, canine and feline IFNs as treatments for infectious, inflammatory and neoplastic disease in dogs and cats. Recombinant canine IFN-γ is deemed an efficacious therapy for canine atopic dermatitis. Recombinant feline IFN-ω is effective against canine parvoviral enteritis and has also been recommended for canine atopic dermatitis. Based on limited evidence, recombinant canine IFN-α could be a topical treatment option for dogs with gingivitis and keratoconjunctivitis sicca. Conclusive evidence is lacking for other diseases and large randomised controlled trials are needed before IFNs can be recommended for other indications.
Collapse
|
5
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
6
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
7
|
Li SF, Zhao FR, Shao JJ, Xie YL, Chang HY, Zhang YG. Interferon-omega: Current status in clinical applications. Int Immunopharmacol 2017; 52:253-260. [PMID: 28957693 PMCID: PMC7106160 DOI: 10.1016/j.intimp.2017.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Since 1985, interferon (IFN)-ω, a type I IFN, has been identified in many animals, but not canines and mice. It has been demonstrated to have antiviral, anti-proliferation, and antitumor activities that are similar to those of IFN-α. To date, IFN-ω has been explored as a treatment option for some diseases or viral infections in humans and other animals. Studies have revealed that human IFN-ω displays antitumor activities in some models of human cancer cells and that it can be used to diagnose some diseases. While recombinant feline IFN-ω has been licensed in several countries for treating canine parvovirus, feline leukemia virus, and feline immunodeficiency virus infections, it also exhibits a certain efficacy when used to treat other viral infections or diseases. This review examines the known biological activity of IFN-ω and its clinical applications. We expect that the information provided in this review will stimulate further studies of IFN-ω as a therapeutic agent.
Collapse
Affiliation(s)
- Shi-Fang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Fu-Rong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China..
| | - Jun-Jun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Yin-Li Xie
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Hui-Yun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China..
| | - Yong-Guang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
8
|
Vilas Boas LCP, de Lima LMP, Migliolo L, Mendes GDS, de Jesus MG, Franco OL, Silva PA. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers 2017; 108. [PMID: 27161201 DOI: 10.1002/bip.22871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Viruses are the major cause of disease and mortality worldwide. Nowadays there are treatments based on antivirals or prophylaxis with vaccines. However, the rising number of reports of viral resistance to current antivirals and the emergence of new types of virus has concerned the scientific community. In this scenario, the search for alternative treatments has led scientists to the discovery of antimicrobial peptides (AMPs) derived from many different sources. Since some of them have shown antiviral activities, here we challenged 10 synthetic peptides from different animal and plant sources against, herpes simplex virus 1 (HSV-1), and Aichi virus. Among them, the highlight was Pa-MAP from the polar fish Pleuronectes americanus, which caused around 90% of inhibition of the HSV with a selectivity index of 5 and a virucidal mechanism of action. Moreover, LL-37 from human neutrophils showed 96% of inhibition against the Aichi virus, showing a selectivity index of 3.4. The other evaluated peptides did not show significant antiviral activity. In conclusion, the present study demonstrated that Pa-MAP seems to be a reliable candidate for a possible alternative drug to treat HSV-1 infections. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-6, 2017.
Collapse
Affiliation(s)
- Liana Costa Pereira Vilas Boas
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil
| | - Lídia Maria Pinto de Lima
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil
| | - Ludovico Migliolo
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Gabriele Dos Santos Mendes
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil
| | - Maianne Gonçalves de Jesus
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil
| | - Octávio Luiz Franco
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Paula Andréia Silva
- Centro De Análises Proteômicas E Bioquímicas: Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Distrito Federal, Brazil
| |
Collapse
|
9
|
Talactac MR, Yada Y, Yoshii K, Hernandez EP, Kusakisako K, Maeda H, Galay RL, Fujisaki K, Mochizuki M, Tanaka T. Characterization and antiviral activity of a newly identified defensin-like peptide, HEdefensin, in the hard tick Haemaphysalis longicornis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:98-107. [PMID: 27871830 DOI: 10.1016/j.dci.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Tick defensins are antimicrobial peptides that play a major role in the innate immunity of ticks by providing a direct antimicrobial defense. In this study, we identified and characterized a defensin-like encoding gene, HEdefensin, from the expressed sequence tags (EST) database of hemolymph from the hard tick Haemaphysalis longicornis. Expression of the gene in whole adult ticks and in different organs was upregulated during blood feeding, though not after Langat virus (LGTV) challenge. A synthetic HEdefensin peptide demonstrated significant virucidal activity against LGTV but not against an adenovirus in co-incubation virucidal assays. Moreover, the RNAi-mediated gene silencing of HEdefensin did not significantly affect the virus titer as compared to the control group. The data reported here have established the in vitro virucidal activity of the peptide against LGTV. However, its role in the innate antiviral immunity of H. longicornis remains to be explored, and further studies are needed to fully evaluate the potential biological activities of the peptide against bacteria, fungi or parasites.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite 4122, Philippines
| | - Yurika Yada
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku Kita-18 Nishi-9, Sapporo, Hokkaido 060-0818, Japan
| | - Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroki Maeda
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masami Mochizuki
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
10
|
Wu X, Wu X, Sun Q, Zhang C, Yang S, Li L, Jia Z. Progress of small molecular inhibitors in the development of anti-influenza virus agents. Am J Cancer Res 2017; 7:826-845. [PMID: 28382157 PMCID: PMC5381247 DOI: 10.7150/thno.17071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 02/05/2023] Open
Abstract
The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs.
Collapse
|
11
|
Talactac MR, Yoshii K, Maeda H, Kusakisako K, Hernandez EP, Tsuji N, Fujisaki K, Galay RL, Tanaka T, Mochizuki M. Virucidal activity of Haemaphysalis longicornis longicin P4 peptide against tick-borne encephalitis virus surrogate Langat virus. Parasit Vectors 2016; 9:59. [PMID: 26830840 PMCID: PMC4736483 DOI: 10.1186/s13071-016-1344-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Longicin is a defensin-like peptide, identified from the midgut epithelium of hard tick Haemaphysalis longicornis. Several studies have already shown the antimicrobial and parasiticidal activities of longicin peptide and one of its synthetic partial analogs, longicin P4. In this study, longicin peptides were tested for potential antiviral activity against Langat virus (LGTV), a tick-borne flavivirus. METHODS Longicin P1 and P4 peptides were chemically synthesized. Antiviral activity of the longicin peptides against LGTV was evaluated through in vitro virucidal assays, wherein the antiviral efficacy was determined by reduction in number of viral foci and virus yield. Additionally, longicin P4 was also tested for its activity against human adenovirus, a non-enveloped virus. Lastly, to assess the importance of longicin on the innate antiviral immunity of H. longicornis ticks, gene silencing through RNAi was performed. RESULTS Longicin P4 produced significant viral foci reduction and lower virus yield against LGTV, while longicin P1 failed to demonstrate the same results. Conversely, both longicin partial analogs (P1 and P4) did not show significant antiviral activity when tested on adenovirus. In addition, longicin-silenced ticks showed significantly higher virus titer after 7 days post-infection but a significantly lower titer was detected after an additional 14 days of observation as compared to the Luc dsRNA-injected ticks. Mortality in both groups did not show any significant difference. CONCLUSION Our results suggest that longicin P4 has in vitro antiviral activity against LGTV but not against a non-enveloped virus such as adenovirus. Likewise, though most cationic antimicrobial peptides like longicin act directly on target membranes, the exact mechanism of membrane targeting of longicin P4 in enveloped viruses, such as LGTV, requires further investigation. Lastly, while the in vitro virucidal capacity of longicin P4 was confirmed in this study, the role of the endogenous tick longicin in the antiviral defense of H. longicornis against LGTV still remains to be demonstrated.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines.
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku kita-18 nishi-9, Sapporo, Hokkaido, 060-0818, Japan.
| | - Hiroki Maeda
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Kodai Kusakisako
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Emmanuel Pacia Hernandez
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Kozo Fujisaki
- Zen-noh Institute of Animal Health, Ohja, Sakura, Chiba, 285-0043, Japan.
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines.
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Masami Mochizuki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
12
|
Qureshi A, Tandon H, Kumar M. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50). Biopolymers 2015; 104:753-63. [PMID: 26213387 PMCID: PMC7161829 DOI: 10.1002/bip.22703] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/16/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Himani Tandon
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchSector 39‐AChandigarh160036India
| |
Collapse
|
13
|
GASPARINI R, AMICIZIA D, LAI P, BRAGAZZI N, PANATTO D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2014; 55:109-29. [PMID: 26137785 PMCID: PMC4718316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the first part of this overview, we described the life cycle of the influenza virus and the pharmacological action of the currently available drugs. This second part provides an overview of the molecular mechanisms and targets of still-experimental drugs for the treatment and management of influenza. Briefly, we can distinguish between compounds with anti-influenza activity that target influenza virus proteins or genes, and molecules that target host components that are essential for viral replication and propagation. These latter compounds have been developed quite recently. Among the first group, we will focus especially on hemagglutinin, M2 channel and neuraminidase inhibitors. The second group of compounds may pave the way for personalized treatment and influenza management. Combination therapies are also discussed. In recent decades, few antiviral molecules against influenza virus infections have been available; this has conditioned their use during human and animal outbreaks. Indeed, during seasonal and pandemic outbreaks, antiviral drugs have usually been administered in mono-therapy and, sometimes, in an uncontrolled manner to farm animals. This has led to the emergence of viral strains displaying resistance, especially to compounds of the amantadane family. For this reason, it is particularly important to develop new antiviral drugs against influenza viruses. Indeed, although vaccination is the most powerful means of mitigating the effects of influenza epidemics, antiviral drugs can be very useful, particularly in delaying the spread of new pandemic viruses, thereby enabling manufacturers to prepare large quantities of pandemic vaccine. In addition, antiviral drugs are particularly valuable in complicated cases of influenza, especially in hospitalized patients. To write this overview, we mined various databases, including Embase, PubChem, DrugBank and Chemical Abstracts Service, and patent repositories.
Collapse
Affiliation(s)
- R. GASPARINI
- Correspondence: R. Gasparini, Department of Health Sciences of Genoa University, via Pastore 1, 16132 Genoa, Italy - E-mail:
| | | | | | | | | |
Collapse
|