1
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Akanuma SI. [Membrane Transporters and Their Regulatory Mechanisms at the Brain and Retinal Barriers to Establish Therapies for Refractory Central Nervous System Diseases]. YAKUGAKU ZASSHI 2020; 140:1235-1242. [PMID: 32999202 DOI: 10.1248/yakushi.20-00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) is segregated from the circulating blood and peripheral tissues by endothelial and epithelial barriers. To overcome refractory CNS diseases, it is important to understand the membrane transport systems of drugs and the endogenous compounds that relate to the pathogenesis of CNS diseases at these barriers. The endothelial barrier in the brain is the blood-brain barrier (BBB). Our studies clarified the efflux transport of prostaglandin E2 (PGE2), a modulator of neural excitation and inflammatory responses, across the BBB via plasma membrane transporters such as organic anion transporter 3 (Oat3) and multidrug resistance-associated protein 4 (Mrp4). This efflux transport was attenuated by peripheral inflammation or cerebral treatment with neuroexcitatory l-glutamate, suggesting that BBB-mediated PGE2 elimination was altered under several pathological conditions. We also examined excitatory amino acid transporter (EAAT) 1 and 3 as l-glutamate efflux transporters of the inner blood-retinal barrier (BRB) and blood-cerebrospinal barrier. It was considered that these efflux membrane transporters participated in the homeostasis of neuroexcitatory and neuroinflammatory responses in the brain and retina. Moreover, we identified connexin 43 (Cx43) hemichannels as a new membrane transport system that is activated under pathological conditions and recognizes several monocarboxylate drugs, such as valproate. As it is expected that the action of these membrane transporters across the CNS barriers is of great importance in understanding the pathology of various neuroexcitatory diseases, our studies should contribute to the establishment of therapeutic strategies for refractory CNS diseases.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Reinicke M, Dorow J, Bischof K, Leyh J, Bechmann I, Ceglarek U. Tissue pretreatment for LC-MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal Bioanal Chem 2020; 412:2211-2223. [PMID: 31865417 PMCID: PMC7118053 DOI: 10.1007/s00216-019-02170-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and eicosanoids are important mediators of inflammation. The functional role of eicosanoids in metabolic-syndrome-related diseases has been extensively studied. However, their role in neuroinflammation and the development of neurodegenerative diseases is still unclear. The aim of this study was the development of a sample pretreatment protocol for the simultaneous analysis of PUFAs and eicosanoids in mouse liver and brain. Liver and brain samples of male wild-type C57BL/6J mice (11-122 mg) were used to investigate conditions for tissue rinsing, homogenization, extraction, and storage. A targeted liquid chromatography-negative electrospray ionization tandem mass spectrometry method was applied to quantify 7 PUFAs and 94 eicosanoids. The final pretreatment protocol consisted of a 5-min homogenization step by sonication in 650 μL n-hexane/2-propanol (60:40 v/v) containing 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL. Homogenates representing 1 mg tissue were extracted in a single step with n-hexane/2-propanol (60:40 v/v) containing 0.1% formic acid. Autoxidation was prevented by addition of 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL and keeping the samples at 4 °C during sample preparation. Extracts were dried under nitrogen and reconstituted in liquid chromatography eluent before analysis. Recovery was determined to range from 45% to 149% for both liver and brain tissue. Within-run and between-run variability ranged between 7% and 18% for PUFAs and between 1% and 24% for eicosanoids. In liver, 7 PUFAs and 15 eicosanoids were quantified; in brain, 6 PUFAs and 21 eicosanoids had significant differences within the brain substructures. In conclusion, a robust and reproducible sample preparation protocol for the multiplexed analysis of PUFAs and eicosanoids by liquid chromatography-tandem mass spectrometry in liver and discrete brain substructures was developed.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Karoline Bischof
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Prostaglandin Transporter OATP2A1/ SLCO2A1 Is Essential for Body Temperature Regulation during Fever. J Neurosci 2018; 38:5584-5595. [PMID: 29899035 DOI: 10.1523/jneurosci.3276-17.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
Prostaglandin E2 (PGE2) in the hypothalamus is a principal mediator of the febrile response. However, the role of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a prostaglandin transporter, in facilitating this response is unknown. Here, we investigated the effect of Slco2a1 deficiency on the body core temperature (Tc) and on the PGE2 concentration in hypothalamus interstitial fluid (Cisf) and CSF (Ccsf) of lipopolysaccharide (LPS; 100 μg/kg, i.p.)-treated mice of both sexes. Slco2a1-/- mice did not develop a febrile response. Ccsf was increased in Slco2a1+/+ and Slco2a1-/- mice, and Ccsf of Slco2a1-/- mice was well maintained at 5 h after LPS injection (1160 pg/ml) compared with Slco2a1+/+ mice (316 pg/ml). A microdialysis study revealed that Cisf peaked at 2 h after LPS injection in Slco2a1+/+ mice (841 pg/ml), whereas the increase in Cisf was negligible in Slco2a1-/- mice. The PGE2 plasma concentration in Slco2a1-/- mice (201 pg/ml) was significantly higher than that in Slco2a1+/+ mice (54 pg/ml) at 1 h after LPS injection, whereas the two groups showed similar PGE2 concentrations in the hypothalamus. Strong Oatp2a1 immunoreactivity was observed in F4/80-positive microglia and perivascular cells and in brain capillary endothelial cells. The changes in Tc and Cisf seen in LPS-injected Slco2a1+/+ mice were partially attenuated in monocyte-/macrophage-specific Slco2a1-/- (Slco2a1Fl/Fl/LysMCre/+) mice. Thus, OATP2A1 facilitates the LPS-induced febrile response by maintaining a high level of Cisf, possibly by regulating PGE2 secretion from F4/80-positive glial cells and/or facilitating PGE2 transport across the blood-brain barrier. These findings suggest that OATP2A1 is a useful therapeutic target for neuroinflammation.SIGNIFICANCE STATEMENT Fever is a physiological response caused by pyrogen-induced release of prostaglandin E2 (PGE2) in the hypothalamus, which plays a central role in regulating the set-point of body temperature. However, it is unclear whether the prostaglandin transporter OATP2A1/SLCO2A1 is involved in this response. We show here that LPS-induced fever is associated with increased PGE2 concentration in hypothalamus interstitial fluid (Cisf), but not in CSF (Ccsf), by means of a microdialysis study in global Slco2a1-knock-out mice and monocyte-/macrophage-specific Slco2a1-knock-out mice. The results suggest that OATP2A1 serves as a regulator of Cisf in F4/80-positive glial cells. OATP2A1 was detected immunohistochemically in brain capillary endothelial cells and, therefore, may also play a role in PGE2 transport across the blood-brain barrier.
Collapse
|
5
|
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337-361. [PMID: 29368213 DOI: 10.1007/s00401-018-1807-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
Abstract
The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.
Collapse
Affiliation(s)
- Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France.
| | - Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France
- Brain-i, Lyon, France
| | | | | | | | | |
Collapse
|
6
|
Miyagishi H, Kosuge Y, Takano A, Endo M, Nango H, Yamagata-Murayama S, Hirose D, Kano R, Tanaka Y, Ishige K, Ito Y. Increased Expression of 15-Hydroxyprostaglandin Dehydrogenase in Spinal Astrocytes During Disease Progression in a Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2017; 37:445-452. [PMID: 27140190 DOI: 10.1007/s10571-016-0377-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, and fatal neurodegenerative disease caused by selective loss of motor neurons. Both ALS model mice and patients with sporadic ALS have increased levels of prostaglandin E2 (PGE2). Furthermore, the protein levels of microsomal PGE synthase-1 and cyclooxygenase-2, which catalyze PGE2 biosynthesis, are significantly increased in the spinal cord of ALS model mice. However, it is unclear whether PGE2 metabolism in the spinal cord is altered. In the present study, we investigated the protein level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme in prostaglandin metabolism, in ALS model mice at three different disease stages. Western blotting revealed that the 15-PGDH level was significantly increased in the lumbar spinal cord at the symptomatic stage and end stage. Immunohistochemical staining demonstrated that 15-PGDH immunoreactivity was localized in glial fibrillary acidic protein (GFAP)-positive astrocytes at the end stage. In contrast, 15-PGDH immunoreactivity was not identified in NeuN-positive large cells showing the typical morphology of motor neurons in the anterior horn. Unlike 15-PGDH, the level of PGE2 in the spinal cord was increased only at the end stage. These results suggest that the significant increase of PGE2 at the end stage of ALS in this mouse model is attributable to an imbalance of the synthetic pathway and 15-PGDH-dependent scavenging system for PGE2, and that this drives the pathogenetic mechanism responsible for transition from the symptomatic stage.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yasuhiro Kosuge
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| | - Ayumi Takano
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Manami Endo
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Hiroshi Nango
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | | | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Rui Kano
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Yoko Tanaka
- School of Dentistry of Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo, Chiba, 271-8587, Japan
| | - Kumiko Ishige
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Yoshihisa Ito
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| |
Collapse
|
7
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
8
|
Schuster VL. The ins and outs of prostaglandin E2 in fever. Temperature (Austin) 2015; 2:326-7. [PMID: 27227038 PMCID: PMC4843921 DOI: 10.1080/23328940.2015.1077923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023] Open
|
9
|
Kaushal N, Kudva AK, Patterson AD, Chiaro C, Kennett MJ, Desai D, Amin S, Carlson BA, Cantorna MT, Prabhu KS. Crucial role of macrophage selenoproteins in experimental colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3683-92. [PMID: 25187657 PMCID: PMC4170023 DOI: 10.4049/jimmunol.1400347] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation is a hallmark of inflammatory bowel disease (IBD) that involves macrophages. Given the inverse link between selenium (Se) status and IBD-induced inflammation, our objective was to demonstrate that selenoproteins in macrophages were essential to suppress proinflammatory mediators, in part, by the modulation of arachidonic acid metabolism. Acute colitis was induced using 4% dextran sodium sulfate in wild-type mice maintained on Se-deficient (<0.01 ppm Se), Se-adequate (0.08 ppm; sodium selenite), and two supraphysiological levels in the form of Se-supplemented (0.4 ppm; sodium selenite) and high Se (1.0 ppm; sodium selenite) diets. Selenocysteinyl transfer RNA knockout mice (Trsp(fl/fl)LysM(Cre)) were used to examine the role of selenoproteins in macrophages on disease progression and severity using histopathological evaluation, expression of proinflammatory and anti-inflammatory genes, and modulation of PG metabolites in urine and plasma. Whereas Se-deficient and Se-adequate mice showed increased colitis and exhibited poor survival, Se supplementation at 0.4 and 1.0 ppm increased survival of mice and decreased colitis-associated inflammation with an upregulation of expression of proinflammatory and anti-inflammatory genes. Metabolomic profiling of urine suggested increased oxidation of PGE2 at supraphysiological levels of Se that also correlated well with Se-dependent upregulation of 15-hydroxy-PG dehydrogenase (15-PGDH) in macrophages. Pharmacological inhibition of 15-PGDH, lack of selenoprotein expression in macrophages, and depletion of infiltrating macrophages indicated that macrophage-specific selenoproteins and upregulation of 15-PGDH expression were key for Se-dependent anti-inflammatory and proresolving effects. Selenoproteins in macrophages protect mice from dextran sodium sulfate-colitis by enhancing 15-PGDH-dependent oxidation of PGE2 to alleviate inflammation, suggesting a therapeutic role for Se in IBD.
Collapse
Affiliation(s)
- Naveen Kaushal
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Avinash K Kudva
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Andrew D Patterson
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Christopher Chiaro
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Mary J Kennett
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033; and
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033; and
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margherita T Cantorna
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - K Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
10
|
Tachikawa M, Hosoya KI, Terasaki T. Pharmacological significance of prostaglandin E2 and D2 transport at the brain barriers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:337-60. [PMID: 25307222 DOI: 10.1016/bs.apha.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostaglandin (PG) E2 and PGD2, which are biosynthesized from arachidonic acid generated by enzymatic cleavage of membrane phospholipid in response to various stimuli, play key roles in multiple brain pathophysiological processes, including modulation of synaptic plasticity, neuroinflammation, and sleep promotion. Concentrations of PGE2 and PGD2 in brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) are maintained at appropriate levels for normal brain function by regulatory systems. The blood-brain barrier (BBB) and the blood-CSF barrier (BCSFB) possess ISF/CSF-to-blood efflux transport systems that are the primary cerebral clearance pathways for PGE2 and PGD2. However, regulatory dysfunction at the brain barriers may seriously affect brain function. In a mouse inflammation model, significant reduction of PGE2 efflux transport at the BBB has been observed. Several kinds of cephalosporin antibiotics and nonsteroidal anti-inflammatory drugs inhibit the BBB- and BCSFB-mediated efflux transport of PGE2 and PGD2. Especially, drugs that inhibit multidrug resistance-associated protein 4 (MRP4)-mediated PGE2 transport are capable of reducing PGE2 efflux at the BBB. Thus, it might be important in the treatment of inflammatory and infectious diseases to use drugs that do not inhibit clearance of PGE2 at the brain barriers, in order to avoid unexpected adverse CNS effects. Further, considering that PGD2 in CSF is a natural sleep-promoting factor, changes in the activity of the PGD2 efflux transport system at the BCSFB may modify the PGD2 level in CSF, thus affecting physiological sleep. These findings indicate that the efflux transport systems at the brain barriers play key roles in the pathophysiology and pharmacology of PGE2 and PGD2.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
11
|
Akanuma SI, Higuchi T, Higashi H, Ozeki G, Tachikawa M, Kubo Y, Hosoya KI. Transporter-mediated prostaglandin E₂ elimination across the rat blood-brain barrier and its attenuation by the activation of N-methyl-D-aspartate receptors. Drug Metab Pharmacokinet 2014; 29:387-93. [PMID: 24717839 DOI: 10.2133/dmpk.dmpk-14-rg-004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandin (PG) E2 is involved in neuroinflammation and neurotoxicity, and the cerebral PGE2 concentration is increased in neurodegenerative diseases. Because the intracerebral concentration of L-glutamate (L-Glu) is reported to be also elevated in neurodegenerative diseases, it has been proposed that L-Glu affects PGE2 dynamics in the brain, and thus exacerbates neural excitotoxicity. The purpose of this study was to investigate the effect of intracerebral L-Glu on PGE2 elimination across the blood-brain barrier (BBB) in rats by using the intracerebral microinjection technique. [(3)H]PGE2 injected into the cerebral cortex was eliminated from the brain in rats, and the apparent brain-to-blood [(3)H]PGE2 efflux clearance was found to be 60.1 µL/(min·g brain). Intracerebral pre-administration of 50 mM L-Glu significantly inhibited [(3)H]PGE2 elimination across the BBB and this L-Glu-induced inhibition was abolished by co-administration of an intracellular Ca(2+) chelator. The intracellular Ca(2+) concentration is reported to be increased via N-methyl-d-aspartate (NMDA)-type L-Glu receptors (NMDAR) and [(3)H]PGE2 elimination was attenuated by intracerebral pre-administration of a mixture of NMDA and D-serine. Moreover, the co-administration of antagonists of NMDAR with L-Glu abolished the attenuation of PGE2 elimination induced by intracerebral L-Glu administration. These results suggest that L-Glu attenuates BBB-mediated PGE2 elimination via NMDAR-mediated processes.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | | | | | |
Collapse
|
12
|
Puppolo M, Varma D, Jansen SA. A review of analytical methods for eicosanoids in brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:50-64. [PMID: 24685838 DOI: 10.1016/j.jchromb.2014.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/29/2022]
Abstract
Eicosanoids are potent lipid mediators of inflammation and are known to play an important role in numerous pathophysiological processes. Furthermore, inflammation has been proven to be a mediator of diseases such as hypertension, atherosclerosis, Alzheimer's disease, cancer and rheumatoid arthritis. Hence, these lipid mediators have gained significant attention in recent years. This review focuses on chromatographic and mass spectrometric methods that have been used to analyze arachidonic acid and its metabolites in brain tissue. Recently published analytical methods such as LC-MS/MS and GC-MS/MS are discussed and compared in terms of limit of quantitation and sample preparation procedures, including solid phase extraction and derivatization. Analytical challenges are also highlighted.
Collapse
Affiliation(s)
- Michael Puppolo
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States
| | - Deepti Varma
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States
| | - Susan A Jansen
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States.
| |
Collapse
|
13
|
Tachikawa M, Ozeki G, Higuchi T, Akanuma SI, Tsuji K, Hosoya KI. Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E₂ produced in the brain. J Neurochem 2012; 123:750-60. [PMID: 22978524 DOI: 10.1111/jnc.12018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/29/2012] [Accepted: 09/08/2012] [Indexed: 12/01/2022]
Abstract
An increasing level of prostaglandin (PG) E(2) is involved in the progression of neuroinflammation induced by ischemia and bacterial infection. Although an imbalance in the rates of production and clearance of PGE(2) under these pathological conditions appears to affect the concentration of PGE(2) in the cerebrospinal fluid (CSF), the regulatory system remains incompletely understood. The purpose of this study was to investigate the cellular system of PGE(2) production via microsomal PGE synthetase-1 (mPGES-1), the inducible PGE(2) -generating enzyme, and PGE(2) elimination from the CSF via the blood-CSF barrier (BCSFB). Immunohistochemical analysis revealed that mPGES-1 was expressed in the soma and perivascular sheets of astrocytes, pia mater, and brain blood vessel endothelial cells, suggesting that these cells are local production sites of PGE(2) in the CSF. The in vivo PGE(2) elimination clearance from the CSF was eightfold greater than that of d-mannitol, which is considered to reflect CSF bulk flow. This process was inhibited by the simultaneous injection of unlabeled PGE(2) and β-lactam antibiotics, such as benzylpenicillin, cefazolin, and ceftriaxone, which are substrates and/or inhibitors of organic anion transporter 3 (OAT3). The characteristics of PGE(2) uptake by the isolated choroid plexus were at least partially consistent with those of OAT3. OAT3 was able to mediate PGE(2) transport with a Michaelis-Menten constant of 4.24 μM. These findings indicate that a system regulating the PGE(2) level in the CSF involves OAT3-mediated PGE(2) uptake by choroid plexus epithelial cells, acting as a cerebral clearance pathway via the BCSFB of locally produced PGE(2) .
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Tachikawa M, Tsuji K, Yokoyama R, Higuchi T, Ozeki G, Yashiki A, Akanuma SI, Hayashi K, Nishiura A, Hosoya KI. A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters. J Pharmacol Exp Ther 2012; 343:608-16. [PMID: 22931759 DOI: 10.1124/jpet.112.197012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the level of prostaglandin (PG) D(2) in cerebrospinal fluid (CSF) affects the action of D-type prostanoid receptors that promote physiological sleep, the regulatory system of PGD(2) clearance from the CSF is not fully understood. The purpose of this study was to investigate PGD(2) elimination from the CSF via the blood-CSF barrier (BCSFB). The in vivo PGD(2) elimination clearance from the CSF was 16-fold greater than that of inulin, which is considered to reflect CSF bulk flow. This process was inhibited by the simultaneous injection of unlabeled PGD(2). The characteristics of PGD(2) uptake by isolated choroid plexus were, at least partially, consistent with those of PG transporter (PGT) and organic anion transporter 3 (OAT3). Studies using an oocyte expression system showed that PGT and OAT3 were able to mediate PGD(2) transport with a Michaelis-Menten constant of 1.07 and 7.32 μM, respectively. Reverse transcription-polymerase chain reaction and immunohistochemical analyses revealed that PGT was localized on the brush-border membrane of the choroid plexus epithelial cells. These findings indicate that the system regulating the PGD(2) level in the CSF involves PGT- and OAT3-mediated PGD(2) uptake by the choroid plexus epithelial cells, acting as a pathway for PGD(2) clearance from the CSF via the BCSFB.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akanuma SI, Uchida Y, Ohtsuki S, Tachikawa M, Terasaki T, Hosoya KI. Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids Barriers CNS 2011; 8:24. [PMID: 22014165 PMCID: PMC3224590 DOI: 10.1186/2045-8118-8-24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/21/2011] [Indexed: 08/30/2023] Open
Abstract
Background Peripheral administration of lipopolysaccharide (LPS) induces inflammation and increases cerebral prostaglandin E2 (PGE2) concentration. PGE2 is eliminated from brain across the blood-brain barrier (BBB) in mice, and this process is inhibited by intracerebral or intravenous pre-administration of anti-inflammatory drugs and antibiotics such as cefmetazole and cefazolin that inhibit multidrug resistance-associated protein 4 (Mrp4/Abcc4)-mediated PGE2 transport. The purpose of this study was to examine the effect of LPS-induced inflammation on PGE2 elimination from brain, and whether antibiotics further inhibit PGE2 elimination in LPS-treated mice. Methods [3H]PGE2 elimination across the BBB of intraperitoneally LPS-treated mice was assessed by the brain efflux index (BEI) method. Transporter protein amounts in brain capillaries were quantified by liquid chromatography-tandem mass spectrometry. Results The apparent elimination rate of [3H]PGE2 from brain was lower by 87%, in LPS-treated mice compared with saline-treated mice. The Mrp4 protein amount was unchanged in brain capillaries of LPS-treated mice compared with saline-treated mice, while the protein amounts of organic anion transporter 3 (Oat3/Slc22a8) and organic anion transporting polypeptide 1a4 (Oatp1a4/Slco1a4) were decreased by 26% and 39%, respectively. Either intracerebral or intravenous pre-administration of cefmetazole further inhibited PGE2 elimination in LPS-treated mice. However, intracerebral or intravenous pre-administration of cefazolin had little effect on PGE2 elimination in LPS-treated mice, or in LPS-untreated mice given Oat3 and Oatp1a4 inhibitors. These results indicate that peripheral administration of cefmetazole inhibits PGE2 elimination across the BBB in LPS-treated mice. Conclusion PGE2 elimination across the BBB is attenuated in an LPS-induced mouse model of inflammation. Peripheral administration of cefmetazole further inhibits PGE2 elimination in LPS-treated mice.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea JF. Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J Neurochem 2011; 117:747-56. [PMID: 21395586 DOI: 10.1111/j.1471-4159.2011.07246.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Manganese is an essential trace element, and a contrast agent of potential interest for brain magnetic resonance imaging. Brain overexposure to manganese, however induces a neurodegenerative syndrome. Imaging data suggest that manganese appearance into the CSF precedes its accumulation into the cerebral parenchyma. We therefore investigated manganese uptake and transport at the blood-CSF barrier. Like lead, the non protein-bound divalent manganese accumulated into the rat choroid plexus. The metal accumulation was especially high in developing animals. Using a differentiated cellular model of the blood-CSF barrier, we demonstrated that manganese crosses the choroid plexus epithelium by a concentrating, unidirectional blood-to-CSF transport mechanism. This transport was inhibited by calcium, which is also transported into the CSF against its concentration gradient. The permeability barrier function towards lipid-insoluble compound and the organic anion transport property of the blood-brain interface were affected by exposure of the blood-facing membrane of choroidal cells to micromolar concentrations of manganese, but its antioxidant capacity was not. The unidirectional transport of manganese across the choroid plexus provides the anatomo-functional basis linking the systemic exposure to manganese with the spreading pattern of manganese accumulation observed in brain imaging, and explains the polarized sensitivity of choroidal epithelial cells to manganese toxicity.
Collapse
Affiliation(s)
- Charlotte Schmitt
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France
| | | | | | | | | |
Collapse
|
17
|
Spector R, Johanson CE. Vectorial Ligand Transport Through Mammalian Choroid Plexus. Pharm Res 2010; 27:2054-62. [DOI: 10.1007/s11095-010-0162-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
18
|
Akanuma SI, Hosoya KI, Ito S, Tachikawa M, Terasaki T, Ohtsuki S. Involvement of Multidrug Resistance-Associated Protein 4 in Efflux Transport of Prostaglandin E2 across Mouse Blood-Brain Barrier and Its Inhibition by Intravenous Administration of Cephalosporins. J Pharmacol Exp Ther 2010; 333:912-9. [DOI: 10.1124/jpet.109.165332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|