1
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603393. [PMID: 39071414 PMCID: PMC11275899 DOI: 10.1101/2024.07.13.603393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| |
Collapse
|
2
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100166. [PMID: 39399224 PMCID: PMC11470187 DOI: 10.1016/j.ynpai.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") male rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator forskolin induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 h later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and produced trends for reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, or protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. The present results also raise the question of whether reactivation of primed signaling mechanisms by re-exposure to inflammatory mediators linked to cAMP synthesis during subsequent challenges to bodily integrity can "reconsolidate" nociceptor memory, extending the duration of persistent hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Hodkinson DJ, Drabek MM, Jung J, Lankappa ST, Auer DP. Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli. Neuromodulation 2024; 27:812-823. [PMID: 37952136 DOI: 10.1016/j.neurom.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. MATERIALS AND METHODS In a randomized counterbalanced crossover designed study, we evaluated two forms of patterned repetitive transcranial magnetic stimulation, known as continuous theta burst stimulation (TBS) and intermittent TBS, during normal and central sensitization states. Secondary hyperalgesia (a form of use-dependent central sensitization) was induced using a well-established injury-free pain model and assessed by standardized quantitative sensory testing involving light touch and pinprick pain thresholds in addition to stimulus-response functions. RESULTS We found that continuous TBS of the human motor cortex has a facilitatory (pronociceptive) effect on the magnitude of perceived pain to secondary hyperalgesia, which may rely on induction and expression of neural plasticity through heterosynaptic long-term potentiation-like mechanisms. CONCLUSIONS By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK.
| | - Marianne M Drabek
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Sudheer T Lankappa
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, UK
| | - Dorothee P Auer
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| |
Collapse
|
4
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
5
|
Fan Z, Dou B, Wang J, Wu Y, Du S, Li J, Yao K, Li Y, Wang S, Gong Y, Guo Y, Xu Z. Effects and mechanisms of acupuncture analgesia mediated by afferent nerves in acupoint microenvironments. Front Neurosci 2024; 17:1239839. [PMID: 38384495 PMCID: PMC10879281 DOI: 10.3389/fnins.2023.1239839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/27/2023] [Indexed: 02/23/2024] Open
Abstract
In the past few decades, the use of acupuncture analgesia in clinical practice has increased worldwide. This is due to its various benefits, including natural alleviation of pain without causing various adverse effects associated with non-steroidal anti-inflammatory drugs (NSAID) and opioids. The acupoint represents the initial site of acupuncture stimulation, where diverse types of nerve fibers located at the acupoint hold significant roles in the generation and transmission of acupuncture-related information. In this study, we analyzed the patterns and mechanisms of acupuncture analgesic mediated by acupoint afferent fibers, and found that acupuncture stimulates acupoints which rapidly and directly induces activation of high-density primary afferent fibers under the acupoints, including myelinated A fibers and unmyelinated C fibers. During acupuncture stimulation at the muscle layer, the analgesic effects can be induced by stimulation of A fiber threshold intensity. At the skin layer, the analgesic effects can only be produced by stimulation of C fiber threshold intensity. Electroacupuncture (EA) activates A fibers, while manual acupuncture (MA) activates both A and C fibers. Furthermore, acupuncture alters acupoint microenvironments, which positively modulates afferent fibers, enhancing the transmission of analgesic signals. In addition to local activation and conduction at acupoints, nerve fibers mediate the transmission of acupuncture information to pain centers. In the spinal cord, acupuncture activates neurons by inducing afferent fiber depolarization, modulating pain gating, inhibiting long-term potentiation (LTP) of the spinal dorsal horn and wide dynamic range (WDR) neuronal activities. At higher nerve centers, acupuncture inhibits neuronal activation in pain-related brain regions. In summary, acupuncture inhibits pain signal transmission at peripheral and central systems by activating different patterns of afferent fibers located on various layers of acupoints. This study provides ideas for enhancing the precise application and clinical translation of acupuncture.
Collapse
Affiliation(s)
- Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjian Wu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiashan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| |
Collapse
|
6
|
Song Q, Wei A, Xu H, Gu Y, Jiang Y, Dong N, Zheng C, Wang Q, Gao M, Sun S, Duan X, Chen Y, Wang B, Huo J, Yao J, Wu H, Li H, Wu X, Jing Z, Liu X, Yang Y, Hu S, Zhao A, Wang H, Cheng X, Qin Y, Qu Q, Chen T, Zhou Z, Chai Z, Kang X, Wei F, Wang C. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat Neurosci 2024; 27:272-285. [PMID: 38172439 DOI: 10.1038/s41593-023-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.
Collapse
Affiliation(s)
- Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Xu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Gu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Nan Dong
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Min Gao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xueting Duan
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Huo
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hua Li
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xuanang Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Zexin Jing
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shaoqin Hu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry; Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA.
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China.
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Du F, Yin G, Han L, Liu X, Dong D, Duan K, Huo J, Sun Y, Cheng L. Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance. Neurosci Bull 2023; 39:1210-1228. [PMID: 36622575 PMCID: PMC10387027 DOI: 10.1007/s12264-022-01009-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral μ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aβ mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.
Collapse
Affiliation(s)
- Feng Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Han
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Xi Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanyan Sun
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Peterson CD, Waataja JJ, Kitto KF, Erb SJ, Verma H, Schuster DJ, Churchill CC, Riedl MS, Belur LR, Wolf DA, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Long-term reversal of chronic pain behavior in rodents through elevation of spinal agmatine. Mol Ther 2023; 31:1123-1135. [PMID: 36710491 PMCID: PMC10124077 DOI: 10.1016/j.ymthe.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Jonathan J Waataja
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Samuel J Erb
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Harsha Verma
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel J Schuster
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Caroline C Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel A Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Sun JL, Dai WJ, Shen XY, Lü N, Zhang YQ. Interleukin-17 is involved in neuropathic pain and spinal synapse plasticity on mice. J Neuroimmunol 2023; 377:578068. [PMID: 36948094 DOI: 10.1016/j.jneuroim.2023.578068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 μg/10 μL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 μg/10 μL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.
Collapse
Affiliation(s)
- Jia-Lu Sun
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Jing Dai
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin-Yuan Shen
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lü
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Alam MJ, Chen JDZ. Electrophysiology as a Tool to Decipher the Network Mechanism of Visceral Pain in Functional Gastrointestinal Disorders. Diagnostics (Basel) 2023; 13:627. [PMID: 36832115 PMCID: PMC9955347 DOI: 10.3390/diagnostics13040627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Abdominal pain, including visceral pain, is prevalent in functional gastrointestinal (GI) disorders (FGIDs), affecting the overall quality of a patient's life. Neural circuits in the brain encode, store, and transfer pain information across brain regions. Ascending pain signals actively shape brain dynamics; in turn, the descending system responds to the pain through neuronal inhibition. Pain processing mechanisms in patients are currently mainly studied with neuroimaging techniques; however, these techniques have a relatively poor temporal resolution. A high temporal resolution method is warranted to decode the dynamics of the pain processing mechanisms. Here, we reviewed crucial brain regions that exhibited pain-modulatory effects in an ascending and descending manner. Moreover, we discussed a uniquely well-suited method, namely extracellular electrophysiology, that captures natural language from the brain with high spatiotemporal resolution. This approach allows parallel recording of large populations of neurons in interconnected brain areas and permits the monitoring of neuronal firing patterns and comparative characterization of the brain oscillations. In addition, we discussed the contribution of these oscillations to pain states. In summary, using innovative, state-of-the-art methods, the large-scale recordings of multiple neurons will guide us to better understanding of pain mechanisms in FGIDs.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Abstract
SYNOPSIS: Central sensitization is an umbrella-term for facilitated synaptic plasticity. This editorial explains wind-up, classical central sensitization, and long-term potentiation. Wind-up and LTP are generally considered homosynaptic, while classical central sensitization is classified as heterosynaptic. Wind-up is very short lived and unlikely to play a significant role in chronic musculoskeletal pain, however, both LTP and classical central sensitization could potentially be involved in chronic pain. J Orthop Sports Phys Ther 2023;53(2):55-58. doi:10.2519/jospt.2023.11571.
Collapse
|
13
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Waataja JJ, Nihalani RK, Honda CN, Billington CJ. Use of a bio-electronic device comprising of targeted dual neuromodulation of the hepatic and celiac vagal branches demonstrated enhanced glycemic control in a type 2 diabetic rat model as well as in an Alloxan treated swine model. Front Neurosci 2022; 16:1005932. [PMID: 36389223 PMCID: PMC9640365 DOI: 10.3389/fnins.2022.1005932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background There is an unmet need for new type 2 diabetes treatments providing improved efficacy, durability and customized to improve patient’s compliance. Bio-electronic neuromodulation of Vagus nerve branches innervating organs that regulate plasma glucose, may be a method for treating type 2 diabetes. The pancreas has been shown to release insulin during Vagus stimulation. The hepatic vagal branch, innervating the liver, has been shown to decrease glucose release and decrease insulin resistance following ligation. However, standalone stimulation of the Vagus nerve has shown mixed results and Vagus nerve ligation has undesirable effects. Little is known; however, of the effect on plasma glucose with combined neuromodulation consisting of stimulation of the celiac branch innervating the pancreas with simultaneous high frequency alternating current (HFAC) blockade of the hepatic branch. This study tested the effects of this approach on increasing glycemic control in rat a model of type 2 diabetes and Alloxan treated swine. Materials and methods Zucker obese (fatty) male rats (ZDF fa/fa) were used as a model of type 2 diabetes as well as glucose intolerant Alloxan treated swine. In ZDF rat experiments glycemic control was accessed with an intravenous glucose tolerance test during HFAC-induced hepatic branch block with concurrent celiac stimulation (HFAC + stimulation). In swine experiments glycemic control was accessed by an oral glucose tolerance test during HFAC + stimulation. Insulin measurements were taken prior to and following swine experiments giving insight into beta cell exhaustion. Histopathology was conducted to determine safety of HFAC + stimulation on Vagal branches. Results Zucker rats demonstrated a significant improvement to an intravenous glucose tolerance test during HFAC + stimulation compared to sham. There was no significant difference from sham compared to hepatic vagotomy or celiac stimulation. In Alloxan treated swine, when subjected to HFAC + stimulation, there was a significant improvement in glycemic control as measured by an improvement on oral glucose tolerance tests and a decrease in fasting plasma glucose. Insulin responses were similar prior to and following HFAC + stimulation experiments. Histopathology demonstrated healthy swine Vagus nerves. Conclusion Electrical blockade of the hepatic Vagus branch with simultaneous stimulation of the celiac Vagus branch may be a novel, adjustable and localized approach for a treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan J. Waataja
- ReShape Lifesciences Inc., San Clemente, CA, United States
- *Correspondence: Jonathan J. Waataja,
| | | | - Chris N. Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Charles J. Billington
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Minnesota Veterans’ Administration Medical Center, Minneapolis, MN, United States
| |
Collapse
|
15
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
16
|
Leonardon B, Cathenaut L, Vial-Markiewicz L, Hugel S, Schlichter R, Inquimbert P. Modulation of GABAergic Synaptic Transmission by NMDA Receptors in the Dorsal Horn of the Spinal Cord. Front Mol Neurosci 2022; 15:903087. [PMID: 35860500 PMCID: PMC9289521 DOI: 10.3389/fnmol.2022.903087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal horn (DH) of the spinal cord is an important structure involved in the integration of nociceptive messages. Plastic changes in the properties of neuronal networks in the DH underlie the development of analgesia as well as of hyperalgesia and allodynia in acute and chronic pain states. Two key mechanisms are involved in these chronic pain states: increased electrical activities and glutamate release leading to the recruitment of NMDAr and plastic changes in the synaptic inhibition. Although: (1) the balance between excitation and inhibition is known to play a critical role in the spinal network; and (2) plastic changes in spinal excitation and inhibition have been studied separately, the relationship between these two mechanisms has not been investigated in detail. In the present work, we addressed the role of NMDA receptors in the modulation of GABAergic synaptic transmission in the DH network. Using tight-seal whole-cell recordings on adult mice DH neurons, we characterized the effect of NMDAr activation on inhibitory synaptic transmission and more especially on the GABAergic one. Our results show that, in a subset of neurons recorded in lamina II, NMDAr activation facilitates spontaneous and miniature GABAergic synaptic transmission with a target specificity on GABAergic interneurons. In contrast, NMDA reduced the mean amplitude of evoked GABAergic IPSCs. These results show that NMDAr modulate GABAergic transmission by a presynaptic mechanism of action. Using a pharmacological approach, we investigated the composition of NMDAr involved in this modulation of GABAergic synaptic transmission. We found that the NMDA-induced facilitation was mediated by the activation of NMDAr containing GluN2C/D subunits. Altogether, our results bring new insights on nociceptive information processing in the spinal cord network and plastic changes in synaptic inhibition that could underlie the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Benjamin Leonardon
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lou Cathenaut
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Louise Vial-Markiewicz
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Perrine Inquimbert
| |
Collapse
|
17
|
Hewitt D, Newton-Fenner A, Henderson J, Fallon NB, Brown C, Stancak A. Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans. J Neurophysiol 2022; 127:1629-1641. [PMID: 35611988 PMCID: PMC9190739 DOI: 10.1152/jn.00511.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
External low-frequency peripheral nerve stimulation (LFS) has been proposed as a novel method for neuropathic pain relief. Previous studies have reported that LFS elicits long-term depression-like effects on human pain perception when delivered at noxious intensities, whereas lower intensities are ineffective. To shed light on cortical regions mediating the effects of LFS, we investigated changes in somatosensory-evoked potentials (SEPs) during four LFS intensities. LFS was applied to the radial nerve (600 pulses, 1 Hz) of 24 healthy participants at perception (1 times), low (5 times), medium (10 times), and high intensities (15 times detection threshold). SEPs were recorded during LFS, and averaged SEPs in 10 consecutive 1-min epochs of LFS were analyzed using source dipole modeling. Changes in resting electroencephalography (EEG) were investigated after each LFS block. Source activity in the midcingulate cortex (MCC) decreased linearly during LFS, with greater attenuation at stronger LFS intensities, and in the ipsilateral operculo-insular cortex during the two lowest LFS stimulus intensities. Increased LFS intensities resulted in greater augmentation of contralateral primary sensorimotor cortex (SI/MI) activity. Stronger LFS intensities were followed by increased α (alpha, 9-11 Hz) band power in SI/MI and decreased θ (theta, 3-5 Hz) band power in MCC. Intensity-dependent attenuation of MCC activity with LFS is consistent with a state of long-term depression. Sustained increases in contralateral SI/MI activity suggests that effects of LFS on somatosensory processing may also be dependent on satiation of SI/MI. Further research could clarify if the activation of SI/MI during LFS competes with nociceptive processing in neuropathic pain.NEW & NOTEWORTHY Somatosensory-evoked potentials during low-frequency stimulation of peripheral nerves were examined at graded stimulus intensities. Low-frequency stimulation was associated with decreased responsiveness in the midcingulate cortex and increased responsiveness in primary sensorimotor cortex. Greater intensities were associated with increased midcingulate cortex θ band power and decreased sensorimotor cortex α band power. Results further previous evidence of an inhibition of somatosensory processing during and after low-frequency stimulation and point toward a potential augmentation of activity in somatosensory processing regions.
Collapse
Affiliation(s)
- Danielle Hewitt
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Alice Newton-Fenner
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Henderson
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Nicholas B. Fallon
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Christopher Brown
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Andrej Stancak
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Hugosdottir R, Kasting M, Mørch CD, Kæseler Andersen O, Arendt-Nielsen L. Priming of central- and peripheral mechanisms with heat and cutaneous capsaicin facilitates secondary hyperalgesia to high frequency electrical stimulation. J Neurophysiol 2022; 127:651-659. [PMID: 35020531 DOI: 10.1152/jn.00154.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat/capsaicin sensitization and electrical high frequency stimulation (HFS) are well known model of secondary hyperalgesia, a phenomenon related to chronic pain conditions. This study investigated whether priming with heat/capsaicin would facilitate hyperalgesia to HFS in healthy subjects. Heat/capsaicin priming consisted of a 45 °C heat stimulation for 5 min followed by a topical capsaicin patch (4x4 cm) for 30 minutes on the volar forearm of 20 subjects. HFS (100 Hz, 5 times 1s, minimum 1.5 mA) was subsequently delivered through a transcutaneous pin electrode approximately 1.5 cm proximal to the heat/capsaicin application. Two sessions were applied in a crossover design; traditional HFS (HFS) and heat/capsaicin sensitization followed by HFS (HFS+HEAT/CAPS). Heat pain threshold (HPT), mechanical pain sensitivity (MPS) and superficial blood perfusion were assessed at baseline, after capsaicin removal, and up to 40 min after HFS. MPS was assessed with pinprick stimulation (128 mN and 256 mN) in the area adjacent to both HFS and heat/capsaicin, distal but adjacent to heat/capsaicin and in a distal control area. HPT was assessed in the area of heat/capsaicin. Higher sensitivity to 128 mN pinprick stimulation (difference from baseline and control area) was observed in the HFS+HEAT/CAPS session than in the HFS session 20 and 30 minutes after HFS. Furthermore, sensitivity was increased after HFS+HEAT/CAPS compared to after heat/capsaicin in the area adjacent to both paradigms, but not in the area distal to heat/capsaicin. Results indicate that heat/capsaicin causes priming of the central- and peripheral nervous system, which facilitates secondary mechanical hyperalgesia to HFS.
Collapse
Affiliation(s)
- Rosa Hugosdottir
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mindy Kasting
- Biomechatronics and Human-Machine Control, Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, The Netherlands
| | - Carsten Dahl Mørch
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kæseler Andersen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Isa AS, Chetty S. Physiology and pathophysiology of chronic pain (Part II): how does pain become chronic? SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2022. [DOI: 10.36303/sajaa.2022.28.1.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- AS Isa
- Department of Anaesthesiology and Critical Care, Faculty of Medicine and Health Sciences, Stellenbosch University,
South Africa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University,
Nigeria
| | - S Chetty
- Department of Anaesthesiology and Critical Care, Faculty of Medicine and Health Sciences, Stellenbosch University,
South Africa
| |
Collapse
|
20
|
Sukiandra R, Yerizel E, Syafrita Y, Darwin E. Relationship of Anti-interleukin-6 Receptor Antibody to Interleukin-6 Level and Inducible Nitrite Oxide Levels in Peripheral Nerve Injury in Chronic Constriction Injury-Induced Rats: A Case-Control Study in Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Interleukin-6 (IL-6) and inducible Nitric oxide Synthase (iNOS) have an effect on neuropathic pain in the inflammatory process in peripheral nerve injuries.
AIM: This study aims to examine the effect of anti-IL-6 receptor antibody on IL-6 and iNOS levels as a consideration for the treatment of neuropathic pain in a rat model of peripheral nerve injury.
METHODS: Twenty-eight young adult male Wistar rats were treated for peripheral nerve injury and then divided into two groups. Fourteen treatment groups (Group P) were given anti-IL-6 receptor antibody by injection at a dose of 100 g/day by injection into the saphenous vein in the rat’s leg for 3 days. In both groups, the serum IL-6 and iNOS levels were assessed on the 3rd day after administration of anti-IL-6 receptor antibody in group P, using the sandwich ELISA method.
RESULTS: The results showed that the administration of anti-IL-6 receptor antibody did not have a significant effect on reducing IL-6 and iNOS levels in group P (p > 0.05). Administration of anti-IL-6 receptor antibody had more effect on IL-6 levels on iNOS levels, where a decrease in IL-6 levels caused a decrease in iNOS levels in group P (p = 0.004 and r = 0.693).
CONCLUSIONS: We conclude that the present administration of anti-IL-6 receptor antibody cannot be considered as a treatment for neuropathic pain in peripheral nerve injuries, but can be used to influence IL-6 levels on iNOS levels.
Collapse
|
21
|
Kopach O, Voitenko N. Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy? Channels (Austin) 2021; 15:284-297. [PMID: 33565904 PMCID: PMC7889122 DOI: 10.1080/19336950.2021.1885836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
The activity-dependent trafficking of AMPA receptors (AMPAR) mediates synaptic strength and plasticity, while the perturbed trafficking of the receptors of different subunit compositions has been linked to memory impairment and to causing neuropathology. In the spinal cord, nociceptive-induced changes in AMPAR trafficking determine the central sensitization of the dorsal horn (DH): changes in AMPAR subunit composition compromise the balance between synaptic excitation and inhibition, rendering interneurons hyperexcitable to afferent inputs, and promoting Ca2+ influx into the DH neurons, thereby amplifying neuronal hyperexcitability. The DH circuits become over-excitable and carry out aberrant sensory processing; this causes an increase in pain sensation in central sensory pathways, giving rise to chronic pain syndrome. Current knowledge of the contribution of spinal AMPAR to the cellular mechanisms relating to chronic pain provides opportunities for developing target-based therapies for chronic pain intervention.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Present Address: Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, UK
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
22
|
Hu SW, Zhang Q, Xia SH, Zhao WN, Li QZ, Yang JX, An S, Ding HL, Zhang H, Cao JL. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain. J Neurosci 2021; 41:9988-10003. [PMID: 34642215 PMCID: PMC8638682 DOI: 10.1523/jneurosci.0881-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Long-term limb nerve injury often leads to mirror-image pain (MIP), an abnormal pain sensation in the limb contralateral to the injury. Although it is clear that MIP is mediated in part by central nociception processing, the underlying mechanisms remain poorly understood. The anterior cingulate cortex (ACC) is a key brain region that receives relayed peripheral nociceptive information from the contralateral limb. In this study, we induced MIP in male mice, in which a unilateral chronic constrictive injury of the sciatic nerve (CCI) induced a decreased nociceptive threshold in both hind limbs and an increased number of c-Fos-expressing neurons in the ACC both contralateral and ipsilateral to the injured limb. Using viral-mediated projection mapping, we observed that a portion of ACC neurons formed monosynaptic connections with contralateral ACC neurons. Furthermore, the number of cross-callosal projection ACC neurons that exhibited c-Fos signal was increased in MIP-expressing mice, suggesting enhanced transmission between ACC neurons of the two hemispheres. Moreover, selective inhibition of the cross-callosal projection ACC neurons contralateral to the injured limb normalized the nociceptive sensation of the uninjured limb without affecting the increased nociceptive sensation of the injured limb in CCI mice. In contrast, inhibition of the non-cross-callosal projection ACC neurons contralateral to the injury normalized the nociceptive sensation of the injured limb without affecting the MIP exhibited in the uninjured limb. These results reveal a circuit mechanism, namely, the cross-callosal projection of ACC between two hemispheres, that contributes to MIP and possibly other forms of contralateral migration of pain sensation.SIGNIFICANCE STATEMENT Mirror-image pain (MIP) refers to the increased pain sensitivity of the contralateral body part in patients with chronic pain. This pathology requires central processing, yet the mechanisms are less known. Here, we demonstrate that the cross-callosal projection neurons in the anterior cingulate cortex (ACC) contralateral to the injury contribute to MIP exhibited in the uninjured limb, but do not affect nociceptive sensation of the injured limb. In contrast, the non-cross-callosal projection neurons in the ACC contralateral to the injury contribute to nociceptive sensation of the injured limb, but do not affect MIP exhibited in the uninjured limb. Our study depicts a novel cross-callosal projection of ACC that contributes to MIP, providing a central mechanism for MIP in chronic pain state.
Collapse
Affiliation(s)
- Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qi-Ze Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
23
|
Janjua TAM, Nielsen TGNDS, Andreis FR, Meijs S, Jensen W. The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs. IBRO Neurosci Rep 2021; 11:112-118. [PMID: 34541572 PMCID: PMC8436059 DOI: 10.1016/j.ibneur.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 10/26/2022] Open
Abstract
This study implements the use of Danish Landrace pigs as subjects for the long-term potentiation (LTP)-like pain model. This is accomplished by analyzing changes in the primary somatosensory cortex (S1) in response to electrical stimulation on the ulnar nerve after applying high-frequency electrical stimulation (HFS) on the ulnar nerve. In this study, eight Danish Landrace pigs were electrically stimulated, through the ulnar nerve, to record the cortically evoked response in S1 by a 16-channel microelectrode array (MEA). Six of these pigs were subjected to HFS (four consecutive, 15 mA, 100 Hz, 1000 µs pulse duration) 45 min after the start of the experiment. Two pigs were used as control subjects to compare the cortical response to peripheral electrical stimulation without applying HFS. Low-frequency components of the intracortical signals (0.3-300 Hz) were analyzed using event-related potential (ERP) analysis, where the minimum peak during the first 30-50 ms (N1 component) in each channel was detected. The change in N1 was compared over time across the intervention and control groups. Spectral analysis was used to demonstrate the effect of the intervention on the evoked cortical oscillations computed between 75 ms and 200 ms after stimulus. ERP analysis showed an immediate increase in N1 amplitude that became statistically significant 45 mins after HFS (p < 0.01) for the intervention group. The normalized change in power in frequency oscillations showed a similar trend. The results show that the LTP-like pain model can be effectively implemented in pigs using HFS since the cortical responses are comparable to those described in humans.
Collapse
Affiliation(s)
| | | | | | - Suzan Meijs
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Winnie Jensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Fahmi A, Aji YK, Aprianto DR, Wido A, Asadullah A, Roufi N, Indiastuti DN, Subianto H, Turchan A. The Effect of Intrathecal Injection of Dextromethorphan on the Experimental Neuropathic Pain Model. Anesth Pain Med 2021; 11:e114318. [PMID: 34540637 PMCID: PMC8438745 DOI: 10.5812/aapm.114318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Peripheral glucocorticoid receptors (GRs) are altered by peripheral nerve injury and may modulate the development of neuropathic pain. Two central pathogenic mechanisms underlying neuropathic pain are neuroinflammation and N-methyl-D-aspartate receptor (NMDAR)-dependent neural plasticity in the spinal cord. Objectives This study examined the effect of the non-competitive NMDAR antagonist dextromethorphan on partial sciatic nerve ligation (PSL)-induced neuropathic pain and the spinal expression of the glucocorticoid receptor (GR). Methods Male mice were randomly assigned into a sham group and two groups receiving PSL followed by intrathecal saline vehicle or dextromethorphan (iDMP). Vehicle or iDMP was administered 8 - 14 days after PSL. The hotplate paw-withdrawal latency was considered to measure thermal pain sensitivity. The spinal cord was then sectioned and immunostained for GR. Results Thermal hyperalgesia developed similarly in the vehicle and iDMP groups prior to the injections (P = 0.828 and 0.643); however, it was completely mitigated during the iDMP treatment (P < 0.001). GR expression was significantly higher in the vehicle group (55.64 ± 4.50) than in the other groups (P < 0.001). The iDMP group (9.99 ± 0.66) showed significantly higher GR expression than the sham group (6.30 ± 1.96) (P = 0.043). Conclusions The suppression of PLS-induced thermal hyperalgesia by iDMP is associated with the downregulation of GR in the spinal cord, suggesting that this analgesic effect is mediated by inhibiting GR-regulated neuroinflammation.
Collapse
Affiliation(s)
- Achmad Fahmi
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
- Corresponding Author: Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia.
| | - Yunus Kuntawi Aji
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Dirga Rachmad Aprianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Akbar Wido
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Asadullah Asadullah
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - Danti Nur Indiastuti
- Department of Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heri Subianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Turchan
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
25
|
Chen QY, Li XH, Zhuo M. NMDA receptors and synaptic plasticity in the anterior cingulate cortex. Neuropharmacology 2021; 197:108749. [PMID: 34364898 DOI: 10.1016/j.neuropharm.2021.108749] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The anterior cingulate cortex (ACC) plays an important role in pain modulation, and pain-related emotional disorders. In the ACC, two major forms of long-term potentiation (LTP) coexist in excitatory synapses and lay the basis of chronic pain and pain-related emotional disorders. The induction of postsynaptic LTP is dependent on the activation of postsynaptic NMDA receptors (NMDARs), while the presynaptic LTP is NMDAR-independent. Long-term depression (LTD) can also be divided into two types according to the degree of sensitivity to the inhibition of NMDARs. NMDAR heteromers containing GluN2A and GluN2B act as key molecules in both the NMDAR-dependent postsynaptic LTP and LTD. Additionally, NMDARs also exist in presynaptic terminals and modulate the evoked and spontaneous transmitter release. From a translational point of view, inhibiting subtypes of NMDARs and/or downstream signaling proteins may provide potential drug targets for chronic pain and its related emotional disorders.
Collapse
Affiliation(s)
- Qi-Yu Chen
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xu-Hui Li
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Li ZS, Hung LY, Margolis KG, Ambron RT, Sung YJ, Gershon MD. The α isoform of cGMP-dependent protein kinase 1 (PKG1α) is expressed and functionally important in intrinsic primary afferent neurons of the guinea pig enteric nervous system. Neurogastroenterol Motil 2021; 33:e14100. [PMID: 33655600 PMCID: PMC8681866 DOI: 10.1111/nmo.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1β, immunoreactivity, was coincident with that of neuronal markers (HuC/D; β3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50 = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.
Collapse
Affiliation(s)
- Zhi S. Li
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Richard T. Ambron
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Ying J. Sung
- Departments of Basic Science, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael D. Gershon
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Zhou Z, Shi W, Fan K, Xue M, Zhou S, Chen QY, Lu JS, Li XH, Zhuo M. Inhibition of calcium-stimulated adenylyl cyclase subtype 1 (AC1) for the treatment of neuropathic and inflammatory pain in adult female mice. Mol Pain 2021; 17:17448069211021698. [PMID: 34082635 PMCID: PMC8182195 DOI: 10.1177/17448069211021698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cortical long-term potentiation (LTP) serves as a cellular model for chronic
pain. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase
subtype 1 (AC1) is critical for the induction of cortical LTP in the anterior
cingulate cortex (ACC). Genetic deletion of AC1 or pharmacological inhibition of
AC1 blocked behavioral allodynia in animal models of neuropathic and
inflammatory pain. Our previous experiments have identified a lead candidate AC1
inhibitor, NB001, which is highly selective for AC1 over other AC isoforms, and
found that NB001 is effective in inhibiting behavioral allodynia in animal
models of chronic neuropathic and inflammatory pain. However, previous
experiments were carried out in adult male animals. Considering the potential
gender difference as an important issue in researches of pain and analgesia, we
investigated the effect of NB001 in female chronic pain animal models. We found
that NB001, when administered orally, has an analgesic effect in female animal
models of neuropathic and inflammatory pain without any observable side effect.
Genetic deletion of AC1 also reduced allodynia responses in models of
neuropathic pain and chronic inflammation pain in adult female mice. In brain
slices of adult female mice, bath application of NB001(20 μM) blocked the
induction of LTP in ACC. Our results indicate that calcium-stimulated AC1 is
required for injury-related cortical LTP and behavioral allodynia in both sexes
of adult animals, and NB001 can be used as a potential therapeutic drug for
treating neuropathic and inflammatory pain in man and woman.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sibo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Sluka KA, George SZ. Author Response to Quintner and Cohen. Phys Ther 2021; 101:pzab137. [PMID: 34081768 DOI: 10.1093/ptj/pzab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/14/2022]
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Steven Z George
- Laszlo Ormandy Distinguished Professor of Orthopaedic Surgery, Department of Orthopedic Surgery, Duke Clinical Research Institute, Duke University, Durham, North Carolina
| |
Collapse
|
29
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
30
|
Hodkinson DJ, Bungert A, Bowtell R, Jackson SR, Jung J. Operculo-insular and anterior cingulate plasticity induced by transcranial magnetic stimulation in the human motor cortex: a dynamic casual modeling study. J Neurophysiol 2021; 125:1180-1190. [PMID: 33625934 DOI: 10.1152/jn.00670.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
The ability to induce neuroplasticity with noninvasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of action remains unclear. Using dynamic causal modeling (DCM) and Bayesian model selection (BMS), we tested seven competing hypotheses about how transcranial magnetic stimulation (TMS) modulates the directed influences (or effective connectivity) between M1 and three distinct cortical areas of the medial and lateral pain systems, including the insular cortex (INS), anterior cingulate cortex (ACC), and parietal operculum cortex (PO). The data set included a novel fMRI acquisition collected synchronously with M1 stimulation during rest and while performing a simple hand motor task. DCM and BMS showed a clear preference for the fully connected model in which all cortical areas receive input directly from M1, with facilitation of the connections INS→M1, PO→M1, and ACC→M1, plus increased inhibition of their reciprocal connections. An additional DCM analysis comparing the reduced models only corresponding to networks with a sparser connectivity within the full model showed that M1 input into the INS is the second-best model of plasticity following TMS manipulations. The results reported here provide a starting point for investigating whether pathway-specific targeting involving M1↔INS improves analgesic response beyond conventional targeting. We eagerly await future empirical data and models that tests this hypothesis.NEW & NOTEWORTHY Transcranial magnetic stimulation of the primary motor cortex (M1) is a promising treatment for chronic pain, but its mechanism of action remains unclear. Competing dynamic causal models of effective connectivity between M1 and medial and lateral pain systems suggest direct input into the insular, anterior cingulate cortex, and parietal operculum. This supports the hypothesis that analgesia produced from M1 stimulation most likely acts through the activation of top-down processes associated with intracortical modulation.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Bungert
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Yi MH, Liu YU, Umpierre AD, Chen T, Ying Y, Zheng J, Dheer A, Bosco DB, Dong H, Wu LJ. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol 2021; 19:e3001154. [PMID: 33739978 PMCID: PMC8011727 DOI: 10.1371/journal.pbio.3001154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/31/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1β production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hailong Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, Xie M, Zhou L, Qu W, Wu LJ. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun 2021; 92:78-89. [PMID: 33221486 PMCID: PMC7897256 DOI: 10.1016/j.bbi.2020.11.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CX3CR1creER/+:R26LSL-hM4Di/+ transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1β). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT. Thus, chemogenetic approaches provide a potential opportunity for interrogating microglial function and neuropathic pain treatment.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854 USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lijun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Gobetto MN, González-Inchauspe C, Uchitel OD. Histamine and Corticosterone Modulate Acid Sensing Ion Channels (ASICs) Dependent Long-term Potentiation at the Mouse Anterior Cingulate Cortex. Neuroscience 2021; 460:145-160. [PMID: 33493620 DOI: 10.1016/j.neuroscience.2021.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
Increase in proton concentration [H+] or decrease in local and global extracellular pH occurs in both physiological and pathological conditions. Acid-sensing ion channels (ASICs), belonging to the ENaC/Deg superfamily, play an important role in signal transduction as proton sensor. ASICs and in particular ASIC1a (one of the six ASICs subunits) which is permeable to Ca2+, are involved in many physiological processes including synaptic plasticity and neurodegenerative diseases. Activity-dependent long-term potentiation (LTP) is a major type of long-lasting synaptic plasticity in the CNS, associated with learning, memory, development, fear and persistent pain. Neurons in the anterior cingulate cortex (ACC) play critical roles in pain perception and chronic pain and express ASIC1a channels. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC1a channels in ACC of mice. This generates ASIC1a synaptic currents that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that modulators like histamine and corticosterone, acting through ASIC1a regulate synaptic plasticity, reducing the threshold for LTP induction of glutamatergic EPSCs. Our findings suggest a new role for ASIC1a mediating the neuromodulator action of histamine and corticosterone regulating specific forms of synaptic plasticity in the mouse ACC.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
34
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
35
|
Sensory Processing in People With and Without Tendinopathy: A Systematic Review With Meta-analysis of Local, Regional, and Remote Sites in Upper- and Lower-Limb Conditions. J Orthop Sports Phys Ther 2021; 51:12-26. [PMID: 33383996 DOI: 10.2519/jospt.2021.9417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To synthesize results of somatosensory processing tests in people with upper- and lower-limb tendinopathy, compared to controls. DESIGN Systematic review with meta-analysis. LITERATURE SEARCH Four electronic databases (MEDLINE, CINAHL Plus, SPORTDiscus, and Embase) were searched. STUDY SELECTION CRITERIA Included studies measured a domain of sensory processing and compared a tendinopathy group to a healthy control group. DATA SYNTHESIS Meta-analysis was conducted for outcomes with homogeneous data from at least 2 studies. Upper- and lower-limb conditions were compared and outcomes were examined by measurement site (local, regional, or remote to location of pain). RESULTS Of the 30 studies included, 18 investigated lateral elbow tendinopathy. The most commonly assessed outcome measures were pressure pain threshold (PPT) and thermal pain threshold. There was moderate evidence for local and regional reduction of PPT in upper-limb tendinopathies, but not at remote sites. In lower-limb tendinopathies, there was conflicting evidence regarding reduced PPT at local sites and limited evidence of normal PPT at remote sites. There was moderate evidence of sensitization of thermal pain threshold at local sites in upper-limb tendinopathies and limited evidence of no difference in thermal pain threshold in lower-limb tendinopathies. Findings across other domains were variable. CONCLUSION Sensory processing was different between upper-limb tendinopathy and lower-limb tendinopathy. Upper-limb tendinopathies showed signs consistent with primary and secondary hyperalgesia, but lower-limb tendinopathies did not. There was mixed evidence for primary hyperalgesia and limited evidence against secondary hyperalgesia. J Orthop Sports Phys Ther 2021;51(1):12-26. doi:10.2519/jospt.2021.9417.
Collapse
|
36
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
37
|
CB1-cannabinoid-, TRPV1-vanilloid- and NMDA-glutamatergic-receptor-signalling systems interact in the prelimbic cerebral cortex to control neuropathic pain symptoms. Brain Res Bull 2020; 165:118-128. [DOI: 10.1016/j.brainresbull.2020.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
|
38
|
Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V. Adenosine receptor signalling: Probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol 2020; 889:173619. [DOI: 10.1016/j.ejphar.2020.173619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
|
39
|
Lackovic J, Price TJ, Dussor G. De novo protein synthesis is necessary for priming in preclinical models of migraine. Cephalalgia 2020; 41:237-246. [PMID: 33200943 DOI: 10.1177/0333102420970514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Migraine attacks are often triggered by normally innocuous stimuli, suggesting that sensitization within the nervous system is present. One mechanism that may contribute to neuronal sensitization in this context is translation regulation of new protein synthesis. The goal of this study was to determine whether protein synthesis contributes to behavioral responses and priming in preclinical models of migraine. METHODS Mice received a dural injection of interleukin-6 in the absence or presence of the protein synthesis inhibitor anisomycin or the translation initiation inhibitor 4EGI-1 and were tested for facial hypersensitivity. Upon returning to baseline, mice were given a second, non-noxious dural injection of pH 7.0 to test for priming. Additionally, eIF4ES209Amice lacking phosphorylation of mRNA cap-binding protein eIF4E received dural interleukin-6 or were subjected to repeated restraint stress and then tested for facial hypersensitivity. After returning to baseline, mice were given either dural pH 7.0 or a systemic sub-threshold dose of the nitric oxide donor sodium nitroprusside and tested for priming. RESULTS Dural injection of interleukin-6 in the presence of anisomycin or 4EGI-1 or in eIF4ES209Amice resulted in the partial attenuation of acute facial hypersensitivity and complete block of hyperalgesic priming. Additionally, hyperalgesic priming following repeated restraint stress was blocked in eIF4ES209Amice. CONCLUSIONS These studies show that de novo protein synthesis regulated by activity-dependent translation is critical to the development of priming in two preclinical models of migraine. This suggests that targeting the regulation of protein synthesis may be a novel approach for new migraine treatment strategies.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
40
|
Wang YJ, Liu MG, Wang JH, Cao W, Wu C, Wang ZY, Liu L, Yang F, Feng ZH, Sun L, Zhang F, Shen Y, Zhou YD, Zhuo M, Luo JH, Xu TL, Li XY. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep 2020; 33:108369. [PMID: 33176141 DOI: 10.1016/j.celrep.2020.108369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022] Open
Abstract
Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming-Gang Liu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Hua Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Wei Cao
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Cheng Wu
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Zi-Yue Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Sun
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Fuxing Zhang
- Department of Anatomy and K. K. Leung Brain Research Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science, Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Tian-Le Xu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
41
|
Sung S, Farrell M, Vijiaratnam N, Evans AH. Pain and dyskinesia in Parkinson's disease may share common pathophysiological mechanisms – An fMRI study. J Neurol Sci 2020; 416:116905. [DOI: 10.1016/j.jns.2020.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
42
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
43
|
Benson CA, Reimer ML, Tan AM. Dendritic Spines in the Spinal Cord: Live Action Pain. Neurosci Insights 2020; 15:2633105520951164. [PMID: 32864619 PMCID: PMC7432977 DOI: 10.1177/2633105520951164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Dendritic spines are microscopic protrusions on neurons that house the postsynaptic machinery necessary for neurotransmission between neurons. As such, dendritic spine structure is intimately linked with synaptic function. In pathology, dendritic spine behavior and its contribution to disease are not firmly understood. It is well known that dendritic spines are highly dynamic in vivo. In our recent publication, we used an intravital imaging approach, which permitted us to repeatedly visualize the same neurons located in lamina II, a nociceptive processing region of the spinal cord. Using this imaging platform, we analyzed the intravital dynamics of dendritic spine structure before and after nerve injury-induced pain. This effort revealed a time-dependent relationship between the progressive increase in pain outcome, and a switch in the steady-state fluctuations of dendritic spine structure. Collectively, our in vivo study demonstrates how injury that leads to abnormal pain may also contribute to synapse-associated structural remodeling in nociceptive regions of the spinal cord dorsal horn. By combining our live-imaging approach with measures of neuronal activity, such as with the use of calcium or other voltage-sensitive dyes, we expect to gain a more complete picture of the relationship between dendritic spine structure and nociceptive physiology.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
44
|
Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a. J Neurosci 2020; 40:6664-6677. [PMID: 32616667 DOI: 10.1523/jneurosci.2942-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Wnt signaling represents a highly versatile signaling system, which plays critical roles in developmental morphogenesis as well as synaptic physiology in adult life and is implicated in a variety of neural disorders. Recently, we demonstrated that Wnt3a is able to recruit multiple noncanonical signaling pathways to alter peripheral sensory neuron function in a nociceptive modality-specific manner. Furthermore, several studies recently reported an important role for Wnt5a acting via canonical and noncanonical signaling in spinal processing of nociception in a number of pathologic pain disorders. Here, using diverse molecular, genetic, and behavioral approaches in mouse models of pain in vivo, we report a novel role for Wnt5a signaling in nociceptive modulation at the structural level. In models of chronic pain, using male and female mice, we found that Wnt5a is released spinally from peripheral sensory neurons, where it recruits the tyrosine kinase receptors Ror2 and Ryk to modulate dendritic spine rearrangement. Blocking the Wnt5a-Ryk/Ror2 axis in spinal dorsal horn neurons prevented activity-dependent dendritic spine remodeling and significantly reduced mechanical hypersensitivity induced by peripheral injury as well as inflammation. Moreover, we observed that peripheral Wnt3a signaling triggers the release of Wnt5a in the spinal cord, and inhibition of spinal Wnt5a signaling attenuates the functional impact of peripheral Wnt3a on nociceptive sensitivity. In conclusion, this study reports a novel role for the Wnt signaling axis in coordinating peripheral and spinal sensitization and shows that targeting Wnt5a-Ryk/ROR2 signaling alleviates both structural and functional mechanisms of nociceptive hypersensitivity in models of chronic pain in vivo SIGNIFICANCE STATEMENT There is a major need to elucidate molecular mechanisms underlying chronic pain disorders to develop novel therapeutic approaches. Wnt signaling represents a highly versatile signaling system, which plays critical roles during development and adult physiology, and it was implicated in several diseases, including chronic pain conditions. Using mouse models, our study identifies a novel role for Wnt5a signaling in nociceptive modulation at the spinal cord level. We observed that Wnt5a recruits Ror2 and Ryk receptors to enhance dendritic spine density, leading to nociceptive sensitization. Blocking the Wnt5a-Ryk/Ror2 interaction in the spinal dorsal horn prevented spine remodeling and significantly reduced inflammatory and neuropathic hypersensitivity. These findings provide proof-of-concept for targeting spinal Wnt signaling for alleviating nociceptive hypersensitivity in vivo.
Collapse
|
45
|
Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study. J Neurosci 2020; 40:4297-4308. [PMID: 32371602 DOI: 10.1523/jneurosci.2858-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain is an intractable medical condition with few or no options for effective treatment. Emerging evidence shows a strong structure-function relationship between dendritic spine dysgenesis and the presence of neuropathic pain. Postmortem tissue analyses can only imply dynamic structural changes associated with injury-induced pain. Here, we profiled the in vivo dynamics of dendritic spines over time on the same superficial dorsal horn (lamina II) neurons before and after peripheral nerve injury-induced pain. We used a two-photon, whole-animal imaging paradigm that permitted repeat imaging of the same dendritic branches of these neurons in C57/Bl6 Thy1-YFP male mice. Our study demonstrates, for the first time, the ongoing, steady-state changes in dendritic spine dynamics in the dorsal horn associated with peripheral nerve injury and pain. Ultimately, the relationship between altered dendritic spine dynamics and neuropathic pain may serve as a structure-based opportunity to investigate mechanisms of pain following injury and disease.SIGNIFICANCE STATEMENT This work is important because it demonstrates for the first time: (1) the powerful utility of intravital study of dendritic spine dynamics in the superficial dorsal horn; (2) that nerve injury-induced pain triggers changes in dendritic spine steady-state behavior in the spinal cord dorsal horn; and (3) this work opens the door to further investigations in vivo of spinal cord dendritic spine dynamics in the context of injury and disease.
Collapse
|
46
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
47
|
Fan F, Tang Y, Dai H, Cao Y, Sun P, Chen Y, Chen A, Lin C. Blockade of BDNF signalling attenuates chronic visceral hypersensitivity in an IBS-like rat model. Eur J Pain 2020; 24:839-850. [PMID: 31976585 PMCID: PMC7154558 DOI: 10.1002/ejp.1534] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common functional disease characterized by chronic abdominal pain and changes in bowel movements. Effective therapy for visceral hypersensitivity in IBS patients remains challenging. This study investigated the roles of brain‐derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) and the effect of ANA‐12 (a selective antagonist of TrkB) on chronic visceral hypersensitivity in an IBS‐like rat model. Methods An IBS‐like rat model was established through neonatal maternal separation (NMS), and visceral hypersensitivity was assessed by electromyographic (EMG) responses of the abdominal external oblique muscles to colorectal distention (CRD). Different doses of ANA‐12 were injected intrathecally to investigate the effect of that drug on visceral hypersensitivity, and the open field test was performed to determine whether ANA‐12 had side effects on movement. Thoracolumbar spinal BDNF, TrkB receptor and Protein kinase Mζ (PKMζ) expression were measured to investigate their roles in chronic visceral hypersensitivity. Whole‐cell recordings were made from thoracolumbar superficial dorsal horn (SDH) neurons of lamina II. Results The expression of BDNF and TrkB was enhanced in the thoracolumbar spinal cord of the NMS animals. ANA‐12 attenuated visceral hypersensitivity without side effects on motricity in NMS rats. PKMζ expression significantly decreased after the administration of ANA‐12. The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased in the thoracolumbar SDH neurons of lamina II in NMS rats. The amplitude and frequency of sEPSCs were reduced after perfusion with ANA‐12 in NMS rats. Conclusions Neonatal maternal separation caused visceral hypersensitivity and increased synaptic activity by activating BDNF‐TrkB‐PKMζ signalling in the thoracolumbar spinal cord of adult rats. PKMζ was able to potentiate AMPA receptor (AMPAR)‐mediated sEPSCs in NMS rats. ANA‐12 attenuated visceral hypersensitivity and synaptic activity by blocking BDNF/TrkB signalling in NMS rats. Significance ANA‐12 attenuates visceral hypersensitivity via BDNF‐TrkB‐PKMζ signalling and reduces synaptic activity through AMPARs in NMS rats. This knowledge suggests that ANA‐12 could represent an interesting novel therapeutic medicine for chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Fei Fan
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Hengfen Dai
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Cao
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Pei Sun
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
48
|
Duan XL, Guo Z, He YT, Li YX, Liu YN, Bai HH, Li HL, Hu XD, Suo ZW. SNAP25/syntaxin4/VAMP2/Munc18-1 Complexes in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience 2020; 429:203-212. [PMID: 31962145 DOI: 10.1016/j.neuroscience.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been implicated in the trafficking of postsynaptic glutamate receptors, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptors (NMDARs) that are critical for nociceptive plasticity and behavioral sensitization. However, the components of SNAREs complex involved in spinal nociceptive processing remain largely unknown. Here we found that SNAP25, syntaxin4, VAMP2 and Munc18-1 were localized at postsynaptic sites and formed the complex in the superficial lamina of spinal cord dorsal horn of rats. The complex formation between these SNAREs components were accelerated after intraplantar injection of complete Freund's adjuvant (CFA), pharmacological removal of GABAergic inhibition or activation of NMDAR in intact rats. The increased SNAP25/syntaxin4/VAMP2/Munc18-1 interaction facilitated the surface delivery and synaptic accumulation of NMDAR during inflammatory pain. Disruption of the molecular interaction between SNAP25 with its SNARE partners by using a blocking peptide derived from the C-terminus of SNAP25 effectively repressed the surface and synaptic accumulation of GluN2B-containing NMDARs in CFA-injected rats. This peptide also alleviated inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that SNAREs complex assembly in spinal cord dorsal horn was involved in the inflammatory pain hypersensitivity through promoting NMDAR synaptic trafficking.
Collapse
Affiliation(s)
- Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yin-Xia Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yan-Ni Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
49
|
Involvement of Interleukin-10 in Analgesia of Electroacupuncture on Incision Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8413576. [PMID: 31885668 PMCID: PMC6925708 DOI: 10.1155/2019/8413576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022]
Abstract
Objective Postincision pain often occurs after surgery and is an emergency to be treated in clinic. Electroacupuncture (EA) is a Chinese traditional treatment widely used to cure acute or chronic pain, but its mechanism is not clear. Interleukin-10 (IL-10) is a powerful anti-inflammatory cytokine that shows neuroprotective effects in inflammation and injury in the CNS. The present study attempts to reveal that IL-10 is crucial for EA analgesia on postincision pain. Methods A model of incision pain was established in C57BL/6J mice. The pain threshold was detected by behavioral test, and the expression of IL-10 and its receptor was detected by an immunohistochemical method. C-fiber-evoked field potentials were recorded by in vivo analysis. Results The mechanical allodynia induced by paw incision was significantly inhibited by pretreatment of EA in mice. Intrathecal injection of IL-10 neutralizing antibody (2 µg/10 µL) but not intraplantar injection (10 µg/10 µL) reversed the analgesia of EA. The upregulations of IL-10 mRNA and protein were induced by EA at 6 h and 1 d after incision, respectively. Spinal long-term potentiation (LTP), a substrate for central sensitization, was also suppressed by EA with IL-10. IL-10 recombinant protein (1 µg/10 µL, i.t.) mimicked the analgesia of EA on mechanical allodynia and inhibition on the spinal LTP. Posttreatment of EA after incision also transitorily relieved the mechanical allodynia, which can be blocked by spinal IL-10 antibody. IL-10 and its receptor, IL-10RA, are predominantly expressed in the superficial spinal astrocytes. Conclusions These results suggested that pretreatment of EA effectively prevented postincision pain and IL-10 in spinal astrocytes was critical for the analgesia of EA and central sensitization.
Collapse
|
50
|
Hugosdottir R, Mørch CD, Andersen OK, Helgason T, Arendt-Nielsen L. Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current. BMC Neurosci 2019; 20:48. [PMID: 31521103 PMCID: PMC6744690 DOI: 10.1186/s12868-019-0530-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. RESULTS In this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as "stabbing", "shooting", and "sharp". CONCLUSION These results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.
Collapse
Affiliation(s)
- Rosa Hugosdottir
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark.
| | - Carsten Dahl Mørch
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark.
| | - Ole Kæseler Andersen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Thordur Helgason
- Institute of Biomedical and Neural Engineering, Health Technology Center, School of Engineering and Science, Reykjavik University, Menntavegur 1, 101, Reykjavik, Iceland
| | - Lars Arendt-Nielsen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| |
Collapse
|