1
|
Dacheux MA, Norman DD, Tigyi GJ, Lee SC. Emerging roles of lysophosphatidic acid receptor subtype 5 (LPAR5) in inflammatory diseases and cancer. Pharmacol Ther 2023; 245:108414. [PMID: 37061203 DOI: 10.1016/j.pharmthera.2023.108414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that regulates a variety of cellular functions such as cell proliferation, migration, survival, calcium mobilization, cytoskeletal rearrangements, and neurite retraction. The biological actions of LPA are mediated by at least six G protein-coupled receptors known as LPAR1-6. Given that LPAR1-3 were among the first LPARs identified, the majority of research efforts have focused on understanding their biology. This review provides an in-depth discussion of LPAR5, which has recently emerged as a key player in regulating normal intestinal homeostasis and modulating pathological conditions such as pain, itch, inflammatory diseases, and cancer. We also present a chronological overview of the efforts made to develop compounds that target LPAR5 for use as tool compounds to probe or validate LPAR5 biology and therapeutic agents for the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Gábor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America.
| |
Collapse
|
2
|
Li Q, Qiao W, Hao J, Wei S, Li X, Liu T, Qiu C, Hu W. Potentiation of ASIC currents by lysophosphatidic acid in rat dorsal root ganglion neurons. J Neurochem 2022; 163:327-337. [DOI: 10.1111/jnc.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wen‐Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Jia‐Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Xue‐Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Ting‐Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Chun‐Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wang‐Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- Hubei College of Chinese Medicine Jingzhou Hubei China
| |
Collapse
|
3
|
Qiao WL, Li Q, Hao JW, Wei S, Li XM, Liu TT, Qiu CY, Hu WP. Enhancement of P2X3 Receptor-Mediated Currents by Lysophosphatidic Acid in Rat Primary Sensory Neurons. Front Pharmacol 2022; 13:928647. [PMID: 35795546 PMCID: PMC9251206 DOI: 10.3389/fphar.2022.928647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidic acid (LPA), a lipid metabolite, plays a role in both neuropathic and inflammatory pain through LPA1 receptors. P2X3 receptor has also been shown to participate in these pathological processes. However, it is still unclear whether there is a link between LPA signaling and P2X3 receptors in pain. Herein, we show that a functional interaction between them in rat dorsal root ganglia (DRG) neurons. Pretreatment of LPA concentration-dependently enhanced α,β-methylene-ATP (α,β-meATP)-induced inward currents mediated by P2X3 receptors. LPA significantly increased the maximal current response of α,β-meATP, showing an upward shift of the concentration-response curve for α,β-meATP. The LPA enhancement was independent on the clamping-voltage. Enhancement of P2X3 receptor-mediated currents by LPA was prevented by the LPA1 receptor antagonist Ki16198, but not by the LPA2 receptor antagonist H2L5185303. The LPA-induced potentiation was also attenuated by intracellular dialysis of either G-protein inhibitor or protein kinase C (PKC) inhibitor, but not by Rho inhibitor. Moreover, LPA significantly changed the membrane potential depolarization and action potential burst induced by α,β-meATP in DRG neurons. Finally, LPA exacerbated α,β-meATP- induced nociceptive behaviors in rats. These results suggested that LPA potentiated the functional activity of P2X3 receptors in rat primary sensory neurons through activation of the LPA1 receptor and its downstream PKC rather than Rho signaling pathway, indicating a novel peripheral mechanism underlying the sensitization of pain.
Collapse
Affiliation(s)
- Wen-Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jia-Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xue-Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei College of Chinese Medicine, Jingzhou, China
- *Correspondence: Wang-Ping Hu,
| |
Collapse
|
4
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Xiao D, Su X, Gao H, Li X, Qu Y. The Roles of Lpar1 in Central Nervous System Disorders and Diseases. Front Neurosci 2021; 15:710473. [PMID: 34385905 PMCID: PMC8353257 DOI: 10.3389/fnins.2021.710473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (Lpar1), which is found in almost all human tissues but is most abundant in the brain, can couple to G protein-coupled receptors (GPCRs) and participate in regulating cell proliferation, migration, survival, and apoptosis. Endothelial differentiation gene-2 receptor (Edg2), the protein encoded by the Lpar1 gene, is present on various cell types in the central nervous system (CNS), such as neural stem cells (NSCs), oligodendrocytes, neurons, astrocytes, and microglia. Lpar1 deletion causes neurodevelopmental disorders and CNS diseases, such as brain cancer, neuropsychiatric disorders, demyelination diseases, and neuropathic pain. Here, we summarize the possible roles and mechanisms of Lpar1/Edg2 in CNS disorders and diseases and propose that Lpar1/Edg2 might be a potential therapeutic target for CNS disorders and diseases.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hu Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
7
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
8
|
Ueda H. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag 2019; 10:43-53. [PMID: 31852400 DOI: 10.2217/pmt-2019-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the first discovery that the bioactive lipid, lysophosphatidic acid (LPA) and LPA1 receptor signaling play a role in the initiation of neuropathic pain (NeuP), accumulated reports have supported the original findings and extended the study toward possible therapeutic applications. The present review describes beneficial roles of LPA receptor signaling in a variety of chronic pain, such as peripheral NeuP induced by nerve injury, chemotherapy and diabetes, central NeuP induced by cerebral ischemia with hemorrhage and spinal cord injury, and fibromyalgia-like wide spread pain induced by repeated cold, psychological and muscular acidic stress. Emerging mechanistic findings are the feed-forward amplification of LPA production through LPA1, LPA3 and microglia and the evidence for maintenance of chronic pain by LPA receptor signaling.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Affiliation(s)
- Hiroshi Ueda
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
10
|
Kim NH, Sadra A, Park HY, Oh SM, Chun J, Yoon JK, Huh SO. HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells. Mol Cells 2019; 42:123-134. [PMID: 30622227 PMCID: PMC6399008 DOI: 10.14348/molcells.2018.0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/20/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as LPA1-6. For one of its receptors, LPA1 (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252,
Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252,
Korea
| | - Hee-Young Park
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252,
Korea
| | - Sung-Min Oh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252,
Korea
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, CA 92037,
USA
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Asan 31538,
Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252,
Korea
| |
Collapse
|
11
|
Involvement of lysophosphatidic acid-induced astrocyte activation underlying the maintenance of partial sciatic nerve injury-induced neuropathic pain. Pain 2019; 159:2170-2178. [PMID: 29939962 DOI: 10.1097/j.pain.0000000000001316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that lysophosphatidic acid (LPA) plays key roles in the initial mechanisms for neuropathic pain (NeuP) development. Here, we examined whether LPA receptor mechanisms and LPA production are related to the glial activation at a late stage after partial sciatic nerve ligation (pSNL) by use of microglial inhibitor, Mac1-saporin or astrocyte inhibitor, and L-α-aminoadipate (L-AA). Although single intrathecal injection of LPA1/3 antagonist, Ki-16425 did not affect the pain threshold at day 7 after the spinal cord injury, repeated treatments of each compound gradually reversed the basal pain threshold to the control level. The intrathecal administration of a microglia inhibitor, Mac-1-saporin reversed the late hyperalgesia and LPA production at day 14 after the pSNL, whereas L-AA inhibited the hyperalgesia, but had no effect on LPA production. The involvement of LPA receptors in astrocyte activation in vivo was evidenced by the findings that Ki-16425 treatments abolished the upregulation of CXCL1 in activated astrocytes in the spinal dorsal horn of mice at day 14 after the pSNL, and that Ki-16425 reversed the LPA-induced upregulation of several chemokine gene expressions in primary cultured astrocytes. Finally, we found that significant hyperalgesia was observed with intrathecal administration of primary cultured astrocytes, which had been stimulated by LPA in a Ki-16425-reversible manner. All these findings suggest that LPA production and LPA1/3 receptor activation through differential glial mechanisms play key roles in the maintenance as well as initiation mechanisms in NeuP.
Collapse
|
12
|
Srikanth M, Chew WS, Hind T, Lim SM, Hay NWJ, Lee JHM, Rivera R, Chun J, Ong WY, Herr DR. Lysophosphatidic acid and its receptor LPA1 mediate carrageenan induced inflammatory pain in mice. Eur J Pharmacol 2018; 841:49-56. [DOI: 10.1016/j.ejphar.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
13
|
Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N, Schiffmann S, Parnham MJ, Tunaru S, Chun J, Offermanns S, Foerch C, Scholich K, Vogt J, Wicker S, Lötsch J, Geisslinger G, Tegeder I. Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun 2017; 5:42. [PMID: 28578681 PMCID: PMC5457661 DOI: 10.1186/s40478-017-0446-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2-/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach. Graphical abstract Graphical summary of lysophosphatidic signaling in multiple sclerosis![]() Electronic supplementary material The online version of this article (doi:10.1186/s40478-017-0446-4) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain 2017; 158 Suppl 1:S55-S65. [DOI: 10.1097/j.pain.0000000000000813] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wu JX, Yuan XM, Wang Q, Wei W, Xu MY. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats. Mol Pain 2016; 12:12/0/1744806916644929. [PMID: 27094551 PMCID: PMC4956381 DOI: 10.1177/1744806916644929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/20/2016] [Indexed: 12/27/2022] Open
Abstract
Background Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. Results In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. Conclusions Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer.
Collapse
Affiliation(s)
- Jing-Xiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiao-Min Yuan
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiong Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wang Wei
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mei-Ying Xu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
16
|
Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J Neurosci 2015; 35:10224-35. [PMID: 26180199 DOI: 10.1523/jneurosci.4703-14.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
Collapse
|
17
|
Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochem J 2015; 470:155-67. [DOI: 10.1042/bj20150358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
Collapse
|
18
|
Lysophosphatidic acid (LPA) signaling in human and ruminant reproductive tract. Mediators Inflamm 2014; 2014:649702. [PMID: 24744506 PMCID: PMC3973013 DOI: 10.1155/2014/649702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/24/2014] [Indexed: 01/28/2023] Open
Abstract
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance.
Collapse
|
19
|
Szajkowski S, Marcol W, Właszczuk A, Cieślar G, Pietrucha-Dutczak M, Sieroń A, Lewin-Kowalik J. The influence of spatial pulsed magnetic field application on neuropathic pain after tibial nerve transection in rat. Electromagn Biol Med 2013; 33:35-46. [PMID: 23781991 DOI: 10.3109/15368378.2013.783849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of the study was to examine the influence of the spatial variable magnetic field (induction: 150-300 µT, 80-150 µT, 20-80 µT; frequency 40 Hz) on neuropathic pain after tibial nerve transection. The experiments were carried out on 64 male Wistar C rats. The exposure of animals to magnetic field was performed 1 d/20 min., 5 d/week, for 28 d. Behavioural tests assessing the intensity of allodynia and sensitivity to mechanical and thermal stimuli were conducted 1 d prior to surgery and 3, 7, 14, 21 and 28 d after the surgery. The extent of autotomy was examined. Histological and immunohistochemical analysis was performed. The use of extremely low-frequency magnetic fields of minimal induction values (20-80 µT/40 Hz) decreased pain in rats after nerve transection. The nociceptive sensitivity of healthy rats was not changed following the exposition to the spatial magnetic field of the low frequency. The results of histological and immunohistochemical investigations confirm those findings. Our results indicate that extremely low-frequency magnetic field may be useful in the neuropathic pain therapy.
Collapse
|
20
|
Ma L, Nagai J, Chun J, Ueda H. An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 2013; 9:29. [PMID: 23773289 PMCID: PMC3691926 DOI: 10.1186/1744-8069-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that nerve injury-induced neuropathic pain is initiated by newly produced lysophosphatidic acid (LPA). RESULTS In this study, we developed a quantitative mass spectrometry for detecting LPA species by using Phos-tag. Following nerve injury, the levels of 18:1, 16:0 and 18:0 LPA in the spinal dorsal horn significantly increased at 3 h and declined at 6 h. Among them, 18:1 LPA level was the most abundant. In the same preparation, there were significant elevations in the activities of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2), key enzymes for LPA synthesis, at 1 h, while there was no significant change in phospholipase A1 activity. Pharmacological studies revealed that NMDA and neurokinin 1 receptors, cPLA2, iPLA2 and microglial activation, as well as LPA1 and LPA3 receptors were all involved in the nerve injury-induced LPA production, and underlying cPLA2 and iPLA2 activations. In the cells expressing LPA1 or LPA3 receptor, the receptor-mediated calcium mobilization was most potent with 18:1 LPA, compared with 16:0 or 18:0 LPA. Moreover, the intrathecal injection of 18:1 LPA, but not 16:0 or 18:0 LPA, caused a spinal LPA production and neuropathic pain-like behavior. CONCLUSION These results suggest that 18:1 LPA is the predominant ligand responsible for LPA1 and LPA3 receptors-mediated amplification of LPA production through microglial activation.
Collapse
|
21
|
Phenotyping the function of TRPV1-expressing sensory neurons by targeted axonal silencing. J Neurosci 2013; 33:315-26. [PMID: 23283344 DOI: 10.1523/jneurosci.2804-12.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1(+) afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-314 into these axons via the TRPV1 channel pore. Using tandem mass spectrometry we show that upon activation with capsaicin, QX-314 selectively accumulates in the cytosol only of TRPV1-expressing cells, and not in control cells. Exposure to QX-314 and capsaicin induces in small DRG neurons a robust sodium current block within 30 s. In sciatic nerves, application of extracellular QX-314 with capsaicin persistently reduces C-fiber but not A-fiber compound action potentials and this effect does not occur in TRPV1(-/-) mice. Behavioral phenotyping after selectively silencing TRPV1(+) sciatic nerve axons by perineural injections of QX-314 and capsaicin reveals deficits in heat and mechanical pressure but not pinprick or light touch perception. The response to intraplantar capsaicin is substantially reduced, as expected. During inflammation, silencing TRPV1(+) axons abolishes heat, mechanical, and cold hyperalgesia but tactile and cold allodynia remain following peripheral nerve injury. These results indicate that TRPV1-expressing sensory neurons process particular thermal and mechanical somatosensations, and that the sensory channels activated by mechanical and cold stimuli to produce pain in naive/inflamed rats differ from those in animals after peripheral nerve injury.
Collapse
|
22
|
Zakir HM, Mostafeezur RM, Suzuki A, Hitomi S, Suzuki I, Maeda T, Seo K, Yamada Y, Yamamura K, Lev S, Binshtok AM, Iwata K, Kitagawa J. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS One 2012; 7:e44023. [PMID: 22962595 PMCID: PMC3433461 DOI: 10.1371/journal.pone.0044023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023] Open
Abstract
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP) - induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN) transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG) neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect dynamic changes in TRPV1 expression, in various pathological conditions.
Collapse
Affiliation(s)
- Hossain Md. Zakir
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rahman Md. Mostafeezur
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akiko Suzuki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ikuko Suzuki
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiaki Yamada
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Alexander M. Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Junichi Kitagawa
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
23
|
Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:20-32. [PMID: 22884303 DOI: 10.1016/j.bbalip.2012.07.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA(1-6) and S1P(1-5), which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including G(i/o), G(12/13), G(q) and G(s), with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Lin ME, Rivera RR, Chun J. Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J Biol Chem 2012; 287:17608-17617. [PMID: 22461625 DOI: 10.1074/jbc.m111.330183] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).
Collapse
Affiliation(s)
- Mu-En Lin
- Scripps Research Institute, Molecular Biology Department, Dorris Neuroscience Center, La Jolla, California 92037; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Richard R Rivera
- Scripps Research Institute, Molecular Biology Department, Dorris Neuroscience Center, La Jolla, California 92037
| | - Jerold Chun
- Scripps Research Institute, Molecular Biology Department, Dorris Neuroscience Center, La Jolla, California 92037.
| |
Collapse
|
25
|
Ueda H, Ueda M. Lysophosphatidic acid as an initiator of neuropathic pain: biosynthesis and demyelination. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.10.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 2010; 161:241-70. [PMID: 20735414 PMCID: PMC2989581 DOI: 10.1111/j.1476-5381.2010.00815.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/12/2010] [Accepted: 03/20/2010] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is the prototype member of a family of lipid mediators and second messengers. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and a nuclear hormone receptor within the cell. In addition, there are several enzymes that utilize LPA as a substrate or generate it as a product and are under its regulatory control. LPA is present in biological fluids, and attempts have been made to link changes in its concentration and molecular composition to specific disease conditions. Through their many targets, members of the LPA family regulate cell survival, apoptosis, motility, shape, differentiation, gene transcription, malignant transformation and more. The present review depicts arbitrary aspects of the physiological and pathophysiological actions of LPA and attempts to link them with select targets. Many of us are now convinced that therapies targeting LPA biosynthesis and signalling are feasible for the treatment of devastating human diseases such as cancer, fibrosis and degenerative conditions. However, successful targeting of the pathways associated with this pleiotropic lipid will depend on the future development of as yet undeveloped pharmacons.
Collapse
Affiliation(s)
- Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
27
|
Ma L, Uchida H, Nagai J, Inoue M, Chun J, Aoki J, Ueda H. Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain. Mol Pain 2009; 5:64. [PMID: 19912636 PMCID: PMC2780384 DOI: 10.1186/1744-8069-5-64] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/13/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX). RESULTS We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA3, but not LPA1 or LPA2 receptors. Similar time-related and LPA3 receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an in vitro study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA3 receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA1 or LPA3 receptors. CONCLUSION These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Lin Ma
- Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|