1
|
Li H, Huang Z, Yang C, Han D, Wang X, Qiu X, Zhang Z, Chen X. Association between plasma lysophosphatidic acid levels and bronchopulmonary dysplasia in extremely preterm infants: A prospective study. Pediatr Pulmonol 2023; 58:3516-3522. [PMID: 37712600 DOI: 10.1002/ppul.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is implicated in bronchopulmonary dysplasia (BPD) pathogenesis, but clinical evidence is lacking. This study aimed to investigate LPA levels in preterm infants with and without BPD and explore LPA as a biomarker for predicting BPD occurrence. METHODS Premature infants with a gestational age of <28 weeks or a birth weight of <1000 g were enrolled. Blood samples were collected at postnatal day (PD) 7, 28, and postmenstrual age (PMA) 36 weeks, and plasma LPA levels were measured using a commercial ELISA kit. Receiver operating characteristic curve (ROC) curve analysis determined the PD 28 cutoff for LPA, and multivariable regression analyzed LPA's independent contribution to BPD and exploratory outcomes. RESULT Among the 91 infants enrolled in this study, 35 were classified into the non-BPD group and 56 into the BPD group. Infants with BPD had higher plasma LPA levels at PD 28 (6.467 vs. 4.226 μg/mL, p = 0.034) and PMA 36 weeks (2.330 vs. 1.636 μg/mL, p = 0.001). PD 28 LPA level of 6.132 μg/mL was the cutoff for predicting BPD development. Higher PD 28 LPA levels (≥6.132 μg/mL) independently associated with BPD occurrence (OR 3.307, 95% CI 1.032-10.597, p = 0.044). Higher LPA levels correlated with longer oxygen therapy durations [regression coefficients (β) 0.147, 95% CI 0.643-16.133, p = .034]. CONCLUSIONS Infants with BPD had higher plasma LPA levels at PD 28 and PMA 36 weeks. Higher PD 28 LPA levels independently associated with an increased BPD risk.
Collapse
Affiliation(s)
- Huitao Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zilu Huang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiaomei Qiu
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiwei Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyu Chen
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
3
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
4
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Ma B, Zhang L, Sun L, Xin Z, Kumaravel G, Marcotte D, Chodaparambil JV, Wang Q, Wehr A, Jing J, Hong VS, Wang T, Huang C, Shao Z, Mi S. Discovery of Potent Selective Nonzinc Binding Autotaxin Inhibitor BIO-32546. ACS Med Chem Lett 2021; 12:1124-1129. [PMID: 34267882 DOI: 10.1021/acsmedchemlett.1c00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is a lysophospholipase D that is the main enzyme responsible for generating LPA in body fluids. Although ATX was isolated from a conditioned medium of melanoma cells, later it was discovered to play a critical role in vascular and neuronal development. ATX has also been implicated in primary brain tumor, fibrosis, and rheumatoid arthritis, as well as neurological diseases such as multiple sclerosis, Alzheimer's disease, and neuropathic pain. As ATX and LPA levels are increased upon neuronal injury, a selective ATX inhibitor could provide a new approach to treat neuropathic pain. Herein we describe the discovery of a novel series of nonzinc binding reversible ATX inhibitors, particularly a potent, selective, orally bioavailable, brain-penetrable tool compound BIO-32546, as well as its synthesis, X-ray cocrystal structure, pharmacokinetics, and in vivo efficacy.
Collapse
|
7
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
8
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
9
|
Uranbileg B, Ito N, Kurano M, Kano K, Uchida K, Sumitani M, Aoki J, Yatomi Y. Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis. Sci Rep 2021; 11:3984. [PMID: 33597645 PMCID: PMC7889906 DOI: 10.1038/s41598-021-83569-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Lumbar spinal canal stenosis (LSS) or mechanical compression of dorsal root ganglion (DRG) is one of the causes of low back pain and neuropathic pain (NP). Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator that is produced mainly from lysophosphatidylcholine (LPC) via autotaxin (ATX) and is known to induce NP via LPA1 receptor signaling in mice. Recently, we demonstrated that LPC and LPA were higher in cerebrospinal fluid (CSF) of patients with LSS. Based on the possible potential efficacy of the ATX inhibitor for NP treatment, we used an NP model with compression of DRG (CD model) and investigated LPA dynamics and whether ATX inhibition could ameliorate NP symptoms, using an orally available ATX inhibitor (ONO-8430506) at a dose of 30 mg/kg. In CD model, we observed increased LPC and LPA levels in CSF, and decreased threshold of the pain which were ameliorated by oral administration of the ATX inhibitor with decreased microglia and astrocyte populations at the site of the spinal dorsal horn projecting from injured DRG. These results suggested possible efficacy of ATX inhibitor for the treatment of NP caused by spinal nerve root compression and involvement of the ATX-LPA axis in the mechanism of NP induction.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
11
|
Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int J Mol Sci 2020; 21:ijms21103421. [PMID: 32408609 PMCID: PMC7279265 DOI: 10.3390/ijms21103421] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) channel is a polymodal protein with functions widely linked to the generation of pain. Several agonists of exogenous and endogenous nature have been described for this ion channel. Nonetheless, detailed mechanisms and description of binding sites have been resolved only for a few endogenous agonists. This review focuses on summarizing discoveries made in this particular field of study and highlighting the fact that studying the molecular details of activation of the channel by different agonists can shed light on biophysical traits that had not been previously demonstrated.
Collapse
Affiliation(s)
| | | | | | - Tamara Rosenbaum
- Correspondence: ; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07
| |
Collapse
|
12
|
López-Romero AE, Hernández-Araiza I, Torres-Quiroz F, Tovar-Y-Romo LB, Islas LD, Rosenbaum T. TRP ion channels: Proteins with conformational flexibility. Channels (Austin) 2020; 13:207-226. [PMID: 31184289 PMCID: PMC6602575 DOI: 10.1080/19336950.2019.1626793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.
Collapse
Affiliation(s)
- Ana Elena López-Romero
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Ileana Hernández-Araiza
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Francisco Torres-Quiroz
- b Departamento de Bioquímica y Biología Estructural, División Investigación Básica , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Luis B Tovar-Y-Romo
- c Departamento de Neuropatología Molecular, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - León D Islas
- d Departamento de Fisiología, Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Tamara Rosenbaum
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| |
Collapse
|
13
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Lind AL, Just D, Mikus M, Fredolini C, Ioannou M, Gerdle B, Ghafouri B, Bäckryd E, Tanum L, Gordh T, Månberg A. CSF levels of apolipoprotein C1 and autotaxin found to associate with neuropathic pain and fibromyalgia. J Pain Res 2019; 12:2875-2889. [PMID: 31686904 PMCID: PMC6800548 DOI: 10.2147/jpr.s215348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Neuropathic pain and fibromyalgia are two common and poorly understood chronic pain conditions that lack satisfactory treatments, cause substantial suffering and societal costs. Today, there are no biological markers on which to base chronic pain diagnoses, treatment choices or to understand the pathophysiology of pain for the individual patient. This study aimed to investigate cerebrospinal fluid (CSF) protein profiles potentially associated with fibromyalgia and neuropathic pain. Methods CSF samples were collected from 25 patients with neuropathic pain (two independent sets, n=14 patients for discovery, and n=11 for verification), 40 patients with fibromyalgia and 134 controls without neurological disease from two different populations. CSF protein profiling of 55 proteins was performed using antibody suspension bead array technology. Results We found increased levels of apolipoprotein C1 (APOC1) in CSF of neuropathic pain patients compared to controls and there was a trend for increased levels also in fibromyalgia patients. In addition, levels of ectonucleotide pyrophosphatase family member 2 (ENPP2, also referred to as autotaxin) were increased in the CSF of fibromyalgia patients compared to all other groups including patients with neuropathic pain. Conclusion The increased levels of APOC1 and ENPP2 found in neuropathic pain and fibromyalgia patients may shed light on the underlying mechanisms of these conditions. Further investigation is required to elucidate their role in maintaining pain and other main symptoms of these disorders.
Collapse
Affiliation(s)
- Anne-Li Lind
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - David Just
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mikus
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Claudia Fredolini
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marina Ioannou
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lars Tanum
- Department of R&D in Mental Health, Akershus University Hospital, Lørenskog, Norway
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, SciLifeLab, Deptartment of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
15
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
16
|
Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Mol Neurobiol 2019; 57:372-392. [PMID: 31364025 DOI: 10.1007/s12035-019-01719-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.
Collapse
|
17
|
Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Lysophosphatidic Acid and Glutamatergic Transmission. Front Mol Neurosci 2019; 12:138. [PMID: 31191247 PMCID: PMC6546900 DOI: 10.3389/fnmol.2019.00138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
Collapse
Affiliation(s)
- Carolina Roza
- Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain
| | - José A Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María C Gómez-García
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Ana Peñalver
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
18
|
Srikanth M, Chew WS, Hind T, Lim SM, Hay NWJ, Lee JHM, Rivera R, Chun J, Ong WY, Herr DR. Lysophosphatidic acid and its receptor LPA1 mediate carrageenan induced inflammatory pain in mice. Eur J Pharmacol 2018; 841:49-56. [DOI: 10.1016/j.ejphar.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
19
|
Kuwajima K, Sumitani M, Kurano M, Kano K, Nishikawa M, Uranbileg B, Tsuchida R, Ogata T, Aoki J, Yatomi Y, Yamada Y. Lysophosphatidic acid is associated with neuropathic pain intensity in humans: An exploratory study. PLoS One 2018; 13:e0207310. [PMID: 30408112 PMCID: PMC6224112 DOI: 10.1371/journal.pone.0207310] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The underlying mechanisms of neuropathic pain remain to be elucidated. Basic animal research has suggested that lysophosphatidic acids, which are bioactive lipids produced by autotaxin from lysophosphatidylcholine, may play key roles in the initiation and maintenance of neuropathic pain. Here, we investigated the clinical relevance of lysophosphatidic acids signaling on neuropathic pain in humans. Eighteen patients who had been diagnosed with neuropathic pain with varied etiologies participated in the study. Cerebrospinal fluid samples were obtained by lumbar puncture and the concentrations of 12 species of lysophosphatidic acids and lysophosphatidylcholine, autotaxin, and the phosphorylated neurofilament heavy subunit were measured. Pain symptoms were assessed using an 11-point numeric rating scale and the Neuropathic Pain Symptom Inventory regarding intensity and descriptive dimensions of neuropathic pain. The total lysophosphatidic acids were significantly associated with both pain intensity and symptoms. 18:1 and 20:4 lysophosphatidic acids in particular demonstrated the most correlations with dimensions of pain symptoms. Autotaxin and the phosphorylated neurofilament heavy subunit showed no association with pain symptoms. In conclusions, lysophosphatidic acids were significantly associated with pain symptoms in neuropathic pain patients. These results suggest that lysophosphatidic acids signaling might be a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Ken Kuwajima
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Rikuhei Tsuchida
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Yamada
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Nervous system delivery of antilysophosphatidic acid antibody by nasal application attenuates mechanical allodynia after traumatic brain injury in rats. Pain 2018; 158:2181-2188. [PMID: 29028747 DOI: 10.1097/j.pain.0000000000001019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that impacts neurological outcomes after neurotrauma by inhibiting neuroregeneration, promoting inflammation, and contributing to behavioral deficits. Blocking LPA signaling with a novel anti-LPA monoclonal antibody (mAb) is neuroprotective after traumatic brain injury (TBI) if given to injured animals whose blood-brain barrier (BBB) has been compromised. It is hypothesized that the anti-LPA mAb could improve chronic pain initiated by TBI. However, poor brain penetration after systemic application of the antibody makes access to the central nervous system (CNS) problematic in situations where the BBB is intact. Our experiments investigated whether intranasal delivery of the anti-LPA mAb could bypass the BBB, allowing for direct entry of the antibody to certain areas of the CNS. When the humanized anti-LPA mAb, LT3114, was intranasally applied to injured rats within 30 minutes after mild TBI using the central lateral percussion model, enzyme-linked immunospecific assay and immunohistochemistry demonstrated antibody uptake to several areas in the CNS, including the area of cortical injury, the corpus callosum, cerebellum, and the subventricular region. Compared with control rats that received LT3114 but no TBI, TBI rats demonstrated significantly higher concentrations of intranasally administered LT3114 antibody in some tissues. In behavioral studies, a significant attenuation of mechanical allodynia after TBI was observed in the anti-LPA treatment group (P = 0.0079), when compared with vehicle controls within 14 days after TBI. These results suggest that intranasal application of the anti-LPA antibody directly accesses CNS sites involved in TBI-related pain and that this access attenuates pain sequelae to the neurotrauma.
Collapse
|
21
|
Herr DR, Ong JHJ, Ong WY. Potential Therapeutic Applications for Inhibitors of Autotaxin, a Bioactive Lipid-Producing Lysophospholipase D, in Disorders Affecting the Nervous System. ACS Chem Neurosci 2018; 9:398-400. [PMID: 29457888 DOI: 10.1021/acschemneuro.8b00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autotaxin is a dual-function ecto-enzyme, encoded by the gene ENPP2, which is the primary source of the bioactive signaling lipid, lysophosphatidic acid. Aberrations in autotaxin/lysophosphatidic acid signaling have been associated with a number of neurological, psychiatric, neoplastic, and neurodevelopmental conditions, such as pain, pruritus, glioblastoma multiforme, multiple sclerosis, Alzheimer's disease, hydrocephalus, and schizophrenia. This Viewpoint offers a brief overview of the likely indications for therapeutic targeting of autotaxin, in disorders affecting the nervous system.
Collapse
Affiliation(s)
- Deron R. Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600
- Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Jolin Hwee-Jing Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260
- Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260
| |
Collapse
|
22
|
Plemel JR, Michaels NJ, Weishaupt N, Caprariello AV, Keough MB, Rogers JA, Yukseloglu A, Lim J, Patel VV, Rawji KS, Jensen SK, Teo W, Heyne B, Whitehead SN, Stys PK, Yong VW. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy. Glia 2017; 66:327-347. [PMID: 29068088 DOI: 10.1002/glia.23245] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nathan J Michaels
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Michael B Keough
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - James A Rogers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Aran Yukseloglu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Jaehyun Lim
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Vikas V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Samuel K Jensen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Wulin Teo
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Belinda Heyne
- Department of Chemistry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| |
Collapse
|
23
|
Identification and pharmacological characterization of a novel inhibitor of autotaxin in rodent models of joint pain. Osteoarthritis Cartilage 2017; 25:935-942. [PMID: 27638130 DOI: 10.1016/j.joca.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autotaxin is a secreted lysophospholipase that mediates the conversion of lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA), a bioactive lipid mediator. Autotaxin levels in plasma and synovial fluid correlate with disease severity in patients with knee osteoarthritis (OA). The goal of this study was to develop and characterize a novel small molecule inhibitor of autotaxin to inhibit LPA production in vivo and determine its efficacy in animal models of musculoskeletal pain. DESIGN Compound libraries were screened using an LPC coupled enzyme assay that measures the amount of choline released from LPC by the action of autotaxin. Hits from this assay were tested in a plasma assay to assess inhibition of endogenous plasma autotaxin and subsequently tested for their ability to lower plasma LPA levels upon oral dosing of rats. The best compounds were then tested in animal models of musculoskeletal pain. RESULTS Compound screening led to the identification of compounds with nanomolar potency for inhibition of autotaxin activity. Studies in rats demonstrated a good correlation between compound exposure levels and a decrease in LPA levels in plasma. The leading molecule (compound-1) resulted in a dose dependent decrease in joint pain in the mono-sodium iodoacetate (MIA) and meniscal tear models and a decrease in bone fracture pain in the osteotomy model in rats. CONCLUSION We have identified and characterized a novel small molecule inhibitor of autotaxin and demonstrated its efficacy in animal models of musculoskeletal pain. The inhibitor has the potential to serve as an analgesic for human OA and bone fracture.
Collapse
|
24
|
Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain 2017; 158 Suppl 1:S55-S65. [DOI: 10.1097/j.pain.0000000000000813] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Thirunavukkarasu K, Tan B, Swearingen CA, Rocha G, Bui HH, McCann DJ, Jones SB, Norman BH, Pfeifer LA, Saha JK. Pharmacological Characterization of a Potent Inhibitor of Autotaxin in Animal Models of Inflammatory Bowel Disease and Multiple Sclerosis. J Pharmacol Exp Ther 2016; 359:207-14. [PMID: 27516465 DOI: 10.1124/jpet.116.234013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 01/03/2023] Open
Abstract
Autotaxin is a secreted enzyme that catalyzes the conversion of lysophosphatidyl choline into the bioactive lipid mediator lysophosphatidic acid (LPA). It is the primary enzyme responsible for LPA production in plasma. It is upregulated in inflammatory conditions and inhibition of autotaxin may have anti-inflammatory activity in a variety of inflammatory diseases. To determine the role of autotaxin and LPA in the pathophysiology of inflammatory disease states, we used a potent and orally bioavailable inhibitor of autotaxin that we have recently identified, and characterized it in mouse models of inflammation, inflammatory bowel disease (IBD), multiple sclerosis (MS), and visceral pain. Compound-1, a potent inhibitor of autotaxin with an IC50 of ∼2 nM, has good oral pharmacokinetic properties in mice and results in a substantial inhibition of plasma LPA that correlates with drug exposure levels. Treatment with the inhibitor resulted in significant anti-inflammatory and analgesic effects in the carrageenan-induced paw inflammation and acetic acid-induced visceral pain tests, respectively. Compound-1 also significantly inhibited disease activity score in the dextran sodium sulfate-induced model of IBD, and in the experimental autoimmune encephalomyelitis model of MS. In conclusion, the present study demonstrates the anti-inflammatory and analgesic properties of a novel inhibitor of autotaxin that may serve as a therapeutic option for IBD, MS, and pain associated with inflammatory states.
Collapse
Affiliation(s)
| | - Bailin Tan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Craig A Swearingen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Guilherme Rocha
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Hai H Bui
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Denis J McCann
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Spencer B Jones
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Bryan H Norman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Lance A Pfeifer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Joy K Saha
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
26
|
Sapio MR, Goswami SC, Gross JR, Mannes AJ, Iadarola MJ. Transcriptomic analyses of genes and tissues in inherited sensory neuropathies. Exp Neurol 2016; 283:375-395. [PMID: 27343803 DOI: 10.1016/j.expneurol.2016.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Inherited sensory neuropathies are caused by mutations in genes affecting either primary afferent neurons, or the Schwann cells that myelinate them. Using RNA-Seq, we analyzed the transcriptome of human and rat DRG and peripheral nerve, which contain sensory neurons and Schwann cells, respectively. We subdivide inherited sensory neuropathies based on expression of the mutated gene in these tissues, as well as in mouse TRPV1 lineage DRG nociceptive neurons, and across 32 human tissues from the Human Protein Atlas. We propose that this comprehensive approach to neuropathy gene expression leads to better understanding of the involved cell types in patients with these disorders. We also characterize the genetic "fingerprint" of both tissues, and present the highly tissue-specific genes in DRG and sciatic nerve that may aid in the development of gene panels to improve diagnostics for genetic neuropathies, and may represent specific drug targets for diseases of these tissues.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Samridhi C Goswami
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Jacklyn R Gross
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
27
|
Velasco M, O'Sullivan C, Sheridan GK. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 2016; 113:608-617. [PMID: 27059127 DOI: 10.1016/j.neuropharm.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- María Velasco
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
28
|
Black KE, Berdyshev E, Bain G, Castelino FV, Shea BS, Probst CK, Fontaine BA, Bronova I, Goulet L, Lagares D, Ahluwalia N, Knipe RS, Natarajan V, Tager AM. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. FASEB J 2016; 30:2435-50. [PMID: 27006447 DOI: 10.1096/fj.201500197r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Lysophosphatidic acid (LPA) is an important mediator of pulmonary fibrosis. In blood and multiple tumor types, autotaxin produces LPA from lysophosphatidylcholine (LPC) via lysophospholipase D activity, but alternative enzymatic pathways also exist for LPA production. We examined the role of autotaxin (ATX) in pulmonary LPA production during fibrogenesis in a bleomycin mouse model. We found that bleomycin injury increases the bronchoalveolar lavage (BAL) fluid levels of ATX protein 17-fold. However, the LPA and LPC species that increase in BAL of bleomycin-injured mice were discordant, inconsistent with a substrate-product relationship between LPC and LPA in pulmonary fibrosis. LPA species with longer chain polyunsaturated acyl groups predominated in BAL fluid after bleomycin injury, with 22:5 and 22:6 species accounting for 55 and 16% of the total, whereas the predominant BAL LPC species contained shorter chain, saturated acyl groups, with 16:0 and 18:0 species accounting for 56 and 14% of the total. Further, administration of the potent ATX inhibitor PAT-048 to bleomycin-challenged mice markedly decreased ATX activity systemically and in the lung, without effect on pulmonary LPA or fibrosis. Therefore, alternative ATX-independent pathways are likely responsible for local generation of LPA in the injured lung. These pathways will require identification to therapeutically target LPA production in pulmonary fibrosis.-Black, K. E., Berdyshev, E., Bain, G., Castelino, F. V., Shea, B. S., Probst, C. K., Fontaine, B. A., Bronova, I., Goulet, L., Lagares, D., Ahluwalia, N., Knipe, R. S., Natarajan, V., Tager, A. M. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis.
Collapse
Affiliation(s)
- Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evgeny Berdyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Flavia V Castelino
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry S Shea
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Clemens K Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A Fontaine
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Irina Bronova
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil Ahluwalia
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel S Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Gupta B, Chakraborty S, Saha S, Chandel SG, Baranwal AK, Banerjee M, Chatterjee M, Chaudhury A. Antinociceptive properties of shikonin: in vitro and in vivo studies. Can J Physiol Pharmacol 2016; 94:788-96. [PMID: 27223482 DOI: 10.1139/cjpp-2015-0465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.
Collapse
Affiliation(s)
- Bhawana Gupta
- a Department of Bio and Nano Technology, Bio and Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125 001 (Haryana), India.,b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Sabyasachi Chakraborty
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Soumya Saha
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Sunita Gulabsingh Chandel
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Atul Kumar Baranwal
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Manish Banerjee
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Mousumi Chatterjee
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Ashok Chaudhury
- a Department of Bio and Nano Technology, Bio and Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125 001 (Haryana), India
| |
Collapse
|
30
|
Castagna D, Budd DC, Macdonald SJF, Jamieson C, Watson AJB. Development of Autotaxin Inhibitors: An Overview of the Patent and Primary Literature. J Med Chem 2016; 59:5604-21. [DOI: 10.1021/acs.jmedchem.5b01599] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Diana Castagna
- WestCHEM, Department of Pure and Applied
Chemistry, University of Strathclyde, Glasgow, G1 1XL, U.K
| | - David C. Budd
- Medicines Research Centre, GlaxoSmithKline, Gunnel
Wood Road, Stevenage, Hertfordshire, SG1 2NY, U.K
| | - Simon J. F. Macdonald
- Medicines Research Centre, GlaxoSmithKline, Gunnel
Wood Road, Stevenage, Hertfordshire, SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied
Chemistry, University of Strathclyde, Glasgow, G1 1XL, U.K
| | - Allan J. B. Watson
- WestCHEM, Department of Pure and Applied
Chemistry, University of Strathclyde, Glasgow, G1 1XL, U.K
| |
Collapse
|
31
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
32
|
Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J Neurosci 2015; 35:10224-35. [PMID: 26180199 DOI: 10.1523/jneurosci.4703-14.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
Collapse
|
33
|
Lys39-Lysophosphatidate Carbonyl Oxygen Interaction Locks LPA1 N-terminal Cap to the Orthosteric Site and partners Arg124 During Receptor Activation. Sci Rep 2015; 5:13343. [PMID: 26268898 PMCID: PMC4542628 DOI: 10.1038/srep13343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) receptor 1 (LPA1) is a member of the G protein-coupled receptors mediating the biological response to LPA species. Lack of detailed mechanism underlying LPA/LPA1 interaction has hampered the development of specific antagonists. Here, novel N-terminal Lys39 has been identified as a key residue during LPA-type agonist binding and LPA1 activation. Analysis of the molecular dynamics (MD) trajectories showed that LPA-type agonist but not VPC-32183 (antagonist) evolved structures with classical GPCR activation signatures such as reduced cytoplasmic transmembrane (TM) 3/TM6 dynamic network, ruptured ionic lock, and formation of a continuous and highly ordered internal water pathway was also observed. In activated state, LPA-type agonists interact with Arg124 (R3.28), Gln125 (Q3.29), Lys294 (K7.36) and a novel N-terminal Lys39. Site-directed mutagenesis showed complete loss of intracellular calcium mobilization in B103 cells expressing R3.28A and Lys39Ala when treated with LPA-type agonists. Structurally, LPA-type agonist via Carbonyl-oxygen/Lys39 interaction facilitated the formation of a hypothetical N-terminal cap tightly packed over LPA1 heptahelical bundle. This packing may represent a key mechanism to distinguish an apo-receptor from bound LPA1.
Collapse
|
34
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res 2015; 58:51-75. [DOI: 10.1016/j.plipres.2015.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
|
36
|
Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 2015; 9:53. [PMID: 25788872 PMCID: PMC4349085 DOI: 10.3389/fnins.2015.00053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.
Collapse
Affiliation(s)
- Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Jan Baumgart
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany ; Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University Miyagi, Japan
| | - Robert Nitsch
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Johannes Vogt
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
37
|
Lysophosphatidic acid and signaling in sensory neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:61-5. [PMID: 25218302 DOI: 10.1016/j.bbalip.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid is a potent signaling lipid molecule that has initially been characterized as a growth factor. However, later studies have revealed many more functions such as modulation of cell shape, cell migration, prevention of apoptosis, platelet aggregation, wound healing, osteoclast differentiation, vasopressor activity, embryo implantation, angiogenesis, lung fibrosis, hair growth and more. The molecule mainly acts through the activation of a set of at least 6 G-protein-coupled receptors (LPA1-6), but intracellular LPA was also shown to signal through the activation of the nuclear receptor PPARγ. In this short review we discuss the recent observations which suggest that in pathological conditions LPA also modulates signaling in sensory neurons. Thus, LPA has been shown to play a role in the initiation of neuropathic pain and, more recently, a relation was observed between increased LPA levels in the circulation and cholestatic itch. The mechanism by which this occurs remains to be elucidated. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
|
38
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
39
|
David M, Sahay D, Mege F, Descotes F, Leblanc R, Ribeiro J, Clézardin P, Peyruchaud O. Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers. PLoS One 2014; 9:e97771. [PMID: 24828490 PMCID: PMC4020852 DOI: 10.1371/journal.pone.0097771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1–6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,3,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1–3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/metabolism
- Humans
- Isoxazoles/pharmacology
- Lysophospholipids/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Propionates/pharmacology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Lysophosphatidic Acid/antagonists & inhibitors
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Marion David
- INSERM, U1037, Toulouse, France
- Institut Claudius Régaud, Toulouse France
| | - Debashish Sahay
- INSERM, U1033, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Florence Mege
- INSERM, U1033, Lyon, France
- Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Françoise Descotes
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Raphaël Leblanc
- INSERM, U1033, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Johnny Ribeiro
- INSERM, U1033, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Philippe Clézardin
- INSERM, U1033, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Olivier Peyruchaud
- INSERM, U1033, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Lyon Est, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
41
|
Methods for quantifying lysophosphatidic acid in body fluids: a review. Anal Biochem 2014; 453:38-43. [PMID: 24613261 DOI: 10.1016/j.ab.2014.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid involved in cellular signal transduction. LPA plays a role in both physiological and pathological processes. Elevated levels of LPA are observed in the plasma of patients with epithelial ovarian cancer, indicating its potential as a diagnostic marker. Quantification of total LPA can be performed by radioenzymatic, fluorometric, colorimetric, or immunoezymatic assay. Determination of individual LPA molecular species requires the use of capillary electrophoresis, gas chromatography, thin layer chromatography, liquid chromatography, or a matrix-assisted laser desorption/ionization time-of-flight method connected to an appropriate detection system.
Collapse
|
42
|
Barbayianni E, Magrioti V, Moutevelis-Minakakis P, Kokotos G. Autotaxin inhibitors: a patent review. Expert Opin Ther Pat 2013; 23:1123-32. [PMID: 23641951 DOI: 10.1517/13543776.2013.796364] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Autotaxin (ATX) is a lysophospholipase D enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA) and choline. LPA is a bioactive lipid mediator that activates several transduction pathways, and is involved in migration, proliferation and survival of various cells. Thus, ATX is an attractive medicinal target. AREAS COVERED The aim of this review is to summarize ATX inhibitors, reported in patents from 2006 up to now, describing their discovery and biological evaluation. EXPERT OPINION ATX has been implicated in various pathological conditions, such as cancer, chronic inflammation, neuropathic pain, fibrotic diseases, etc. Although there is an intensive effort on the discovery of potent and selective ATX inhibitors in order to identify novel medicinal agents, up to now, no ATX inhibitor has reached clinical trials. However, the use of ATX inhibitors seems an attractive strategy for the development of novel medicinal agents, for example anticancer therapeutics.
Collapse
Affiliation(s)
- Efrosini Barbayianni
- University of Athens, Department of Chemistry, Laboratory of Organic Chemistry, Panepistimiopolis, Athens 15771, Greece
| | | | | | | |
Collapse
|
43
|
Halder S, Yano R, Chun J, Ueda H. Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 2013; 235:10-5. [DOI: 10.1016/j.neuroscience.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022]
|
44
|
Ueda H, Matsunaga H, Olaposi OI, Nagai J. Lysophosphatidic acid: Chemical signature of neuropathic pain. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:61-73. [DOI: 10.1016/j.bbalip.2012.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023]
|
45
|
Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:33-41. [PMID: 22902318 DOI: 10.1016/j.bbalip.2012.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors - LPA(1), LPA(2), and LPA(3). However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA(4), LPA(5), and LPA(6) has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
46
|
Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 2012; 37:2402-18. [PMID: 22614925 DOI: 10.1007/s11064-012-0798-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 01/24/2023]
Abstract
Neuron-astroglia interactions play a key role in several events of brain development, such as neuronal generation, migration, survival, and differentiation; axonal growth; and synapse formation and function. While there is compelling evidence of the effects of astrocyte factors on neurons, their effects on astrocytes have not been fully determined. In this review, we will focus on the role of neurons in astrocyte generation and maturation. Further, we highlight the great heterogeneity and diversity of astroglial and neural progenitors such as radial glia cells, and discuss the importance of the variety of cellular interactions in controlling the structural and functional organization of the brain. Finally, we present recent data on a new role of astrocytes in neuronal maturation, as mediators of the action of biolipids in the cerebral cortex. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership, by briefly discussing the emerging view of how neuron-astrocyte dysfunctions might be associated with neurodegenerative diseases and neurological disorders.
Collapse
|
47
|
Abstract
LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate), is a growth factor-like lipid mediator that regulates many cellular functions, many of which are unique to malignantly transformed cells. The simple chemical structure of LPA and its profound effects in cancer cells has attracted the attention of the cancer therapeutics field and drives the development of therapeutics based on the LPA scaffold. In biological fluids, LPA is generated by ATX (autotaxin), a lysophospholipase D that cleaves the choline/serine headgroup from lysophosphatidylcholine and lysophosphatidylserine to generate LPA. In the present article, we review some of the key findings that make the ATX-LPA signalling axis an emerging target for cancer therapy.
Collapse
|
48
|
Kim MJ, Shin HJ, Won KA, Yang KY, Ju JS, Park YY, Park JS, Bae YC, Ahn DK. Progesterone produces antinociceptive and neuroprotective effects in rats with microinjected lysophosphatidic acid in the trigeminal nerve root. Mol Pain 2012; 8:16. [PMID: 22429647 PMCID: PMC3315401 DOI: 10.1186/1744-8069-8-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/19/2012] [Indexed: 12/17/2022] Open
Abstract
Background In our present study, we studied the role of demyelination of the trigeminal nerve root in the development of prolonged nociceptive behavior in the trigeminal territory. Results Under anesthesia, the Sprague-Dawley rats were mounted onto a stereotaxic frame and 3 μL of lysophosphatidic acid (LPA, 1 nmol) was injected into the trigeminal nerve root to produce demyelination. This treatment decreased the air-puff thresholds, persisted until postoperative day 130, and then returned to the preoperative levels 160 days after LPA injection. The LPA-treated rats also showed a significant hyper-responsiveness to pin-prick stimulation. We further investigated the antinociceptive and neuroprotective effects of progesterone in rats undergoing demyelination of the trigeminal nerve root. Progesterone (8, 16 mg/kg/day) was administered subcutaneously, beginning on the operative day, for five consecutive days in the LPA-treated rats. Treatment with progesterone produced significant early anti-allodynic effects and delayed prolonged anti-allodynic effects. The expression of protein zero (P0) and peripheral myelin protein 22 (PMP22) were significantly down-regulated in the trigeminal nerve root on postoperative day 5 following LPA injection. This down-regulation of the P0 and PMP22 levels was blocked by progesterone treatment. Conclusions These results suggest that progesterone produces antinociceptive effects through neuroprotective action in animals with LPA-induced trigeminal neuropathic pain. Moreover, progesterone has potential utility as a novel therapy for trigeminal neuropathic pain relief at an appropriate managed dose and is therefore a possible future treatment strategy for improving the recovery from injury.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Comparative modeling is a powerful technique to generate models of proteins from families already represented by members with experimentally characterized three-dimensional structures. The method is particularly important for modeling membrane-bound receptors in the G Protein-Coupled Receptor (GPCR) family, such as many of the lipid receptors (such as the cannabinoid, prostanoid, lysophosphatidic acid, sphingosine 1-phosphate, and eicosanoid receptor family members), as these represent particularly challenging targets for experimental structural characterization methods. Although challenging modeling targets, these receptors have been linked to therapeutic indications that vary from nociception to cancer, and thus are of interest as therapeutic targets. Accurate models of lipid receptors are therefore valuable tools in the drug discovery and optimization phases of therapeutic development. This chapter describes the construction and evaluation of comparative structural models of lipid receptors beginning with the selection of template structures.
Collapse
Affiliation(s)
- Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
50
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|