1
|
Yang Y, Qu JY, Guo H, Zhou HY, Ruan X, Peng YC, Shen XF, Xiong J, Wang YL. Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway. Chin J Integr Med 2024; 30:152-162. [PMID: 38038835 DOI: 10.1007/s11655-023-3565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms. METHODS Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05). CONCLUSION EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Collapse
Affiliation(s)
- Ying Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jin-Yu Qu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hua Guo
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Hai-Ying Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xia Ruan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ying-Chun Peng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xue-Fang Shen
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Jin Xiong
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Yi-Li Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
2
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Cui X, Zhang Z, Xi H, Liu K, Zhu B, Gao X. Sympathetic-Sensory Coupling as a Potential Mechanism for Acupoints Sensitization. J Pain Res 2023; 16:2997-3004. [PMID: 37667684 PMCID: PMC10475306 DOI: 10.2147/jpr.s424841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
A series of studies have demonstrated acupoint sensitization, in which acupoints can be activated in combination with sensory hypersensitivity and functional plasticity during visceral disorders. However, the mechanisms of acupoint sensitization remain unclear. Neuroanatomy evidence showed nociceptors innervated in acupoints contribute to the mechanism of acupoint sensitization. Increasing studies suggested sympathetic nerve plays a key role in modulating sensory transmission by sprouting or coupling with sensory neuron/nociceptor in the peripheral, forming the functional structure of the sympathetic-sensory coupling. Notably, the sensory inputs of the disease-induced sensitized acupoint contribute to the homeostatic regulation and also involve in delivering therapeutic information under acupuncture, hence, the role of sprouted sympathetic in acupoint function should be given attention. We herein reviewed the current knowledge of sympathetic and its sprouting in pain modulation, then discussed and highlighted the potential value of sympathetic-sensory coupling in acupoint functional plasticity.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, People’s Republic of China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
5
|
Cui X, Sun G, Cao H, Liu Q, Liu K, Wang S, Zhu B, Gao X. Referred Somatic Hyperalgesia Mediates Cardiac Regulation by the Activation of Sympathetic Nerves in a Rat Model of Myocardial Ischemia. Neurosci Bull 2022; 38:386-402. [PMID: 35471719 PMCID: PMC9068860 DOI: 10.1007/s12264-022-00841-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial ischemia (MI) causes somatic referred pain and sympathetic hyperactivity, and the role of sensory inputs from referred areas in cardiac function and sympathetic hyperactivity remain unclear. Here, in a rat model, we showed that MI not only led to referred mechanical hypersensitivity on the forelimbs and upper back, but also elicited sympathetic sprouting in the skin of the referred area and C8-T6 dorsal root ganglia, and increased cardiac sympathetic tone, indicating sympathetic-sensory coupling. Moreover, intensifying referred hyperalgesic inputs with noxious mechanical, thermal, and electro-stimulation (ES) of the forearm augmented sympathetic hyperactivity and regulated cardiac function, whereas deafferentation of the left brachial plexus diminished sympathoexcitation. Intradermal injection of the α2 adrenoceptor (α2AR) antagonist yohimbine and agonist dexmedetomidine in the forearm attenuated the cardiac adjustment by ES. Overall, these findings suggest that sensory inputs from the referred pain area contribute to cardiac functional adjustment via peripheral α2AR-mediated sympathetic-sensory coupling.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Sun
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Honglei Cao
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, 272100, Shandong, China
| | - Qun Liu
- Department of Needling Manipulation, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuya Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Li X, Chen H, Zhu Y, Li Y, Zhang T, Tang J. Lidocaine reduces pain behaviors by inhibiting the expression of Nav1.7 and Nav1.8 and diminishing sympathetic sprouting in SNI rats. Mol Pain 2022. [PMCID: PMC9478707 DOI: 10.1177/17448069221124925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a significant clinical challenge, and the mechanisms of neuropathic pain remain elusive. Previous studies have shown that spontaneous potential, which is triggered by Nav1.7 and Nav1.8 in the dorsal root ganglion (DRG), is crucial for the development of inflammatory and neuropathic pain. Functional coupling between the sympathetic nervous system and somatosensory nerves after a nerve injury has also been noted as an important factor in neuropathic pain. However, the relationship of sympathetic sprouting with Nav1.7 and Nav1.8 remains unclear. Therefore, we dynamically examined the mechanical withdrawal threshold (MWT), changes in Nav1.7 and Nav1.8, and sympathetic sprouting after lidocaine treatment in the spared nerve injury (SNI) model of rats. After lidocaine treatment, the MWT obviously increased, showing that hypersensitivity was significantly relieved and the abnormal expression of Nav1.7 and Nav1.8 caused by SNI was also significantly reduced. In addition, lidocaine distinctly inhibited sympathetic nerve sprouting and basket formation around the Nav1.7 and Nav1.8 neurons in the DRG. These results indicate that lidocaine may alleviate neuropathic pain by inhibiting the expression of Nav1.7 and Nav1.8, and diminishing sympathetic sprouting in DRG.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | | | - Yujing Zhu
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Yanyan Li
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Tan Zhang
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Jun Tang
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
7
|
Li S, Ding M, Wu Y, Xue S, Ji Y, Zhang P, Zhang Z, Cao Z, Zhang F. Histamine Sensitization of the Voltage-Gated Sodium Channel Nav1.7 Contributes to Histaminergic Itch in Mice. ACS Chem Neurosci 2022; 13:700-710. [PMID: 35157443 DOI: 10.1021/acschemneuro.2c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Itch, a common clinical symptom of many skin diseases, severely impairs the life quality of patients. Nav1.7, a subtype of voltage-gated sodium channels mainly expressed in primary sensory neurons, is responsible for the amplification of threshold currents that trigger action potential (AP) generation. Gain-of-function mutation of Nav1.7 leads to paroxysmal itch, while pharmacological inhibition of Nav1.7 alleviates histamine-dependent itch. However, the crosstalk between histamine and Nav1.7 that leads to itch is unclear. In the present study, we demonstrated that in the dorsal root ganglion (DRG) neurons from histamine-dependent itch model mice induced by compound 48/80, tetrodotoxin-sensitive (TTX-S) but not TTX-resistant Na+ currents were activated at more hyperpolarized membrane potentials compared to those on DRG neurons from vehicle-treated mice. Meanwhile, bath application of histamine shifted the activation voltages of TTX-S Na+ currents to the hyperpolarized direction, increased the AP frequency, and reduced the current threshold required to elicit APs. Further mechanistic studies demonstrated that selective activation of H1 but not H2 and H4 receptors mimicked histamine effect on TTX-S Na+ channels in DRG neurons. The protein kinase C (PKC) inhibitor GO 8963, but not the PKA inhibitor H89, normalized histamine-sensitized TTX-S Na+ channels. We also demonstrated that histamine shifted the activation voltages of Na+ currents to the hyperpolarized direction in Chinese hamster ovary (CHO) cells expressing Nav1.7. Importantly, selective inhibition of Nav1.7 by PF-05089771 significantly relieved the scratching frequency in a histamine-dependent itch model induced by compound 48/80. Taken together, these data suggest that activation of H1 receptors by histamine sensitizes Nav1.7 channels through the PKC pathway in DRG neurons that contributes to histamine-dependent itch.
Collapse
Affiliation(s)
- Shaoheng Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunyun Ji
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Pinhui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhuang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
8
|
Zheng Q, Xie W, Lückemeyer DD, Lay M, Wang XW, Dong X, Limjunyawong N, Ye Y, Zhou FQ, Strong JA, Zhang JM, Dong X. Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain. Neuron 2022; 110:209-220.e6. [PMID: 34752775 PMCID: PMC8776619 DOI: 10.1016/j.neuron.2021.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023]
Abstract
Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.
Collapse
Affiliation(s)
- Qin Zheng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Debora D Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Yaqing Ye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA.
| |
Collapse
|
9
|
Shen S, Tiwari N, Madar J, Mehta P, Qiao LY. Beta 2-adrenergic receptor mediates noradrenergic action to induce cyclic adenosine monophosphate response element-binding protein phosphorylation in satellite glial cells of dorsal root ganglia to regulate visceral hypersensitivity. Pain 2022; 163:180-192. [PMID: 33941754 PMCID: PMC8556417 DOI: 10.1097/j.pain.0000000000002330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Sympathoneuronal outflow into dorsal root ganglia (DRG) is suggested to be involved in sympathetically maintained chronic pain, which is mediated by norepinephrine (NE) action on DRG cells. This study combined in vitro and in vivo approaches to identify the cell types of DRG that received NE action and examined cell type-specific expression of adrenergic receptors (ARs) in DRG. Using DRG explants, we identified that NE acted on satellite glial cells (SGCs) to induce the phosphorylation of cAMP response element-binding protein (CREB). Using primarily cultured SGCs, we identified that beta (β)2-adrenergic receptor but not alpha (α)adrenergic receptor nor other βAR isoforms mediated NE-induced CREB phosphorylation and CRE-promoted luciferase transcriptional activity. Using fluorescence in situ hybridization and affinity purification of mRNA from specific cell types, we identified that β2AR was expressed by SGCs but not DRG neurons. We further examined β2AR expression and CREB phosphorylation in vivo in a model of colitis in which sympathetic nerve sprouting in DRG was observed. We found that β2AR expression and CREB phosphorylation were increased in SGCs of thoracolumbar DRG on day 7 after colitis induction. Inhibition but not augmentation of β2AR reduced colitis-induced calcitonin gene-related peptide release into the spinal cord dorsal horn and colonic pain responses to colorectal distention. Prolonged activation of β2AR in naive DRG increased calcitonin gene-related peptide expression in DRG neurons. These findings provide molecular basis of sympathetic modulation of sensory activity and chronic pain that involves β2AR-mediated signaling in SGCs of DRG.
Collapse
Affiliation(s)
- Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | | | | | | |
Collapse
|
10
|
Tran EL, Crawford LK. Revisiting PNS Plasticity: How Uninjured Sensory Afferents Promote Neuropathic Pain. Front Cell Neurosci 2020; 14:612982. [PMID: 33362476 PMCID: PMC7759741 DOI: 10.3389/fncel.2020.612982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the widespread study of how injured nerves contribute to chronic pain, there are still major gaps in our understanding of pain mechanisms. This is particularly true of pain resulting from nerve injury, or neuropathic pain, wherein tactile or thermal stimuli cause painful responses that are particularly difficult to treat with existing therapies. Curiously, this stimulus-driven pain relies upon intact, uninjured sensory neurons that transmit the signals that are ultimately sensed as painful. Studies that interrogate uninjured neurons in search of cell-specific mechanisms have shown that nerve injury alters intact, uninjured neurons resulting in an activity that drives stimulus-evoked pain. This review of neuropathic pain mechanisms summarizes cell-type-specific pathology of uninjured sensory neurons and the sensory ganglia that house their cell bodies. Uninjured neurons have demonstrated a wide range of molecular and neurophysiologic changes, many of which are distinct from those detected in injured neurons. These intriguing findings include expression of pain-associated molecules, neurophysiological changes that underlie increased excitability, and evidence that intercellular signaling within sensory ganglia alters uninjured neurons. In addition to well-supported findings, this review also discusses potential mechanisms that remain poorly understood in the context of nerve injury. This review highlights key questions that will advance our understanding of the plasticity of sensory neuron subpopulations and clarify the role of uninjured neurons in developing anti-pain therapies.
Collapse
Affiliation(s)
- Emily L Tran
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, United States
| | - LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
11
|
The Delayed-Onset Mechanical Pain Behavior Induced by Infant Peripheral Nerve Injury Is Accompanied by Sympathetic Sprouting in the Dorsal Root Ganglion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9165475. [PMID: 32626770 PMCID: PMC7315272 DOI: 10.1155/2020/9165475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
Background Sympathetic sprouting in the dorsal root ganglion (DRG) following nerve injuries had been proved to induce adult neuropathic pain. However, it is unclear whether the abnormal sprouting occurs in infant nerve injury. Methods L5 spinal nerve ligation (SNL) or sham surgery was performed on adult rats and 10-day-old pups, and mechanical thresholds and heat hyperalgesia were analyzed on 3, 7, 14, 28, and 56 postoperative days. Tyrosine hydroxylase-labeled sympathetic fibers were observed at each time point, and 2 neurotrophin receptors (p75NTR and TrkA) were identified to explore the mechanisms of sympathetic sprouting. Results Adult rats rapidly developed mechanical and heat hyperalgesia from postoperative day 3, with concurrent sympathetic sprouting in DRG. In contrast, the pup rats did not show a significantly lower mechanical threshold until postoperative day 28, at which time the sympathetic sprouting became evident in the DRG. No heat hyperalgesia was presented in pup rats at any time point. There was a late expression of glial p75NTR in DRG of pups from postoperative day 28, which was parallel to the occurrence of sympathetic sprouting. The expression of TrkA did not show such a postoperative syncing change. Conclusion The delayed-onset mechanical allodynia in the infant nerve lesion was accompanied with parallel sympathetic sprouting in DRG. The late parallel expression of glial p75NTR injury may play an essential role in this process, which provides novel insight into the treatment of delayed adolescent neuropathic pain.
Collapse
|
12
|
Massrey C, Abdulkader MM, Hattab E, Iwanaga J, Loukas M, Tubbs RS. Ectopic sympathetic ganglia cells of the ventral root of the spinal cord: an anatomical study. Anat Cell Biol 2020; 53:15-20. [PMID: 32274244 PMCID: PMC7118253 DOI: 10.5115/acb.19.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/27/2022] Open
Abstract
The sympathetic trunk ganglia contain the cell bodies of neurons. However, some patients who undergo sympathectomy can develop compensatory hyperhidrosis. To evaluate for ectopic pathways, the present anatomical study was performed. Ten adult cadavers underwent dissection of the spinal canal and removal of randomly selected ventral roots, which were submitted for histological analysis. Random ventral root samples were taken from cervical, thoracic, and lumbosacral regions in each specimen. Each histological section was then analyzed and the presence or absence of sympathetic cells documented for level and position within the ventral root. Of all samples, a sympathetic nerve cell was found in 80% of ventral roots. At least one sympathetic cell was found in these 80%. Most sympathetic cells were found in the proximal one-third of the ventral root. Such cells were found at all spinal levels and no specific level within a vertebral region was found to house a greater concentration of these cells. No statistical significance was found when comparing sides or sex. Our study confirmed that sympathetic cells exist in the majority of human ventral roots. Such data might better explain various clinical presentations and postoperative complications/findings.
Collapse
Affiliation(s)
- Chrissie Massrey
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada, West Indies
| | - Marwah M Abdulkader
- Department of Pathology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Eyas Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada, West Indies
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
13
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
14
|
Role of Na V1.6 and Na Vβ4 Sodium Channel Subunits in a Rat Model of Low Back Pain Induced by Compression of the Dorsal Root Ganglia. Neuroscience 2019; 402:51-65. [PMID: 30699332 DOI: 10.1016/j.neuroscience.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023]
Abstract
Low back pain is a common cause of chronic pain and disability. It is modeled in rodents by chronically compressing the lumbar dorsal root ganglia (DRG) with small metal rods, resulting in ipsilateral mechanical and cold hypersensitivity, and hyperexcitability of sensory neurons. Sodium channels are implicated in this hyperexcitability, but the responsible isoforms are unknown. In this study, we used siRNA-mediated knockdown of the pore-forming NaV1.6 and regulatory NaVβ4 sodium channel isoforms that have been previously implicated in a different model of low back pain caused by locally inflaming the L5 DRG. Knockdown of either subunit markedly reduced spontaneous pain and mechanical and cold hypersensitivity induced by DRG compression, and reduced spontaneous activity and hyperexcitability of sensory neurons with action potentials <1.5 msec (predominately cells with myelinated axons, based on conduction velocities measured in a subset of cells) 4 days after DRG compression. These results were similar to those previously obtained in the DRG inflammation model and some neuropathic pain models, in which sensory neurons other than nociceptors seem to play key roles. The cytokine profiles induced by DRG compression and DRG inflammation were also very similar, with upregulation of several type 1 pro-inflammatory cytokines and downregulation of type 2 anti-inflammatory cytokines. Surprisingly, the cytokine profile was largely unaffected by NaVβ4 knockdown in either model. The NaV1.6 channel, and the NaVβ4 subunit that can regulate NaV1.6 to enhance repetitive firing, play key roles in both models of low back pain; targeting the abnormal spontaneous activity they generate may have therapeutic value.
Collapse
|
15
|
Wang Y, Huo F. Inhibition of sympathetic sprouting in CCD rats by lacosamide. Eur J Pain 2018; 22:1641-1650. [PMID: 29758584 DOI: 10.1002/ejp.1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG) since lacosamide (LCM), an anticonvulsant, inhibits Na+ channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. METHODS Lacosamide (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na+ current of DRG neurons. RESULTS Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons and increased paw withdrawal threshold. These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behaviour were observed 10 days after the end of early LCM injection. In vitro 100 μmol/L LCM instantly reduced the excitability of CCD neurons via inhibiting Na+ current and reducing the amplitude of AP. CONCLUSIONS All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. SIGNIFICANCE Early LCM administration inhibited sympathetic sprouting within DRG in CCD rats via reducing hyperexcitability of neurons. Early LCM administration suppressed neuropathic pain in CCD rats.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - F Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
16
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
17
|
Brederson JD, Chu KL, Xu J, Nikkel AL, Markosyan S, Jarvis MF, Edelmayer R, Bitner RS, McGaraughty S. Characterization and comparison of rat monosodium iodoacetate and medial meniscal tear models of osteoarthritic pain. J Orthop Res 2018; 36:2109-2117. [PMID: 29430715 DOI: 10.1002/jor.23869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a degenerative form of arthritis that can result in loss of joint function and chronic pain. The pathological pain state that develops with OA disease involves plastic changes in the peripheral and central nervous systems, however, the cellular mechanisms underlying OA are not fully understood. We characterized the medial meniscal tear (MMT) surgical model and the intra-articular injection of monosodium iodoacetate (MIA) chemical model of OA in rats. Both models produced histological changes in the knee joint and associated bones consistent with OA pathology. Both models also increased p38 activation in the L3, but not L4 dorsal root ganglia (DRG), increased tyrosine hydroxylase immunostaining in the L3 DRG indicating sympathetic sprouting, and increased phosphorylated (p)CREB in thalamic neurons. In MIA-OA, but not MMT-OA rats, p38 and pERK were increased in the spinal cord, and pCREB was enhanced in the prefrontal cortex. Using in vivo electrophysiology, elevated spontaneous activity and increased responsiveness of wide dynamic range neurons to stimulation of the knee was found in both models. However, a more widespread sensitization was observed in the MIA-OA rats as neurons with paw receptive fields spontaneously fired at a greater rate in MIA-OA than MMT-OA rats. Taken together, the MIA and MMT models of OA share several common features associated with histopathology and sensitization of primary somatosensory pathways, but, observed differences between the models highlights unique consequences of the related specific injuries, and these differences should be considered when choosing an OA model and when interpreting data outcomes. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
| | - Katharine L Chu
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Jun Xu
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Arthur L Nikkel
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Stella Markosyan
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Michael F Jarvis
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Rebecca Edelmayer
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Robert S Bitner
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| | - Steve McGaraughty
- Neuroscience Discovery, Research and Development, AbbVie, 60064 North Chicago, Illinois
| |
Collapse
|
18
|
Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 2017; 7:13915. [PMID: 29066783 PMCID: PMC5654978 DOI: 10.1038/s41598-017-14246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specific properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was differentially affected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These findings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo.
Collapse
|
19
|
Li Z, Hao J, Duan X, Wu N, Zhou Z, Yang F, Li J, Zhao Z, Huang S. The Role of Semaphorin 3A in Bone Remodeling. Front Cell Neurosci 2017; 11:40. [PMID: 28293171 PMCID: PMC5328970 DOI: 10.3389/fncel.2017.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/07/2017] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling occurs at the bone surface throughout adult life and associates bony quantity and quality. This process is a balance between the osteoblastic bone formation and osteoclastic bone resorption, which cross-talks together. Semaphorin 3A is a membrane-associated secreted protein and regarded as a diffusible axonal chemorepellent, which has been identified in the involvement of bone resorption and formation synchronously. However, the role of Semaphorin 3A in bone homeostasis and diseases remains elusive, in particular the association to osteoblasts and osteoclasts. In this review article, we summarize recent progress of Semaphorin 3A in the bone mass, homeostasis, and diseases and discuss the novel application of nerve-based bone regeneration. This will facilitate the understanding of Semaphorin 3A in skeletal biology and shed new light on the modulation and potential treatment in the bone disorders.
Collapse
Affiliation(s)
- Zhenxia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Jin Hao
- Program in Biological Sciences in Dental Medicine, Harvard School of Dental Medicine Boston, MA, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University Chengdu, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing, China
| | - Zongke Zhou
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University Chengdu, China
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
20
|
Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation. Pain 2017; 157:879-891. [PMID: 26785322 DOI: 10.1097/j.pain.0000000000000453] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.
Collapse
|
21
|
Dorsal root ganglion neurons and tyrosine hydroxylase--an intriguing association with implications for sensation and pain. Pain 2016; 157:314-320. [PMID: 26447702 DOI: 10.1097/j.pain.0000000000000381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Nascimento FP, Magnussen C, Yousefpour N, Ribeiro-da-Silva A. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain. Mol Pain 2015; 11:59. [PMID: 26376854 PMCID: PMC4574171 DOI: 10.1186/s12990-015-0062-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background Cuff and spared nerve injury (SNI) in the sciatic territory are widely used to model neuropathic pain. Because nociceptive information is first detected in skin, it is important to understand how alterations in peripheral innervation contribute to pain in each model. Over 16 weeks in male rats, changes in sensory and autonomic innervation of the skin were described after cuff and SNI using immunohistochemistry to label myelinated (neurofilament 200 positive—NF200+) and peptidergic (calcitonin gene-related peptide positive—CGRP+) primary afferents and sympathetic fibres (dopamine β-hydroxylase positive—DBH+) Results Cuff and SNI caused an early loss and later reinnervation of NF200 and CGRP fibres in the plantar hind paw skin. In both models, DBH+ fibres sprouted into the upper dermis of the plantar skin 4 and 6 weeks after injury. Despite these similarities, behavioural pain measures were significantly different in each model. Sympathectomy using guanethidine significantly alleviated mechanical allodynia 6 weeks after cuff, when peak sympathetic sprouting was observed, having no effect at 2 weeks, when fibres were absent. In SNI animals, mechanical allodynia in the lateral paw was significantly improved by guanethidine at 2 and 6 weeks, and the development of cold hyperalgesia, which roughly paralleled the appearance of ectopic sympathetic fibres, was alleviated by guanethidine at 6 weeks. Sympathetic fibres did not sprout into the dorsal root ganglia at 2 or 6 weeks, indicating their unimportance to pain behaviour in these two models. Conclusions Alterations in sympathetic innervation in the skin represents an important mechanism that contributes to pain in cuff and SNI models of neuropathic pain.
Collapse
Affiliation(s)
- Francisney P Nascimento
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Claire Magnussen
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
23
|
Abstract
Aim of review Many chronic pain conditions remain difficult to treat, presenting a high burden to society. Conditions such as complex regional pain syndrome may be maintained or exacerbated by sympathetic activity. Understanding the interactions between sympathetic nervous system and sensory system will help to improve the effective management of pathological pain including intractable neuropathic pain and persistent inflammatory pain. Method We first described the discovery of abnormal connections between sympathetic and sensory neurons. Subsequently, the functional roles of sympathetic sprouting in altered neuronal excitability and increased pain sensitivity were discussed. The mechanisms of the sympathetic sprouting were focusing on its relationship with neurotrophins, local inflammation, and abnormal spontaneous activity. Finally, we discussed clinical implications and conflicting findings in the laboratory and clinical research with respect to the interaction between sympathetic system and sensory system. Recent findings The findings that sprouting of sympathetic fibers into the sensory ganglia (dorsal root ganglion) after peripheral nerve injury, offers a possible explanation of the sympathetic involvement in pain. It is also suggested that releases of adenosine triphosphate (ATP), in addition to norepinephrine, from sympathetic nerve endings play important roles in sympathetic-mediated pain. New evidence indicates the importance of sympathetic innervation in local inflammatory responses. Summary Hopefully, this review will reinvigorate the study of sympathetic-sensory interactions in chronic pain conditions, and help to better understand how sympathetic system contributes to this serious clinical problem.
Collapse
Affiliation(s)
- Si-Si Chen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
24
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Xie W, Strong JA, Zhang JM. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain. Neuroscience 2015; 291:317-30. [PMID: 25686526 DOI: 10.1016/j.neuroscience.2015.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/21/2015] [Accepted: 02/05/2015] [Indexed: 11/15/2022]
Abstract
In the spinal nerve ligation (SNL) model of neuropathic pain, as in other pain models, abnormal spontaneous activity of myelinated sensory neurons occurs early and is essential for establishing pain behaviors and other pathologies. Sympathetic sprouting into the dorsal root ganglion (DRG) is observed after SNL, and sympathectomy reduces pain behavior. Sprouting and spontaneous activity may be mutually reinforcing: blocking neuronal activity reduces sympathetic sprouting, and sympathetic spouts functionally increase spontaneous activity in vitro. However, most studies in this field have used nonspecific methods to block spontaneous activity, methods that also block evoked and normal activity. In this study, we injected small inhibitory (si) RNA directed against the NaV1.6 sodium channel isoform into the DRG before SNL. This isoform can mediate high-frequency repetitive firing, like that seen in spontaneously active neurons. Local knockdown of NaV1.6 markedly reduced mechanical pain behaviors induced by SNL, reduced sympathetic sprouting into the ligated sensory ganglion, and blocked abnormal spontaneous activity and other measures of hyperexcitability in myelinated neurons in the ligated sensory ganglion. Immunohistochemical experiments showed that sympathetic sprouting preferentially targeted NaV1.6-positive neurons. Under these experimental conditions, NaV1.6 knockdown did not prevent or strongly alter single evoked action potentials, unlike previous less specific methods used to block spontaneous activity. NaV1.6 knockdown also reduced pain behaviors in another pain model, chronic constriction of the sciatic nerve, provided the model was modified so that the lesion site was relatively close to the siRNA-injected lumbar DRGs. The results highlight the relative importance of abnormal spontaneous activity in establishing both pain behaviors and sympathetic sprouting, and suggest that the NaV1.6 isoform may have value as a therapeutic target.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J-M Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| |
Collapse
|
26
|
Minett MS, Falk S, Santana-Varela S, Bogdanov YD, Nassar MA, Heegaard AM, Wood JN. Pain without nociceptors? Nav1.7-independent pain mechanisms. Cell Rep 2014; 6:301-12. [PMID: 24440715 PMCID: PMC3969273 DOI: 10.1016/j.celrep.2013.12.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/22/2013] [Accepted: 12/20/2013] [Indexed: 11/20/2022] Open
Abstract
Nav1.7, a peripheral neuron voltage-gated sodium channel, is essential for pain and olfaction in mice and humans. We examined the role of Nav1.7 as well as Nav1.3, Nav1.8, and Nav1.9 in different mouse models of chronic pain. Constriction-injury-dependent neuropathic pain is abolished when Nav1.7 is deleted in sensory neurons, unlike nerve-transection-related pain, which requires the deletion of Nav1.7 in sensory and sympathetic neurons for pain relief. Sympathetic sprouting that develops in parallel with nerve-transection pain depends on the presence of Nav1.7 in sympathetic neurons. Mechanical and cold allodynia required distinct sets of neurons and different repertoires of sodium channels depending on the nerve injury model. Surprisingly, pain induced by the chemotherapeutic agent oxaliplatin and cancer-induced bone pain do not require the presence of Nav1.7 sodium channels or Nav1.8-positive nociceptors. Thus, similar pain phenotypes arise through distinct cellular and molecular mechanisms. Therefore, rational analgesic drug therapy requires patient stratification in terms of mechanisms and not just phenotype. Phenotypically identical pain models have different underlying molecular mechanisms Nav1.7 expression is required for sympathetic sprouting after neuronal damage Oxaliplatin and cancer-induced bone pain are both Nav1.7-independent Deleting Nav1.7 in adult mice reverses nerve damage-induced neuropathic pain
Collapse
Affiliation(s)
- Michael S Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Sarah Falk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Yury D Bogdanov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Mohammed A Nassar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Xie W, Strong JA, Ye L, Mao JX, Zhang JM. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 2013; 154:1170-80. [PMID: 23622763 DOI: 10.1016/j.pain.2013.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/26/2013] [Indexed: 11/15/2022]
Abstract
Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Semaphorin 3A (Sema3A) is a protein identified originally as a diffusible axonal chemorepellent. Sema3A has multifunctional roles in embryonic development, immune regulation, vascularization, and oncogenesis. Bone remodeling consists of two phases: the removal of mineralized bone by osteoclasts and the formation of new bone by osteoblasts, and plays an essential role in skeletal diseases such as osteoporosis. Recent studies have shown that Sema3A is implicated in the regulation of osteoblastgenesis and osteoclastgenesis. Moreover, low bone mass in mice with specific knockout of Sema3A in the neurons indicates that Sema3A regulates bone remodeling indirectly. This review highlights recent advances on our understanding of the role of sema3A as a new player in the regulation of bone remodeling and proposes the potential of sema3A in the diagnosis and therapy of bone diseases.
Collapse
Affiliation(s)
- Ren Xu
- Department of Orthopedic Surgery; Graduate School; Tokyo Medical and Dental University; Yushima, Bunkyo-ku, Tokyo, Japan; Global Center of Excellence (GCOE) Program; International Research Center for Molecular Science in Tooth and Bone Diseases; Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
29
|
Brumovsky PR, La JH, McCarthy CJ, Hökfelt T, Gebhart GF. Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience 2012; 223:77-91. [PMID: 22858598 DOI: 10.1016/j.neuroscience.2012.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/02/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022]
Abstract
Previous studies in rat and mouse documented that a subpopulation of dorsal root ganglion (DRG) neurons innervating non-visceral tissues express tyrosine hydroxylase (TH). Here we studied whether or not mouse DRG neurons retrogradely traced with Fast Blue (FB) from colorectum or urinary bladder also express immunohistochemically detectable TH. The lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) were included in the analysis. Previously characterized antibodies against TH, norepinephrine transporter type 1 (NET-1) and calcitonin gene-related peptide (CGRP) were used. On average, ∼14% of colorectal and ∼17% of urinary bladder DRG neurons expressed TH and spanned virtually all neuronal sizes, although more often in the medium-sized to small ranges. Also, they were more abundant in lumbosacral than thoracolumbar DRGs, and often coexpressed CGRP. We also detected several TH-immunoreactive (IR) colorectal and urinary bladder neurons in the LSC and the MPG, more frequently in the former. No NET-1-IR neurons were detected in DRGs, whereas the majority of FB-labeled, TH-IR neurons in the LSC and MPG coexpressed this marker (as did most other TH-IR neurons not labeled from the target organs). TH-IR nerve fibers were detected in all layers of the colorectum and the urinary bladder, with some also reaching the basal mucosal cells. Most TH-IR fibers in these organs lacked CGRP. Taken together, we show: (1) that a previously undescribed population of colorectal and urinary bladder DRG neurons expresses TH, often CGRP but not NET-1, suggesting the absence of a noradrenergic phenotype; and (2) that TH-IR axons/terminals in the colon or urinary bladder, naturally expected to derive from autonomic sources, could also originate from sensory neurons.
Collapse
Affiliation(s)
- P R Brumovsky
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
30
|
Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun 2012; 3:791. [PMID: 22531176 PMCID: PMC3337979 DOI: 10.1038/ncomms1795] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/19/2012] [Indexed: 11/29/2022] Open
Abstract
Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in Nav1.8-positive nociceptors. Surprisingly, responses to the hotplate test, as well as neuropathic pain, are unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-free phenotype seen in humans with SCN9A loss-of-function mutations. These observations demonstrate an important role for Nav1.7 in sympathetic neurons in neuropathic pain, and provide possible insights into the mechanisms that underlie gain-of-function Nav1.7-dependent pain conditions. Sodium channel Nav1.7 is essential for acute human pain but its role in chronic neuropathic pain is unclear. Minett and colleagues show that Nav1.7 expression specifically in sympathetic neurons, rather than sensory neurons, is required for the development of chronic neuropathic pain after injury.
Collapse
|
31
|
Donoso MV, Hermosilla D, Navarrete C, Álvarez P, Lillo JG, Huidobro-Toro JP. Reciprocal sympatho-sensory control: functional role of nucleotides and calcitonin gene-related peptide in a peripheral neuroeffector junction. Neuroscience 2011; 203:216-29. [PMID: 22178987 DOI: 10.1016/j.neuroscience.2011.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
The rat vas deferens has scattered sensory afferens plus a dense network of sympathetic motor efferens; these fibers are not known to interact functionally. We ascertained whether sensory fibers modulate the release of sympathetic transmitters through the release of calcitonin gene-related peptide (CGRP) and reciprocally assessed whether sympathetic transmitters modulate the overflow of ir-CGRP from sensory fibers. The tissue overflow of electrically evoked sympathetic co-transmitters (ATP/metabolites, noradrenaline (NA), and immunoreactive neuropeptide tyrosine (ir-NPY)) and the motor responses elicited were quantified following either exogenous CGRP or capsaicin application to elicit peptide release. Conversely, the outflow of ir-CGRP was examined in the presence of sympathetic transmitters. Exogenous CGRP reduced in a concentration-dependent manner the electrically evoked outflow of ATP/metabolites, NA, and ir-NPY with EC(50) values of 1.3, 0.18, and 1.9 nM, respectively. CGRP also reduced the basal NA overflow. The CGRP-evoked modulation was blocked by CGRP8-37 or H-89. Release of endogenous CGRP by capsaicin significantly reduced the basal overflow of NA, ir-NPY, and the electrically evoked sympathetic transmitter release. ADP, 2-methylthioadenosine-5'-O-diphosphate (2-MeSADP), or UTP decreased the electrically evoked ir-CGRP overflow, whereas clonidine, α,β-methyleneadenosine 5'-triphosphate (α,β-mATP), or adenosine (ADO) were inactive. CGRP acting postjunctionally also reduced the motor responses elicited by exogenous NA, ATP, or electrically evoked contractions. We conclude that CGRP exerts a presynaptic modulator role on sympathetic nerve endings and reciprocally ATP or related nucleotides influence the release of ir-CGRP from sensory fibers, highlighting a dynamic sympatho-sensory control between sensory fibers and sympathetic nerve ending. Postjunctional CGRP receptors further contribute to reduce the tissue sympathetic motor tone implying a pre and postjunctional role of CGRP as a sympathetic tone modulator.
Collapse
Affiliation(s)
- M V Donoso
- Departamento de Fisiología, Laboratorio de Nucleótidos, Centro de Envejecimiento y Regeneración CARE, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|