1
|
Huang X, Yip K, Nie H, Chen R, Wang X, Wang Y, Lin W, Li R. ChIP-seq and RNA-seq Reveal the Involvement of Histone Lactylation Modification in Gestational Diabetes Mellitus. J Proteome Res 2024. [PMID: 38776154 DOI: 10.1021/acs.jproteome.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lactylation is a novel post-translational modification of proteins. Although the histone lactylation modification has been reported to be involved in glucose metabolism, its role and molecular pathways in gestational diabetes mellitus (GDM) are still unclear. This study aims to elucidate the histone lactylation modification landscapes of GDM patients and explore lactylation-modification-related genes involved in GDM. We employed a combination of RNA-seq analysis and chromatin immunoprecipitation sequencing (ChIP-seq) analysis to identify upregulated differentially expressed genes (DEGs) with hyperhistone lactylation modification in GDM. We demonstrated that the levels of lactate and histone lactylation were significantly elevated in GDM patients. DEGs were involved in diabetes-related pathways, such as the PI3K-Akt signaling pathway, Jak-STAT signaling pathway, and mTOR signaling pathway. ChIP-seq analysis indicated that histone lactylation modification in the promoter regions of the GDM group was significantly changed. By integrating the results of RNA-seq and ChIP-seq analysis, we found that CACNA2D1 is a key gene for histone lactylation modification and is involved in the progression of GDM by promoting cell vitality and proliferation. In conclusion, we identified the key gene CACNA2D1, which upregulated and exhibited hypermodification of histone lactylation in GDM. These findings establish a theoretical groundwork for the targeted therapy of GDM.
Collapse
Affiliation(s)
- Xiaman Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - KaCheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hanhui Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiping Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weizhao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
2
|
Ocak M, Uçar C. The Effectiveness of Hemodialysis in case of Intoxication with Pregabalin. JOURNAL OF EMERGENCY MEDICINE CASE REPORTS 2020. [DOI: 10.33706/jemcr.535561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Aşcı S, Demirci S, Aşcı H, Doğuç DK, Onaran İ. Neuroprotective Effects of Pregabalin on Cerebral Ischemia and Reperfusion. Balkan Med J 2016; 33:221-7. [PMID: 27403394 DOI: 10.5152/balkanmedj.2015.15742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/01/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Stroke is one of the most common causes of death and the leading cause of disability in adults. Cerebral ischemia/reperfusion injury causes cerebral edema, hemorrhage, and neuronal death. AIMS In post-ischemic reperfusion, free radical production causes brain tissue damage by oxidative stress. Pregabalin, an antiepileptic agent was shown to have antioxidant effects. The aim of this study was to evaluate the neuroprotective and antioxidant effects of pregabalin on ischemia and reperfusion in rat brain injury. STUDY DESIGN Animal experimentation. METHODS Male Wistar rats weighing (250-300 g) were randomly divided into six groups, each consisting of 6 rats: control (C), pregabalin (P), ischemia (I), pregabalin + ischemia (PI), ischemia + reperfusion (IR) and ischemia + reperfusion + pregabalin (PIR). Rats were initially pre-treated with 50 mg/kg/d pregabalin orally for two days. Then, animals that applied ischemia in I, PI, IR and PIR groups were exposed to carotid clamping for 30 minutes and 20 minutes reperfusion was performed in the relevant reperfusion groups. RESULTS NR2B receptor levels were significantly lower in the PIR group in comparison to the IR group. In the PIR group, Thiobarbituric acid reactive substance (TBARS) level had statistically significant decrease compared with IR group. Glutathione peroxidase (GSH-PX) levels were also significantly increased in the PIR group compared with I, IR and control groups. In the PI and PIR groups, catalase (CAT) levels were also significantly increased compared with I and IR groups (p=0.03 and p=0.07, respectively). CONCLUSION Pregabalin may protect the damage of oxidative stress after ischemia + reperfusion. This result would illuminate clinical studies in the future.
Collapse
Affiliation(s)
- Sanem Aşcı
- Neurology Service, Gülkent State Hospital, Isparta, Turkey
| | - Serpil Demirci
- Department of Neurology, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - Halil Aşcı
- Department of Pharmacology, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - Duygu Kumbul Doğuç
- Department of Biochemistry, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - İbrahim Onaran
- Department of Medical Biology and Genetic, Süleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
4
|
Yamamoto K, Tsuboi M, Kambe T, Abe K, Nakatani Y, Kawakami K, Utsunomiya I, Taguchi K. Oxaliplatin administration increases expression of the voltage-dependent calcium channel α2δ-1 subunit in the rat spinal cord. J Pharmacol Sci 2016; 130:117-22. [PMID: 26883453 DOI: 10.1016/j.jphs.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent that is effective against various types of cancer including colorectal cancer. Acute cold hyperalgesia is a serious side effect of oxaliplatin treatment. Although the therapeutic drug pregabalin is beneficial for preventing peripheral neuropathic pain by targeting the voltage-dependent calcium channel α2δ-1 (Cavα2δ-1) subunit, the effect of oxaliplatin-induced acute cold hypersensitivity is uncertain. To analyze the contribution of the Cavα2δ-1 subunit to the development of oxaliplatin-induced acute cold hypersensitivity, Cavα2δ-1 subunit expression in the rat spinal cord was analyzed after oxaliplatin treatment. Behavioral assessment using the acetone spray test showed that 6 mg/kg oxaliplatin-induced cold hypersensitivity 2 and 4 days later. Oxaliplatin-induced acute cold hypersensitivity 4 days after treatment was significantly inhibited by pregabalin (50 mg/kg, p.o.). Oxaliplatin (6 mg/kg, i.p.) treatment increased the expression level of Cavα2δ-1 subunit mRNA and protein in the spinal cord 2 and 4 days after treatment. Immunohistochemistry showed that oxaliplatin increased Cavα2δ-1 subunit protein expression in superficial layers of the spinal dorsal horn 2 and 4 days after treatment. These results suggest that oxaliplatin treatment increases Cavα2δ-1 subunit expression in the superficial layers of the spinal cord and may contribute to functional peripheral acute cold hypersensitivity.
Collapse
Affiliation(s)
- Ken Yamamoto
- Department of Education and Research Center for Clinical Pharmacy, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Mayuko Tsuboi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Toshie Kambe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenji Abe
- Department of Pharmacology, School of Pharmaceutical Sciences, Ohu University, 31-1 Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yoshihiko Nakatani
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, 3-10-6 Ariake, Koto-Ku, Tokyo 135-8550, Japan
| | - Iku Utsunomiya
- Department of Developmental Education, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoji Taguchi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
5
|
Zychowska M, Rojewska E, Przewlocka B, Mika J. Mechanisms and pharmacology of diabetic neuropathy - experimental and clinical studies. Pharmacol Rep 2014; 65:1601-10. [PMID: 24553008 DOI: 10.1016/s1734-1140(13)71521-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/21/2013] [Indexed: 01/13/2023]
Abstract
Neuropathic pain is the most common chronic complication of diabetes mellitus. The mechanisms involved in the development of diabetic neuropathy include changes in the blood vessels that supply the peripheral nerves; metabolic disorders, such as the enhanced activation of the polyol pathway; myo-inositol depletion; and increased non-enzymatic glycation. Currently, much attention is focused on the changes in the interactions between the nervous system and the immune system that occur in parallel with glial cell activation; these interactions may also be responsible for the development of neuropathic pain accompanying diabetes. Animal models of diabetic peripheral neuropathy have been utilized to better understand the phenomenon of neuropathic pain in individuals with diabetes and to define therapeutic goals. The studies on the effects of antidepressants on diabetic neuropathic pain in streptozotocin (STZ)-induced type 1 diabetes have been conducted. In experimental models of diabetic neuropathy, the most effective antidepressants are tricyclic antidepressants, selective serotonin reuptake inhibitors, and serotonin norepinephrine reuptake inhibitors. Clinical studies of diabetic neuropathy indicate that the first line treatment should be tricyclic antidepressants, which are followed by anticonvulsants and then opioids. In this review, we will discuss the mechanisms of the development of diabetic neuropathy and the most common drugs used in experimental and clinical studies.
Collapse
Affiliation(s)
- Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | |
Collapse
|
6
|
Migita T. Can early administration of pregabalin reduce the incidence of postherpetic neuralgia? Clin Exp Dermatol 2014; 39:755-6. [DOI: 10.1111/ced.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Affiliation(s)
- T. Migita
- Department of Anesthesiology; Hiroshima Red Cross Hospital; Hiroshima Japan
| |
Collapse
|
7
|
Martinez JA, Kasamatsu M, Rosales-Hernandez A, Hanson LR, Frey WH, Toth CC. Retraction: Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states. Mol Pain 2014; 10:20. [PMID: 24693924 PMCID: PMC3972616 DOI: 10.1186/1744-8069-10-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jose A Martinez
- Department of Clinical Neurosciences and the University of Calgary, Calgary, AB, Canada
| | - Manami Kasamatsu
- Department of Clinical Neurosciences and the University of Calgary, Calgary, AB, Canada
| | | | - Leah R Hanson
- Alzheimer's Research Center, Regions Hospital, and HealthPartners Research Foundation, St. Paul, MN, USA
| | - William H Frey
- Alzheimer's Research Center, Regions Hospital, and HealthPartners Research Foundation, St. Paul, MN, USA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Cory C Toth
- Department of Clinical Neurosciences and the University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12:44-56. [PMID: 24533015 PMCID: PMC3915349 DOI: 10.2174/1570159x1201140117162802] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/13/2022] Open
Abstract
Pregabalin is an antagonist of voltage gated Ca2+ channels and specifically binds to alpha-2-delta subunit to produce antiepileptic and analgesic actions. It successfully alleviates the symptoms of various types of neuropathic pain and presents itself as a first line therapeutic agent with remarkable safety and efficacy. Preclinical studies in various animal models of neuropathic pain have shown its effectiveness in treating the symptoms like allodynia and hyperalgesia. Clinical studies in different age groups and in different types of neuropathic pain (peripheral diabetic neuropathy, fibromyalgia, post-herpetic neuralgia, cancer chemotherapy-induced neuropathic pain) have projected it as the most effective agent either as monotherapy or in combined regimens in terms of cost effectiveness, tolerability and overall improvement in neuropathic pain states. Preclinical studies employing pregabalin in different neuropathic pain models have explored various molecular targets and the signaling systems including Ca2+ channel-mediated neurotransmitter release, activation of excitatory amino acid transporters (EAATs), potassium channels and inhibition of pathways involving inflammatory mediators. The present review summarizes the important aspects of pregabalin as analgesic in preclinical and clinical studies as well as focuses on the possible mechanisms.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
9
|
Yang F, Whang J, Derry WT, Vardeh D, Scholz J. Analgesic treatment with pregabalin does not prevent persistent pain after peripheral nerve injury in the rat. Pain 2013; 155:356-366. [PMID: 24176928 DOI: 10.1016/j.pain.2013.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022]
Abstract
Reducing the risk of chronic postoperative pain through preventive analgesia is an attractive therapeutic concept. Because peripheral nerve lesions are a major cause of chronic pain after surgery, we tested in rats whether analgesic treatment with pregabalin (PGB) has the capacity to mitigate the development of persistent neuropathic pain-like behavior. Starting on the day of spared nerve injury or 1week later, we treated rats with a continuous intrathecal infusion of PGB (300 or 900μg/24hours) or vehicle for up to 28days. Rats receiving early PGB treatment had almost normal withdrawal thresholds for punctate mechanical stimuli and were clearly less sensitive to pinprick or cold stimulation. The responses to punctate mechanical and cold stimulation were still reduced for a brief period after the infusion was terminated, but the difference from vehicle-treated rats was minor. Essentially, the analgesic effect of PGB was limited to the duration of the infusion, whether analgesia started at the time of surgery or with a delay of 1week, independently of the length of the treatment. PGB did not suppress the activation of spinal microglia, indicating that analgesia alone does not eliminate certain pain mechanisms even if they depend, at least partially, on nociceptive input. Unexpectedly, intrathecal infusion of PGB did not inhibit the nerve injury-induced accumulation of its binding target, the voltage-gated calcium channel subunit α2δ1, at primary afferent terminals in the spinal cord. Interference with the synaptic trafficking of α2δ1 is not required to achieve analgesia with PGB.
Collapse
Affiliation(s)
- Fang Yang
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, New York, NY, USA Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA Department of Neurology, Massachusetts General Hospital, Boston, MA, USA Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | |
Collapse
|
10
|
Kuffler DP. Platelet-rich plasma and the elimination of neuropathic pain. Mol Neurobiol 2013; 48:315-32. [PMID: 23832571 DOI: 10.1007/s12035-013-8494-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA,
| |
Collapse
|
11
|
Sałat K, Librowski T, Nawiesniak B, Gluch-Lutwin M. Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurol Res 2013; 35:948-58. [PMID: 23816319 DOI: 10.1179/1743132813y.0000000236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this research was to evaluate analgesic, antioxidant, metabolic, and cytotoxic effects of pregabalin (PGB), which is widely applied for the treatment of neuropathic pain syndromes in diabetic patients. METHODS We used the streptozotocin (STZ) model of painful diabetic neuropathy (PDN) in mice and we measured the effect of intraperitoneally administered PGB on tactile and thermal nociceptive thresholds in the von Frey and hot plate assays, respectively. The influence of PGB on the motor coordination of diabetic animals was investigated in the rotarod test. In vitro in HepG2 and 3T3-L1 cell lines cytotoxicity of PGB, its influence on glucose utilization, and lipid accumulation were assessed. The antioxidant capacity of PGB was evaluated spectrophotometrically using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method. RESULTS Pregabalin was a very efficacious antiallodynic and analgesic drug capable of increasing the pain thresholds for tactile allodynia and thermal hyperalgesia in diabetic mice. In the von Frey test at a dose of 30 mg/kg it elevated the pain threshold for 168% versus diabetic control and in the hot plate test this dose prolonged the latency time to pain reaction for 130% versus control value of diabetic mice. No motor deficits were observed in PGB-treated diabetic animals. In vitro PGB did not influence glucose utilization or lipid accumulation. No antioxidant or cytotoxic effects of PGB were observed at concentrations 1-100 μM. DISCUSSION AND CONCLUSION Our experiments demonstrated significant antiallodynic and analgesic properties of PGB in mice. In vitro studies showed that this drug is metabolically neutral. It did not cause motor coordination impairments in diabetic animals either. These effects might be of great importance for diabetic patients.
Collapse
|
12
|
Lee S, Zhao X, Hatch M, Chun S, Chang E. Central Neuropathic Pain in Spinal Cord Injury. ACTA ACUST UNITED AC 2013; 25:159-172. [PMID: 25750485 DOI: 10.1615/critrevphysrehabilmed.2013007944] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal cord injury (SCI) is a devastating medical condition affecting 1.2 million people in the United States. Central neuropathic pain is one of the most common medical complications of SCI. Current treatment options include opioids, antiepileptic agents such as gabapentin, antispastic agents such as baclofen or tizanidine, and tricyclic acid. Other options include complementary, nonpharmacological treatment such as exercise or acupuncture, interventional treatments, and psychological approaches. Although these treatment options exist, central neuropathic pain in patients with SCI is still extremely difficult to treat because of its complexity. To develop and provide more effective treatment options to these patients, proper assessment of and classification tools for central neuropathic pain, as well as a better understanding of the pathophysiology, are needed. A combination of approaches, from standard general pain assessments to medically specific questions unique to SCI pathophysiology, is essential for this population. A multidisciplinary approach to patient care, in addition with a better understanding of pathophysiology and diagnosis, will lead to improved management and treatment of patients with SCI displaying central neuropathic pain. Here we summarize the most recent classification tools, pathophysiology, and current treatment options for patients with SCI with central neuropathic pain.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
| | - Xing Zhao
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
| | - Maya Hatch
- Reeve-Irvine Research Center, University of California, Irvine, CA
| | - Sophia Chun
- Spinal Cord Injury Medicine/Disease, Long Beach VA Hospital, Long Beach, CA
| | - Eric Chang
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
| |
Collapse
|