1
|
Konnova EA, Deftu AF, Chu Sin Chung P, Kirschmann G, Decosterd I, Suter MR. Potassium channel modulation in macrophages sensitizes dorsal root ganglion neurons after nerve injury. Glia 2024; 72:677-691. [PMID: 38108588 DOI: 10.1002/glia.24496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Macrophages and satellite glial cells are found between injured and uninjured neurons in the lumbar dorsal root ganglia (DRG). We explored the mechanism of neuro-immune and neuron-glia crosstalk leading to hyperexcitability of DRG neurons. After spared nerve injury (SNI), CX3CR1+ resident macrophages became activated, proliferated, and increased inward-rectifying potassium channel Kir 2.1 currents. Conditioned medium (CM) by macrophages, obtained from DRG of SNI mice, sensitized small DRG neurons from naïve mice. However, treatment with CM from GFAP+ glial cells did not affect neuronal excitability. When subjected to this macrophage-derived CM, DRG neurons had increased spontaneous activity, current-evoked responses and voltage-gated NaV 1.7 and NaV 1.8 currents. Silencing Kir 2.1 in macrophages after SNI prevented the induction of neuronal hyperexcitability from their CM. Blocking vesicular exocytosis or soluble tumor necrosis factor in CM or interfering with the downstream intracellular p38 pathway in neurons, also prevented neuronal hyperexcitability. Blocking protein trafficking in neurons reduced the effect of CM, suggesting that the hyperexcitable state resulted from changes in NaV channel trafficking. These results suggest that DRG macrophages, primed by peripheral nerve injury, contribute to neuron-glia crosstalk, NaV channel dysregulation and neuronal hyperexcitability implicated in the development of neuropathic pain.
Collapse
Affiliation(s)
- Elena A Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
van der Heijden RA, Biswal S. Up-and-coming Radiotracers for Imaging Pain Generators. Semin Musculoskelet Radiol 2023; 27:661-675. [PMID: 37935213 PMCID: PMC10629993 DOI: 10.1055/s-0043-1775745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.
Collapse
Affiliation(s)
- Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
3
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
Katal S, Taubman K, Han J, Gholamrezanezhad A. Aging Muscles, Myositis, Pain, and Peripheral Neuropathies: PET Manifestations in the Elderly. PET Clin 2023; 18:149-160. [DOI: 10.1016/j.cpet.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Pricope CV, Tamba BI, Stanciu GD, Cuciureanu M, Neagu AN, Creanga-Murariu I, Dobrovat BI, Uritu CM, Filipiuc SI, Pricope BM, Alexa-Stratulat T. The Roles of Imaging Biomarkers in the Management of Chronic Neuropathic Pain. Int J Mol Sci 2022; 23:13038. [PMID: 36361821 PMCID: PMC9657736 DOI: 10.3390/ijms232113038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 08/04/2023] Open
Abstract
Chronic neuropathic pain (CNP) affects around 10% of the general population and has a significant social, emotional, and economic impact. Current diagnosis techniques rely mainly on patient-reported outcomes and symptoms, which leads to significant diagnostic heterogeneity and subsequent challenges in management and assessment of outcomes. As such, it is necessary to review the approach to a pathology that occurs so frequently, with such burdensome and complex implications. Recent research has shown that imaging methods can detect subtle neuroplastic changes in the central and peripheral nervous system, which can be correlated with neuropathic symptoms and may serve as potential markers. The aim of this paper is to review available imaging methods used for diagnosing and assessing therapeutic efficacy in CNP for both the preclinical and clinical setting. Of course, further research is required to standardize and improve detection accuracy, but available data indicate that imaging is a valuable tool that can impact the management of CNP.
Collapse
Affiliation(s)
- Cosmin Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I bvd. No. 22, 700505 Iasi, Romania
| | - Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionut Dobrovat
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bianca-Mariana Pricope
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Teodora Alexa-Stratulat
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Medical Oncology-Radiotherapy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
6
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_30-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
8
|
Tereshenko V, Pashkunova-Martic I, Manzano-Szalai K, Friske J, Bergmeister KD, Festin C, Aman M, Hruby LA, Klepetko J, Theiner S, Klose MHM, Keppler B, Helbich TH, Aszmann OC. MR Imaging of Peripheral Nerves Using Targeted Application of Contrast Agents: An Experimental Proof-of-Concept Study. Front Med (Lausanne) 2020; 7:613138. [PMID: 33363189 PMCID: PMC7759654 DOI: 10.3389/fmed.2020.613138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Current imaging modalities for peripheral nerves display the nerve's structure but not its function. Based on a nerve's capacity for axonal transport, it may be visualized by targeted application of a contrast agent and assessing the distribution through radiological imaging, thus revealing a nerve's continuity. This concept has not been explored, however, may potentially guide the treatment of peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging through MRI after administering gadolinium-based contrast agents which were then retrogradely transported. Methods: We synthesized MRI contrast agents consisting of paramagnetic agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled with one of the contrast agents to achieve retrograde distribution along the nerve. One week after surgery, the spinal cords and sciatic nerves were harvested to visualize the distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following radiological imaging, the concentration of gadolinium in the harvested samples was analyzed using inductively coupled mass spectrometry (ICP-MS). Results: All contrast agents demonstrated high relaxivity values, varying between 12.1 and 116.0 mM-1s-1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI. In vivo measurements revealed significant signal enhancement in the sciatic nerve on the 3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application. Chemical evaluation showed high gadolinium concentration in the sciatic nerve for HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg). Discussion: In this study a novel imaging approach for the evaluation of a peripheral nerve's integrity was implemented. The findings provide radiological and chemical evidence of successful contrast agent uptake along the sciatic nerve and its distribution within the spinal canal in rats. This novel concept may assist in the diagnostic process of peripheral nerve injuries in the future.
Collapse
Affiliation(s)
- Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital, Vienna, Austria.,Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Krisztina Manzano-Szalai
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital, Vienna, Austria
| | - Konstantin D Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Martin Aman
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Hospital Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Laura A Hruby
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Johanna Klepetko
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Sarah Theiner
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna & General Hospital, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Ye T, Wang D, Cai Z, Tong L, Chen Z, Lu J, Lu X, Huang C, Yuan X. Antidepressive properties of macrophage-colony stimulating factor in a mouse model of depression induced by chronic unpredictable stress. Neuropharmacology 2020; 172:108132. [PMID: 32407925 DOI: 10.1016/j.neuropharm.2020.108132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, can ameliorate chronic stress-induced depressive-like behaviors in mice. This indicates that M-CSF could be developed into a novel antidepressant. Here, we investigated the antidepressive properties of M-CSF, aiming to explore its potential values in depression treatment. Our results showed that a single M-CSF injection at the dose of 75 and 100 μg/kg, but not at 25 or 50 μg/kg, ameliorated chronic unpredictable stress (CUS)-induced depressive-like behaviors in mice at 5 h after the drug treatment. In a time-dependent experiment, a single M-CSF injection (100 μg/kg) was found to ameliorate the CUS-induced depressive-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug treatment. The antidepressant effect of the single M-CSF injection (100 μg/kg) in chronically-stressed mice persisted at least 10 days and disappeared at 14 days after the drug treatment. Moreover, 14 days after the first injection, a second M-CSF injection (100 μg/kg) still produced antidepressant effects at 5 h after the drug treatment in chronically-stressed mice who re-displayed depressive-like phenotypes. The antidepressant effect of M-CSF appeared to be mediated by the activation of the hippocampal microglia, as pre-inhibition of microglia by minocycline (40 mg/kg) or PLX3397 (290 mg/kg) pretreatment prevented the antidepressant effect of M-CSF in CUS mice. These results demonstrate that M-CSF produces rapid and sustained antidepressant effects via the activation of the microglia in the hippocampus in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
10
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
11
|
Locating the Site of Neuropathic Pain In Vivo Using MMP-12-Targeted Magnetic Nanoparticles. Pain Res Manag 2019; 2019:9394715. [PMID: 30956741 PMCID: PMC6431387 DOI: 10.1155/2019/9394715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Neuropathic pain remains underrecognised and ineffectively treated in chronic pain sufferers. Consequently, their quality of life is considerably reduced, and substantial healthcare costs are incurred. The anatomical location of pain must be identified for definitive diagnosis, but current neuropsychological tools cannot do so. Matrix metalloproteinases (MMP) are thought to maintain peripheral neuroinflammation, and MMP-12 is elevated particularly in such pathological conditions. Magnetic resonance imaging (MRI) of the peripheral nervous system has made headway, owing to its high-contrast resolution and multiplanar features. We sought to improve MRI specificity of neural lesions, by constructing an MMP-12-targeted magnetic iron oxide nanoparticle (IONP). Its in vivo efficiency was evaluated in a rodent model of neuropathic pain, where the left lumbar 5 (L5) spinal nerve was tightly ligated. Spinal nerve ligation (SNL) successfully induced mechanical allodynia, and thermal hyperalgesia, in the left hind paw throughout the study duration. These neuropathy characteristics were absent in animals that underwent sham surgery. MMP-12 upregulation with concomitant macrophage infiltration, demyelination, and elastin fibre loss was observed at the site of ligation. This was not observed in spinal nerves contralateral and ipsilateral to the ligated spinal nerve or uninjured left L5 spinal nerves. The synthesised MMP-12-targeted magnetic IONP was stable and nontoxic in vitro. It was administered onto the left L5 spinal nerve by intrathecal injection, and decreased magnetic resonance (MR) signal was observed at the site of ligation. Histology analysis confirmed the presence of iron in ligated spinal nerves, whereas iron was not detected in uninjured left L5 spinal nerves. Therefore, MMP-12 is a potential biomarker of neuropathic pain. Its detection in vivo, using IONP-enhanced MRI, may be further developed as a tool for neuropathic pain diagnosis and management.
Collapse
|
12
|
Wosiski-Kuhn M, Lyon MS, Caress J, Milligan C. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve 2018; 59:23-33. [PMID: 29979478 DOI: 10.1002/mus.26288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
With the emerging popularity of immune-modulatory therapies to treat human diseases there is a need to step back from hypotheses aimed at assessing a condition in a single-system context and instead take into account the disease pathology as a whole. In complex diseases, such as amyotrophic lateral sclerosis (ALS), the use of these therapies to treat patients has been largely unsuccessful and likely premature given our lack of understanding of how the immune system influences disease progression and initiation. In addition, we still have an incomplete understanding of the role of these responses in our model systems and how this may translate clinically to human patients. In this review we discuss preclinical evidence and clinical trial results for a selection of recently conducted studies in ALS. We provide evidence-based reasoning for the failure of these trials and offer suggestions to improve the design of future investigations. Muscle Nerve 59:23-33, 2019.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - James Caress
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
13
|
Onishi O, Ikoma K, Oda R, Yamazaki T, Fujiwara H, Yamada S, Tanaka M, Kubo T. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study. Neurosci Lett 2018. [PMID: 29524643 DOI: 10.1016/j.neulet.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T2* weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain.
Collapse
Affiliation(s)
- Okihiro Onishi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Ryo Oda
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Tetsuro Yamazaki
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 465, Kajiicho, Kamigyo-ku Kyoto-shi, Kyoto, Japan.
| |
Collapse
|
14
|
Chen MW, Zhang X, Lu LJ, Zhang F, Duan XH, Zheng CS, Chen YY, Shen J. Monitoring of macrophage recruitment enhanced by Toll-like receptor 4 activation with MR imaging in nerve injury. Muscle Nerve 2018; 58:123-132. [PMID: 29424947 DOI: 10.1002/mus.26097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Macrophage recruitment is critical for nerve regeneration after an injury. The aim of this study was to investigate whether ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle-based MRI could be used to monitor the enhanced macrophage recruitment by Toll-like receptor 4 (TLR4) activation in nerve injury. METHODS Rats received intraperitoneal injections of either lipopolysaccharide (LPS) or phosphate buffered saline (PBS) or no injection (controls) after a sciatic nerve crush injury. After intravenous injection of the USPIOs (LPS and PBS groups) or PBS (control group), MRI was performed and correlated with histological findings. RESULTS LPS group showed more remarkable hypointense signals on T2*-weighted imaging and lower T2 values in the crushed nerves than PBS group. The hypointense signal areas were associated with an enhanced recruitment of iron-loaded macrophages to the injured nerves. DISCUSSION USPIO-enhanced MRI can be used to monitor the enhanced macrophage recruitment by means of TLR4 signal pathway activation in nerve injury. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| |
Collapse
|
15
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
16
|
Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg 2016; 6:756-771. [PMID: 28090451 DOI: 10.21037/qims.2016.12.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA; Department of Bioengineering, Stanford University, Stanford, California, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes–Weinstein monofilaments: Towards a rational method. J Neurosci Methods 2015; 255:92-103. [DOI: 10.1016/j.jneumeth.2015.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022]
|
18
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci 2013; 33:15095-108. [PMID: 24048840 DOI: 10.1523/jneurosci.0278-13.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although the central branches of the dorsal root ganglion (DRG) sensory neurons do not spontaneously regenerate, a conditioning peripheral injury can promote their regeneration. A potential role of macrophages in axonal regeneration was proposed, but it has not been critically addressed whether macrophages play an essential role in the conditioning injury model. After sciatic nerve injury (SNI) in rats, the number of macrophages in DRGs gradually increased by day 7. The increase persisted up to 28 d and was accompanied by upregulation of inflammatory mediators, including oncomodulin. A macrophage deactivator, minocycline, reduced the macrophage number and expressions of the inflammatory mediators. Molecular signatures of conditioning effects were abrogated by minocycline, and enhanced regenerative capacity was substantially attenuated both in vitro and in vivo. Delayed minocycline infusion abrogated the SNI-induced long-lasting heightened neurite outgrowth potential, indicating a role for macrophages in the maintenance of regenerative capacity. Intraganglionic cAMP injection also resulted in an increase in macrophages, and minocycline abolished the cAMP effect on neurite outgrowth. However, conditioned media (CM) from macrophages treated with cAMP did not exhibit neurite growth-promoting activity. In contrast, CM from neuron-macrophage cocultures treated with cAMP promoted neurite outgrowth greatly, highlighting a requirement for neuron-macrophage interactions for the induction of a proregenerative macrophage phenotype. The growth-promoting activity in the CM was profoundly attenuated by an oncomodulin neutralizing antibody. These results suggest that the neuron-macrophage interactions involved in eliciting a proregenerative phenotype in macrophages may be a novel target to induce long-lasting regenerative processes after axonal injuries in the CNS.
Collapse
|
20
|
Contribution of macrophages to peripheral neuropathic pain pathogenesis. Life Sci 2013; 93:870-81. [DOI: 10.1016/j.lfs.2013.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/10/2013] [Accepted: 10/05/2013] [Indexed: 11/24/2022]
|
21
|
Lasko L, Huang X, Voorbach MJ, Lewis LGR, Stavropoulos J, Carriker J, Seifert TR, Baker SJ, Upadhyay J. Multimodal assessment of nervous and immune system responses following sciatic nerve injury. Pain 2013; 154:2782-2793. [PMID: 23973359 DOI: 10.1016/j.pain.2013.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/14/2022]
Abstract
Subsequent to peripheral nerve compression and irritation, pathophysiological processes take place within nervous and immune systems. Here, we utilized a multimodal approach to comprehend peripheral and central soft tissue changes as well as alterations occurring in systemic analytes following unilateral chronic constriction injury (CCI) of the sciatic nerve in rodents. Using magnetic resonance imaging and [18F]-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography, we demonstrated robust structural abnormalities and enhanced FDG uptake within the injured nerve and surrounding muscle, respectively. To assess whether central morphological changes were induced by nerve injury, diffusion tenor imaging was performed. A decrease in fractional anisotropy in primary motor cortex contralateral to the injury site was observed. Evaluation of a panel of circulating cytokines, chemokines, and growth factors showed decreased levels of interleukin-1β and Fractalkine in CCI animals. Area under the receiver operating curve (ROC) calculations of analyte levels, imaging, and behavioral end points ranged from 0.786 to 1, where behavioral and peripheral imaging end points (eg, FDG uptake in muscle) were observed to have the highest discriminatory capabilities (maximum area under ROC = 1) between nerve injury and sham conditions. Lastly, performance of correlation analysis involving all analyte, behavioral, and imaging data provided an understanding of the overall association amongst these end points, and importantly, a distinction in correlation patterns was observed between CCI and sham conditions. These findings demonstrate the multidimensional pathophysiology of sciatic nerve injury and how a combined analyte, behavioral, and imaging assessment can be implemented to probe this complexity.
Collapse
Affiliation(s)
- Loren Lasko
- Integrated Sciences and Technology, AbbVie Inc., North Chicago, IL, USA Exploratory Statistics, AbbVie Inc., North Chicago, IL, USA Neuroscience Discovery, AbbVie Inc., North Chicago, IL, USA Comparative Medicine, AbbVie Inc., North Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
Collapse
|