1
|
Qi Y, Wang C, Lang H, Wang Y, Wang X, Zheng H, Lu Y. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth Syst Biotechnol 2024; 9:853-860. [PMID: 39139857 PMCID: PMC11320372 DOI: 10.1016/j.synbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.
Collapse
Affiliation(s)
- Yue Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Wang Y, Li X, Zhu C, Yi S, Zhang Y, Hong Z. Plant-derived artificial miRNA effectively reduced the proliferation of aphid (Aphidoidea) through spray-induced gene silencing. PEST MANAGEMENT SCIENCE 2024; 80:4322-4332. [PMID: 38647144 DOI: 10.1002/ps.8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are notorious sap-sucking insects that rampantly threaten agricultural production worldwide. Current management against aphids in the field heavily relies on chemical pesticides, which makes economical and eco-friendly methods urgently needed. Spray-induced gene silencing (SIGS) offers a powerful and precise approach to pest management. However, the high costs and instability of double-stranded RNA (dsRNA) regulators applied for downstream RNA interference (RNAi) still limit this strategy. It remains uncertain if RNAi regulators applied in SIGS could extend to small RNA (sRNA), especially miRNA. RESULTS We chose two sRNA sequences, miR-9b and miR-VgR, whose corresponding targets ABCG4 and VgR are both essential for aphid growth and development. The efficacy of these sequences was initially verified by chemically synthetic single-stranded RNA (syn-ssRNA). Through spray treatment, we observed a significantly decreased survival number and increased abnormality rate of green peach aphids fed on the host under laboratory conditions. Based on our previous study, we generated transgenic plants expressing artificial miR-9b (amiR-9b) and miR-VgR (amiR-VgR). Remarkably, plant-derived amiRNA exerted potent and long-lasting inhibitory efficacy with merely one percent concentration of chemical synthetics. Notably, the simultaneous application of amiR-9b and amiR-VgR exhibited superior inhibitory efficacy. CONCLUSION We explored the potential use of sRNA-based biopesticide through SIGS while investigating the dosage requirements. To optimize this strategy, the utilization of plant-derived amiRNA was proposed. The results suggested that attributed to stability and durability, deploying amiRNA in pest management is a potential and promising solution for the field application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuanlin Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shijie Yi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Salkova D, Balkanska R, Shumkova R, Lazarova S, Radoslavov G, Hristov P. Molecular Detection and Phylogenetic Relationships of Honey Bee-Associated Viruses in Bee Products. Vet Sci 2024; 11:369. [PMID: 39195823 PMCID: PMC11360182 DOI: 10.3390/vetsci11080369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In the last few years, the isolation and amplification of DNA or RNA from the environment (eDNA/eRNA) has proven to be an alternative and non-invasive approach for molecular identification of pathogens and pests in beekeeping. We have recently demonstrated that bee pollen and bee bread represent suitable biological material for the molecular identification of viral RNA. In the present study, we extracted total RNA from different bee products (pollen, n = 25; bee bread, n = 17; and royal jelly, n = 15). All the samples were tested for the presence of six of the most common honey bee-associated viruses-Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Chronic bee paralysis virus (CBPV), Sacbrood virus (SBV), Kashmir bee virus (KBV), and Black queen cell virus (BQCV)-using a reverse transcription polymerase chain reaction (RT-PCR). We successfully detected six records of DWV (10.5%, 6/57), four of ABPV (7.0%, 4/57), three of Israeli acute paralysis virus (IAPV) (5.3%, 3/57), and two of BQCV (3.5%, 2/57). Using ABPV primers, we also successfully detected the presence of IAPV. The obtained viral sequences were analyzed for phylogenetic relationships with the highly similar sequences (megablast) available in the GenBank database. The Bulgarian DWV isolates revealed a high homology level with strains from Syria and Turkey. Moreover, we successfully detected a DWV strain B for the first time in Bulgaria. In contrast to DWV, the ABPV isolates formed a separate clade in the phylogenetic tree. BQCV was closely grouped with Russian isolates, while Bulgarian IAPV formed its own clade and included a strain from China. In conclusion, the present study demonstrated that eRNA can be successfully used for molecular detection of honey bee-associated viruses in bee products. The method can assist the monitoring of the health status of honey bee colonies at the local, regional, and even national levels.
Collapse
Affiliation(s)
- Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ralitsa Balkanska
- Department “Special Branches”, Institute of Animal Science, Kostinbrod, Agricultural Academy, 1113 Sofia, Bulgaria;
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria;
| | - Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| |
Collapse
|
4
|
Saha R, Vázquez-Salazar A, Nandy A, Chen IA. Fitness Landscapes and Evolution of Catalytic RNA. Annu Rev Biophys 2024; 53:109-125. [PMID: 39013026 DOI: 10.1146/annurev-biophys-030822-025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Aditya Nandy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
- The James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Díez Pérez T, Tafoya AN, Peabody DS, Lakin MR, Hurwitz I, Carroll NJ, López GP. Isolation of nucleic acids using liquid-liquid phase separation of pH-sensitive elastin-like polypeptides. Sci Rep 2024; 14:10157. [PMID: 38698072 PMCID: PMC11065875 DOI: 10.1038/s41598-024-60648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.
Collapse
Affiliation(s)
- Telmo Díez Pérez
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ashley N Tafoya
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Matthew R Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Nick J Carroll
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Gabriel P López
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Pichon M, Levi-Acobas F, Kitoun C, Hollenstein M. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry 2024; 30:e202400137. [PMID: 38403849 DOI: 10.1002/chem.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Camélia Kitoun
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
7
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
8
|
Doherty C, Wilbanks B, Khatua S, Maher LJ. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro Oncol 2024; 26:38-54. [PMID: 37619244 PMCID: PMC10768989 DOI: 10.1093/neuonc/noad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/26/2023] Open
Abstract
Despite recent advances in the understanding of brain tumor pathophysiology, challenges associated with tumor location and characteristics have prevented significant improvement in neuro-oncology therapies. Aptamers are short, single-stranded DNA or RNA oligonucleotides that fold into sequence-specific, 3-dimensional shapes that, like protein antibodies, interact with targeted ligands with high affinity and specificity. Aptamer technology has recently been applied to neuro-oncology as a potential approach to innovative therapy. Preclinical research has demonstrated the ability of aptamers to overcome some obstacles that have traditionally rendered neuro-oncology therapies ineffective. Potential aptamer advantages include their small size, ability in some cases to penetrate the blood-brain barrier, inherent lack of immunogenicity, and applicability for discovering novel biomarkers. Herein, we review recent reports of aptamer applications in neuro-oncology including aptamers found by cell- and in vivo- Systematic Evolution of Ligands by Exponential Enrichment approaches, aptamer-targeted therapeutic delivery modalities, and aptamers in diagnostics and imaging. We further identify crucial future directions for the field that will be important to advance aptamer-based drugs or tools to clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Caroline Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences and Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Mozumdar D, Roy RN. Origin of ribonucleotide recognition motifs through ligand mimicry at early earth. RNA Biol 2024; 21:107-121. [PMID: 39526332 PMCID: PMC11556283 DOI: 10.1080/15476286.2024.2423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In an RNA world, the emergence of template-specific self-replication and catalysis necessitated the presence of motifs facilitating reliable recognition between RNA molecules. What did these motifs entail, and how did they evolve into the proteinaceous RNA recognition entities observed today? Direct observation of these primordial entities is hindered by rapid degradation over geological time scales. To overcome this challenge, researchers employ diverse approaches, including scrutiny of conserved sequences and structural motifs across extant organisms and employing directed evolution experiments to generate RNA molecules with specific catalytic abilities. In this review, we delve into the theme of ribonucleotide recognition across key periods of early Earth's evolution. We explore scenarios of RNA interacting with small molecules and examine hypotheses regarding the role of minerals and metal ions in enabling structured ribonucleotide recognition and catalysis. Additionally, we highlight instances of RNA-protein mimicry in interactions with other RNA molecules. We propose a hypothesis where RNA initially recognizes small molecules and metal ions/minerals, with subsequent mimicry by proteins leading to the emergence of proteinaceous RNA binding domains.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology & Microbiology, University of California San Francisco, San Francisco, CA, USA
| | - Raktim N. Roy
- Department of pathology & laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Pokhrel P, Jonchhe S, Pan W, Mao H. Single-Molecular Dissection of Liquid-Liquid Phase Transitions. J Am Chem Soc 2023; 145:17143-17150. [PMID: 37494702 PMCID: PMC10528544 DOI: 10.1021/jacs.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Wei Pan
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
11
|
Kashapov R, Razuvayeva Y, Kashapova N, Ziganshina A, Salnikov V, Sapunova A, Voloshina A, Zakharova L. Emergence of Nanoscale Drug Carriers through Supramolecular Self-Assembly of RNA with Calixarene. Int J Mol Sci 2023; 24:ijms24097911. [PMID: 37175618 PMCID: PMC10178118 DOI: 10.3390/ijms24097911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Supramolecular self-assembly is a powerful tool for the development of polymolecular assemblies that can form the basis of useful nanomaterials. Given the increasing popularity of RNA therapy, the extension of this concept of self-assembly to RNA is limited. Herein, a simple method for the creation of nanosized particles through the supramolecular self-assembly of RNA with a three-dimensional macrocycle from the calixarene family was reported for the first time. This self-assembly into nanoparticles was realized using cooperative supramolecular interactions under mild conditions. The obtained nanoparticles are able to bind various hydrophobic (quercetin, oleic acid) and hydrophilic (doxorubicin) drugs, as a result of which their cytotoxic properties are enhanced. This work demonstrates that intermolecular interactions between flexible RNA and rigid calixarene is a promising route to bottom-up assembly of novel supramolecular soft matter, expanding the design possibilities of nanoscale drug carriers.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18, Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
12
|
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel) 2023; 12:463. [PMID: 36978331 PMCID: PMC10044086 DOI: 10.3390/antibiotics12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.
Collapse
Affiliation(s)
- McKenna E. Buckley
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Audrey R. N. Ndukwe
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA 5042, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA 5000, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Santu Rana
- Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, VIC 3220, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
13
|
Spark of Life: Role of Electrotrophy in the Emergence of Life. Life (Basel) 2023; 13:life13020356. [PMID: 36836714 PMCID: PMC9961546 DOI: 10.3390/life13020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The emergence of life has been a subject of intensive research for decades. Different approaches and different environmental "cradles" have been studied, from space to the deep sea. Since the recent discovery of a natural electrical current through deep-sea hydrothermal vents, a new energy source is considered for the transition from inorganic to organic. This energy source (electron donor) is used by modern microorganisms via a new trophic type, called electrotrophy. In this review, we draw a parallel between this metabolism and a new theory for the emergence of life based on this electrical electron flow. Each step of the creation of life is revised in the new light of this prebiotic electrochemical context, going from the evaluation of similar electrical current during the Hadean, the CO2 electroreduction into a prebiotic primordial soup, the production of proto-membranes, the energetic system inspired of the nitrate reduction, the proton gradient, and the transition to a planktonic proto-cell. Finally, this theory is compared to the two other theories in hydrothermal context to assess its relevance and overcome the limitations of each. Many critical factors that were limiting each theory can be overcome given the effect of electrochemical reactions and the environmental changes produced.
Collapse
|
14
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Gulati GK, Panpradist N, Stewart SWA, Beck IA, Boyce C, Oreskovic AK, García-Morales C, Avila-Ríos S, Han PD, Reyes-Terán G, Starita LM, Frenkel LM, Lutz BR, Lai JJ. Simultaneous monitoring of HIV viral load and screening of SARS-CoV-2 employing a low-cost RT-qPCR test workflow. Analyst 2022; 147:3315-3327. [PMID: 35762367 PMCID: PMC10143869 DOI: 10.1039/d2an00405d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.
Collapse
Affiliation(s)
- Gaurav K Gulati
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, USA
| | - Samuel W A Stewart
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ingrid A Beck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ceejay Boyce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Amy K Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Claudia García-Morales
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Santiago Avila-Ríos
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Peter D Han
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Gustavo Reyes-Terán
- Coordination of the Mexican National Institutes of Health and High Specialty Hospitals, Mexico City, Mexico
| | - Lea M Starita
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Departments of Medicine, Pediatrics, Laboratory Medicine and Pathology, Global Health and Medicine, University of Washington, Seattle, Washington, USA
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
16
|
RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Int J Mol Sci 2022; 23:ijms23126639. [PMID: 35743077 PMCID: PMC9224206 DOI: 10.3390/ijms23126639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.
Collapse
|
17
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
18
|
Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Mol Pharm 2022; 19:1892-1905. [PMID: 35604765 DOI: 10.1021/acs.molpharmaceut.2c00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.
Collapse
Affiliation(s)
- Han Han Ly
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Simon Daniel
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Shekinah K V Soriano
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zoltán Kis
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
19
|
Steller LH, Van Kranendonk MJ, Wang A. Dehydration Enhances Prebiotic Lipid Remodeling and Vesicle Formation in Acidic Environments. ACS CENTRAL SCIENCE 2022; 8:132-139. [PMID: 35106379 PMCID: PMC8796310 DOI: 10.1021/acscentsci.1c01365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 06/14/2023]
Abstract
The encapsulation of genetic polymers inside lipid bilayer compartments (vesicles) is a vital step in the emergence of cell-based life. However, even though acidic conditions promote many reactions required for generating prebiotic building blocks, prebiotically relevant lipids tend to form denser aggregates at acidic pHs rather than prebiotically useful vesicles that exhibit sufficient solute encapsulation. Here, we describe how dehydration/rehydration (DR) events, a prebiotically relevant physicochemical process known to promote polymerization reactions, can remodel dense lipid aggregates into thin-walled vesicles capable of RNA encapsulation even at acidic pHs. Furthermore, DR events appear to favor the encapsulation of RNA within thin-walled vesicles over more lipid-rich vesicles, thus conferring such vesicles a selective advantage.
Collapse
Affiliation(s)
- Luke H. Steller
- School
of Biological, Earth and Environmental Sciences, UNSW Sydney, Bedegal
Country, New South Wales 2052, Australia
- Australian
Centre for Astrobiology, UNSW Sydney, Bedegal Country, New South
Wales 2052, Australia
| | - Martin J. Van Kranendonk
- School
of Biological, Earth and Environmental Sciences, UNSW Sydney, Bedegal
Country, New South Wales 2052, Australia
- Australian
Centre for Astrobiology, UNSW Sydney, Bedegal Country, New South
Wales 2052, Australia
| | - Anna Wang
- School
of Chemistry, UNSW Sydney, Bedegal Country, New South
Wales 2052, Australia
- Australian
Centre for Astrobiology, UNSW Sydney, Bedegal Country, New South
Wales 2052, Australia
| |
Collapse
|
20
|
Choudhary C, Meghwanshi KK, Shukla N, Shukla JN. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides. 3 Biotech 2021; 11:498. [PMID: 34881161 PMCID: PMC8595431 DOI: 10.1007/s13205-021-03049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing process where short interfering RNAs degrade targeted mRNA. Exploration of gene function through reverse genetics is the major achievement of RNAi discovery. Besides, RNAi can be used as a potential strategy for the control of insect pests. This has led to the idea of developing RNAi-based pesticides. Differential RNAi efficiency in the different insect orders is the biggest biological obstacle in developing RNAi-based pesticides. dsRNA stability, the sensitivity of core RNAi machinery, uptake of dsRNA and amplification and spreading of the RNAi signal are the key factors responsible for RNAi efficiency in insects. This review discusses the physiological and adaptive factors responsible for reduced RNAi in insects that pose a major challenge in developing dsRNA- based pesticides.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Nidhi Shukla
- Birla Institute of Scientific Research, Statue Circle, Prithviraj Rd, C-Scheme, Jaipur, Rajasthan 302001 India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| |
Collapse
|
21
|
Gulati GK, Panpradist N, Stewart SWA, Beck IA, Boyce C, Oreskovic AK, García-Morales C, Avila-Ríos S, Han PD, Reyes-Terán G, Starita LM, Frenkel LM, Lutz BR, Lai JJ. Inexpensive workflow for simultaneous monitoring of HIV viral load and detection of SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.18.21256786. [PMID: 34462759 PMCID: PMC8404901 DOI: 10.1101/2021.08.18.21256786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of becoming virologically unsuppressed and ill. Often they are at high risk for exposure to SARS-CoV-2 infection and severe disease once infected. For this population, it is urgent to closely monitor HIV plasma viral load ( VL ) and screen for SARS-COV-2 infection. METHOD We have developed a non-proprietary method to isolate RNA from plasma, nasal secretions ( NS ), or both. HIV, SARS-CoV-2, and human RP targets in extracted RNA are then RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status ( i . e ., HIV as VL failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). We evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-seropositive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 pooled plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house extraction to those using a commercial extraction kit. RESULTS In-house extraction had a detection limit of 200-copies/mL for HIV and 100-copies/mL for SARS-CoV-2. In-house and commercial methods yielded positively correlated HIV VL (R 2 : 0.98 for contrived samples; 0.81 for seropositive plasma). SARS-CoV-2 detection had 100% concordant classifications in contrived samples, and in clinical NS extracted by in-house method, excluding indeterminate results, was 95% concordant (25 positives, 6 presumptive positives, and 31 negatives) to those using the commercial method. Analysis of pooled plasma/NS showed R 2 of 0.91 (contrived samples) and 0.71 (clinical specimens) for HIV VL correlations obtained by both extraction methods, while SARS-CoV-2 detection showed 100% concordance in contrived and clinical specimens. INTERPRETATION Our low-cost workflow for molecular testing of HIV and SARS-CoV-2 could serve as an alternative to current standard assays for laboratories in low-resource settings.
Collapse
|
22
|
Mojarro A, Jin L, Szostak JW, Head JW, Zuber MT. In search of the RNA world on Mars. GEOBIOLOGY 2021; 19:307-321. [PMID: 33565260 PMCID: PMC8248371 DOI: 10.1111/gbi.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/17/2023]
Abstract
Advances in origins of life research and prebiotic chemistry suggest that life as we know it may have emerged from an earlier RNA World. However, it has been difficult to reconcile the conditions used in laboratory experiments with real-world geochemical environments that may have existed on the early Earth and hosted the origin(s) of life. This challenge is due to geologic resurfacing and recycling that have erased the overwhelming majority of the Earth's prebiotic history. We therefore propose that Mars, a planet frozen in time, comprised of many surfaces that have remained relatively unchanged since their formation > 4 Gya, is the best alternative to search for environments consistent with geochemical requirements imposed by the RNA world. In this study, we synthesize in situ and orbital observations of Mars and modeling of its early atmosphere into solutions containing a range of pHs and concentrations of prebiotically relevant metals (Fe2+ , Mg2+ , and Mn2+ ) spanning various candidate aqueous environments. We then experimentally determine RNA degradation kinetics due to metal-catalyzed hydrolysis (cleavage) and evaluate whether early Mars could have been permissive toward the accumulation of long-lived RNA polymers. Our results indicate that a Mg2+ -rich basalt sourcing metals to a slightly acidic (pH 5.4) environment mediates the slowest rates of RNA cleavage, though geologic evidence and basalt weathering models suggest aquifers on Mars would be near neutral (pH ~ 7). Moreover, the early onset of oxidizing conditions on Mars has major consequences regarding the availability of oxygen-sensitive metals (i.e., Fe2+ and Mn2+ ) due to increased RNA degradation rates and precipitation. Overall, (a) low pH decreases RNA cleavage at high metal concentrations; (b) acidic to neutral pH environments with Fe2+ or Mn2+ cleave more RNA than Mg2+ ; and (c) alkaline environments with Mg2+ dramatically cleaves more RNA while precipitates were observed for Fe2+ and Mn2+ .
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Lin Jin
- Department of Molecular Biology, and Center for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
| | - Jack W. Szostak
- Department of Molecular Biology, and Center for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
| | - James W. Head
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
23
|
van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney AK, Kontoravdi C, Shattock R, Shah N. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 2021; 6:65. [PMID: 33927197 PMCID: PMC8085199 DOI: 10.1038/s41541-021-00322-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Rapid-response vaccine production platform technologies, including RNA vaccines, are being developed to combat viral epidemics and pandemics. A key enabler of rapid response is having quality-oriented disease-agnostic manufacturing protocols ready ahead of outbreaks. We are the first to apply the Quality by Design (QbD) framework to enhance rapid-response RNA vaccine manufacturing against known and future viral pathogens. This QbD framework aims to support the development and consistent production of safe and efficacious RNA vaccines, integrating a novel qualitative methodology and a quantitative bioprocess model. The qualitative methodology identifies and assesses the direction, magnitude and shape of the impact of critical process parameters (CPPs) on critical quality attributes (CQAs). The mechanistic bioprocess model quantifies and maps the effect of four CPPs on the CQA of effective yield of RNA drug substance. Consequently, the first design space of an RNA vaccine synthesis bioreactor is obtained. The cost-yield optimization together with the probabilistic design space contribute towards automation of rapid-response, high-quality RNA vaccine production.
Collapse
Affiliation(s)
- Damien van de Berg
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Zoltán Kis
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Carl Fredrik Behmer
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Karnyart Samnuan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Anna K Blakney
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- University of British Columbia, Michael Smith Laboratories and School of Biomedical Engineering, Vancouver, BC, Canada
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Robin Shattock
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Nilay Shah
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK.
| |
Collapse
|
24
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
25
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
26
|
Clark BC, Kolb VM. Macrobiont: Cradle for the Origin of Life and Creation of a Biosphere. Life (Basel) 2020; 10:life10110278. [PMID: 33198206 PMCID: PMC7697624 DOI: 10.3390/life10110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Although the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter. Within such ponds, there can be substantial heterogeneity, on the vertical, horizontal, and temporal scales, which enable multi-pot prebiotic chemical evolution. Pond size-sensitivities for several figures of merit are mathematically formulated, leading to the expectation that the optimum pond size for the OoL is intermediate, but biased toward smaller sizes. Sensitivities include relative access to nutrients, energy sources, and catalysts, as sourced from geological, atmospheric, hydrospheric, and astronomical contributors. Foreshores, especially with mudcracks, are identified as a favorable component for the success of the macrobiont. To bridge the gap between inanimate matter and a planetary-scale biosphere, five stages of evolution within the macrobiont are hypothesized: prebiotic chemistry → molecular replicator → protocell → macrobiont cell → colonizer cell. Comparison of ponds with other macrobionts, including hydrothermal and meteorite settings, allows a conclusion that more than one possible macrobiont locale could enable an OoL.
Collapse
Affiliation(s)
- Benton C. Clark
- Space Science Institute, Boulder, CO 80301, USA
- Correspondence:
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| |
Collapse
|
27
|
Kunnev D. Origin of Life: The Point of No Return. Life (Basel) 2020; 10:life10110269. [PMID: 33153087 PMCID: PMC7693465 DOI: 10.3390/life10110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Origin of life research is one of the greatest scientific frontiers of mankind. Many hypotheses have been proposed to explain how life began. Although different hypotheses emphasize different initial phenomena, all of them agree around one important concept: at some point, along with the chain of events toward life, Darwinian evolution emerged. There is no consensus, however, how this occurred. Frequently, the mechanism leading to Darwinian evolution is not addressed and it is assumed that this problem could be solved later, with experimental proof of the hypothesis. Here, the author first defines the minimum components required for Darwinian evolution and then from this standpoint, analyzes some of the hypotheses for the origin of life. Distinctive features of Darwinian evolution and life rooted in the interaction between information and its corresponding structure/function are then reviewed. Due to the obligatory dependency of the information and structure subject to Darwinian evolution, these components must be locked in their origin. One of the most distinctive characteristics of Darwinian evolution in comparison with all other processes is the establishment of a fundamentally new level of matter capable of evolving and adapting. Therefore, the initiation of Darwinian evolution is the "point of no return" after which life begins. In summary: a definition and a mechanism for Darwinian evolution are provided together with a critical analysis of some of the hypotheses for the origin of life.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
28
|
Wozniak A, Cerda A, Ibarra-Henríquez C, Sebastian V, Armijo G, Lamig L, Miranda C, Lagos M, Solari S, Guzmán AM, Quiroga T, Hitschfeld S, Riveras E, Ferrés M, Gutiérrez RA, García P. A simple RNA preparation method for SARS-CoV-2 detection by RT-qPCR. Sci Rep 2020; 10:16608. [PMID: 33024174 PMCID: PMC7538882 DOI: 10.1038/s41598-020-73616-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The technique RT-qPCR for viral RNA detection is the current worldwide strategy used for early detection of the novel coronavirus SARS-CoV-2. RNA extraction is a key pre-analytical step in RT-qPCR, often achieved using commercial kits. However, the magnitude of the COVID-19 pandemic is causing disruptions to the global supply chains used by many diagnostic laboratories to procure the commercial kits required for RNA extraction. Shortage in these essential reagents is even more acute in developing countries with no means to produce kits locally. We sought to find an alternative procedure to replace commercial kits using common reagents found in molecular biology laboratories. Here we report a method for RNA extraction that takes about 40 min to complete ten samples, and is not more laborious than current commercial RNA extraction kits. We demonstrate that this method can be used to process nasopharyngeal swab samples and yields RT-qPCR results comparable to those obtained with commercial kits. Most importantly, this procedure can be easily implemented in any molecular diagnostic laboratory. Frequent testing is crucial for individual patient management as well as for public health decision making in this pandemic. Implementation of this method could maintain crucial testing going despite commercial kit shortages.
Collapse
Affiliation(s)
- Aniela Wozniak
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
| | - Ariel Cerda
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Catalina Ibarra-Henríquez
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Valentina Sebastian
- Laboratorio de Microbiología. Servicio de Laboratorios Clínicos. Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Grace Armijo
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Liliana Lamig
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Carolina Miranda
- Laboratorio de Microbiología. Servicio de Laboratorios Clínicos. Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Marcela Lagos
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
| | - Sandra Solari
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
| | - Ana María Guzmán
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
| | - Teresa Quiroga
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
| | - Susan Hitschfeld
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Eleodoro Riveras
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile
| | - Marcela Ferrés
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile
- Departamento Enfermedades Infecciosas e Inmunología Pediátrica, Escuela Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Department Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago, Chile.
| | - Patricia García
- Department Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4686, Santiago, Chile.
| |
Collapse
|
29
|
Roy S, Bapat NV, Derr J, Rajamani S, Sengupta S. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. J Theor Biol 2020; 506:110446. [PMID: 32798505 DOI: 10.1016/j.jtbi.2020.110446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
The RNA world hypothesis, although a viable one regarding the origin of life on earth, has so far failed to provide a compelling explanation for the synthesis of RNA enzymes from free nucleotides via abiotic processes. To tackle this long-standing problem, we develop a realistic model for the onset of the RNA world, using experimentally determined rates for polymerization reactions. We start with minimal assumptions about the initial state that only requires the presence of short oligomers or just free nucleotides and consider the effects of environmental cycling by dividing a day into a dry, semi-wet and wet phases that are distinguished by the nature of reactions they support. Long polymers, with maximum lengths sometimes exceeding 100 nucleotides, spontaneously emerge due to a combination of non-enzymatic, non-templated polymer extension and template-directed primer extension processes. The former helps in increasing the lengths of RNA strands, whereas the later helps in producing complementary copies of the strands. Strands also undergo hydrolysis in a structure-dependent manner that favour breaking of bonds connecting unpaired nucleotides. We identify the most favourable conditions needed for the emergence of ribozyme and tRNA-like structures and double stranded RNA molecules, classify all RNA strands on the basis of their secondary structures and determine their abundance in the population. Our results indicate that under suitable environmental conditions, non-enzymatic processes would have been sufficient to lead to the emergence of a variety of ribozyme-like molecules with complex secondary structures and potential catalytic functions.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Niraja V Bapat
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Julien Derr
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France.
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
| |
Collapse
|
30
|
Dual miRNases for Triple Incision of miRNA Target: Design Concept and Catalytic Performance. Molecules 2020; 25:molecules25102459. [PMID: 32466298 PMCID: PMC7287882 DOI: 10.3390/molecules25102459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Irreversible destruction of disease-associated regulatory RNA sequences offers exciting opportunities for safe and powerful therapeutic interventions against human pathophysiology. In 2017, for the first time we introduced miRNAses–miRNA-targeted conjugates of a catalytic peptide and oligonucleotide capable of cleaving an miRNA target. Herein, we report the development of Dual miRNases against oncogenic miR-21, miR-155, miR-17 and miR-18a, each containing the catalytic peptide placed in-between two short miRNA-targeted oligodeoxyribonucleotide recognition motifs. Substitution of adenines with 2-aminoadenines in the sequence of oligonucleotide “shoulders” of the Dual miRNase significantly enhanced the efficiency of hybridization with the miRNA target. It was shown that sequence-specific cleavage of the target by miRNase proceeded metal-independently at pH optimum 5.5–7.5 with an efficiency varying from 15% to 85%, depending on the miRNA sequence. A distinct advantage of the engineered nucleases is their ability to additionally recruit RNase H and cut miRNA at three different locations. Such cleavage proceeds at the central part by Dual miRNase, and at the 5′- and 3′-regions by RNase H, which significantly increases the efficiency of miRNA degradation. Due to increased activity at lowered pH Dual miRNases could provide an additional advantage in acidic tumor conditions and may be considered as efficient tumor-selective RNA-targeted therapeutic.
Collapse
|
31
|
Fattorini P, Bonin S, Marrubini G, Bertoglio B, Grignani P, Recchia E, Pitacco P, Zupanič Pajnič I, Sorçaburu-Ciglieri S, Previderè C. Highly degraded RNA can still provide molecular information: An in vitro approach. Electrophoresis 2020; 41:386-393. [PMID: 31967656 DOI: 10.1002/elps.201900200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
The long-term survival of RNA in postmortem tissues is a tricky topic. Many aged/forensic specimens show, in fact, high rates of null/inconclusive PCR-based results, while reliable outcomes were sometimes achieved from archaeological samples. On the other hand, several data show that the RNA is a molecule that survives even to several physical-chemical stresses. In the present study, a simple protocol, which was already developed for the prolonged hydrolysis of DNA, was applied to a RNA sample extracted from blood. This protocol is based on the heat-mediated (70°C) hydrolysis for up to 36 h using ultrapure water and di-ethyl-pyro-carbonate-water as hydrolysis medium. Measurable levels of depurination were not found even if microfluidic devices showed a progressive pattern of degradation. The reverse transcription/quantitative PCR analysis of two (60 bp long) housekeeping targets (glyceraldehyde-3-phosphate dehydrogenase and porphobilinogen deaminase) showed that the percentage of amplifiable target (%AT) decreased in relation to the duration of the damaging treatment (r2 > 0.973). The comparison of the %AT in the degraded RNA and in the DNA samples that underwent the same damaging treatment showed that the %AT is always higher in RNA, reaching up to three orders of magnitude. Lastly, even the end-point PCR of blood-specific markers gave reliable results, which is in agreement with the body fluid origin of the sample. In conclusion, all the PCR-based results show that RNA maintains the ability to be retro-transcribed in short cDNA fragments even after 36 h of incubation at 70°C in mildly acidic buffers. It is therefore likely that the long-term survival of RNA samples depends mainly on the protection against RNAase attacks rather than on environmental factors (such as humidity and acidity) that are instead of great importance for the stability of DNA. As a final remark, our results suggest that the RNA analysis can be successfully performed even when DNA profiling failed.
Collapse
Affiliation(s)
- Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Serena Bonin
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | | | - Barbara Bertoglio
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Pierangela Grignani
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Elisa Recchia
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Paola Pitacco
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Carlo Previderè
- Department of Public Health, Experimental and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
33
|
Kunte N, McGraw E, Bell S, Held D, Avila LA. Prospects, challenges and current status of RNAi through insect feeding. PEST MANAGEMENT SCIENCE 2020; 76:26-41. [PMID: 31419022 DOI: 10.1002/ps.5588] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
RNA interference is a phenomenon in which the introduction of double-stranded RNA (dsRNA) into cells triggers the degradation of the complementary messenger RNA in a sequence-specific manner. Suppressing expression of vital genes could lead to insect death, therefore this technology has been considered as a potential strategy for insect pest control. There are three main routes of dsRNA administration into insects: (i) injections to the hemolymph, (ii) topical, and (iii) feeding. In this review, we focus on dsRNA administration through feeding. We summarize novel strategies that have been developed to improve the efficacy of this method, such as the use of nano-based formulations, engineered microorganisms, and transgenic plants. We also expose the hurdles that have to be overcome in order to use this technique as a reliable pest management method. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Sydney Bell
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - David Held
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Luz-Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
34
|
Burcar B, Castañeda A, Lago J, Daniel M, Pasek MA, Hud NV, Orlando TM, Menor‐Salván C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron‐ and Cyanide‐Rich Early Earth Scenario. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bradley Burcar
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Alma Castañeda
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Jennifer Lago
- School of Geosciences University of South Florida, Tampa Tampa FL 33620 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Mischael Daniel
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Matthew A. Pasek
- School of Geosciences University of South Florida, Tampa Tampa FL 33620 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Thomas M. Orlando
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - César Menor‐Salván
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
- Dep. de Biología de Sistemas-Instituto de Investigación Química Andrés del Río (IQAR) Universidad de Alcalá 28805 Alcalá de Henares Spain
| |
Collapse
|
35
|
McCanless A, Hultgren A, Escalante C, Ardt A, Valverde RA. Effect of two digestive enzymes and pH on the dsRNA of endornaviruses of bell pepper and melon under in vitro conditions. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01530-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Purpose
The objective of this investigation was to determine the in vitro effect of two common digestive enzymes, amylase and pepsin, and pH on the integrity of the RI dsRNA of bell pepper endornavirus (BPEV) and Cucumis melo endornavirus (CmEV) evaluated by gel electrophoresis and reverse-transcription PCR (RT-PCR).
Methods
We conducted experiments on the in vitro effect of two common digestive enzymes, amylase and pepsin, and pH on the structural integrity of the replicative intermediate (RI) dsRNA of bell pepper endornavirus (BPEV) and Cucumis melo endornavirus (CmEV), evaluated by gel electrophoresis and reverse-transcription polymerase chain reaction.
Result
The effect of the amylase, pepsin, and pH treatments on the dsRNA of both viruses was similar. Amylase did not appear to affect the structural integrity of the dsRNA. In contrast, gel electrophoresis analysis of pepsin-treated dsRNA samples showed an abnormal electrophoretic migration and evidence of partial dsRNA degradation. DsRNAs from both fruits were partially degraded when exposed to a pH value of 2.0 and completely degraded at a pH value of 1.0.
Conclusion
The results of this investigation suggest that when exposed to pepsin and pH values lower than 2.0, the RI of BPEV and CmEV lose their structural integrity. Therefore, when consuming endornavirus-infected bell pepper or melon, our digestive organs are exposed to both fragmented and full RI dsRNA of these two viruses.
Collapse
|
36
|
Burcar B, Castañeda A, Lago J, Daniel M, Pasek MA, Hud NV, Orlando TM, Menor-Salván C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario. Angew Chem Int Ed Engl 2019; 58:16981-16987. [PMID: 31460687 DOI: 10.1002/anie.201908272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Organophosphates were likely an important class of prebiotic molecules. However, their presence on the early Earth is strongly debated because the low availability of phosphate, which is generally assumed to have been sequestered in insoluble calcium and iron minerals, is widely viewed as a major barrier to organophosphate generation. Herein, we demonstrate that cyanide (an essential prebiotic precursor) and urea-based solvents could promote nucleoside phosphorylation by transforming insoluble phosphate minerals in a "warm little pond" scenario into more soluble and reactive species. Our results suggest that cyanide and its derivatives (metal cyanide complexes, urea, ammonium formate, and formamide) were key reagents for the participation of phosphorus in chemical evolution. These results allow us to propose a holistic scenario in which an evaporitic environment could concentrate abiotically formed organics and transform the underlying minerals, allowing significant organic phosphorylation under plausible prebiotic conditions.
Collapse
Affiliation(s)
- Bradley Burcar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Alma Castañeda
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Jennifer Lago
- School of Geosciences, University of South Florida, Tampa, Tampa, FL, 33620, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Mischael Daniel
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Matthew A Pasek
- School of Geosciences, University of South Florida, Tampa, Tampa, FL, 33620, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Thomas M Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - César Menor-Salván
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,Dep. de Biología de Sistemas-Instituto de Investigación Química Andrés del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| |
Collapse
|
37
|
Swanson-Mungerson M, Williams PG, Gurr JR, Incrocci R, Subramaniam V, Radowska K, Hall ML, Mayer AMS. Biochemical and Functional Analysis of Cyanobacterium Geitlerinema sp. LPS on Human Monocytes. Toxicol Sci 2019; 171:421-430. [PMID: 31271425 PMCID: PMC6760288 DOI: 10.1093/toxsci/kfz153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacterial blooms are an increasing source of environmental toxins that affect both human and animals. After ingestion of cyanobacteria, such as Geitlerinema sp., toxins and lipopolysaccharide (LPS) from this organism induce fever, gastrointestinal illness, and even death. However, little is known regarding the effects of cyanobacterial LPS on human monocytes after exposure to LPS upon ingestion. Based on our previous data using Geitlerinema sp. LPS (which was previously named Oscillatoria sp., a genus belonging to the same order as Geitlerinema), we hypothesized that Geitlerinema sp. LPS would activate human monocytes to proliferate, phagocytose particles, and produce cytokines that are critical for promoting proinflammatory responses in the gut. Our data demonstrate that Geitlerinema sp. LPS induced monocyte proliferation and TNF-α, IL-1, and IL-6 production at high concentrations. In contrast, Geitlerinema sp. LPS is equally capable of inducing monocyte-mediated phagocytosis of FITC-latex beads when compared with Escherichia coli LPS, which was used as a positive control for our experiments. In order to understand the mechanism responsible for the difference in efficacy between Geitlerinema sp. LPS and E. coli LPS, we performed biochemical analysis and identified that Geitlerinema sp. LPS was composed of significantly different sugars and fatty acid side chains in comparison to E. coli LPS. The lipid A portion of Geitlerinema sp. LPS contained longer fatty acid side chains, such as C15:0, C16:0, and C18:0, instead of C12:0 found in E. coli LPS which may explain the decreased efficacy and toxicity of Geitlerinema sp. LPS in comparison to E. coli LPS.
Collapse
Affiliation(s)
- Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Philip G Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Joshua R Gurr
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | | | | | - Mary L Hall
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Alejandro M S Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| |
Collapse
|
38
|
Maraldi NM. In search of a primitive signaling code. Biosystems 2019; 183:103984. [PMID: 31201829 DOI: 10.1016/j.biosystems.2019.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Cells must have preceded by simpler chemical systems (protocells) that had the capacity of a spontaneous self-assembly process and the ability to confine chemical reaction networks together with a form of information. The presence of lipid molecules in the early Earth conditions is sufficient to ensure the occurrence of spontaneous self-assembly processes, not defined by genetic information, but related to their chemical amphiphilic nature. Ribozymes are plausible molecules for early life, being the first small polynucleotides made up of random oligomers or formed by non-enzymatic template copying. Compartmentalization represents a strategy for the evolution of ribozymes; the attachment of ribozymes to surfaces, such as formed by lipid micellar aggregates may be particular relevant if the surface itself catalyzes RNA polymerization.It is conceivable that the transition from pre-biotic molecular aggregates to cellular life required the coevolution of the RNA world, capable of synthesizing specific, instead of statistical proteins, and of the Lipid world, with a transition from micellar aggregates to semipermeable vesicles. Small molecules available in the prebiotic inventory might promote RNA stability and the evolution of hydrophobic micellar aggregates into membrane-delimited vesicles. The transition from ribozymes catalyzing the assembly of statistical polypeptides to the synthesis of proteins, required the appearance of the genetic code; the transition from hydrophobic platforms favoring the stability of ribozymes and of nascent polypeptides to the selective transport of reagents through a membrane, required the appearance of the signal transduction code.A further integration between the RNA and Lipid worlds can be advanced, taking into account the emerging roles of phospholipid aggregates not only in ensuring stability to ribozymes by compartmentalization, but also in a crucial step of evolution through natural selection mechanisms, based on signal transduction pathways that convert environmental changes into biochemical responses that could vary according to the context. Here I present evidences on the presence of traces of the evolution of a signal transduction system in extant cells, which utilize a phosphoinositide signaling system located both at nucleoplasmic level as well as at the plasma membrane, based on the very same molecules but responding to different rules. The model herewith proposed is based on the following assumptions on the biomolecules of extant organisms: i) amphiphils can be converted into structured aggregates by hydrophobic forces thus giving rise to functional platforms for the interaction of other biomolecules and to their compartmentalization; ii) fundamental biochemical pathways, including protein synthesis, can be sustained by natural ribozymes of ancient origin; iii) ribozymes and nucleotide-derived coenzymes could have existed long before protein enzymes emerged; iv) signaling molecules, both derived from phospholipids and from RNAs could have guided the evolution of complex metabolic processes before the emergence of proteins.
Collapse
Affiliation(s)
- Nadir M Maraldi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
39
|
Wang B. The RNA i-Motif in the Primordial RNA World. ORIGINS LIFE EVOL B 2019; 49:105-109. [PMID: 31127498 DOI: 10.1007/s11084-019-09576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.
Collapse
Affiliation(s)
- Bin Wang
- Byrd Biotechnology Science Center, Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
40
|
Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2019; 75:18-28. [PMID: 29931761 DOI: 10.1002/ps.5126] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is an endogenous, sequence-specific gene-silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. Recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
41
|
Kunnev D, Gospodinov A. Possible Emergence of Sequence Specific RNA Aminoacylation via Peptide Intermediary to Initiate Darwinian Evolution and Code Through Origin of Life. Life (Basel) 2018; 8:E44. [PMID: 30279401 PMCID: PMC6316189 DOI: 10.3390/life8040044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
Abstract
One of the most intriguing questions in biological science is how life originated on Earth. A large number of hypotheses have been proposed to explain it, each putting an emphasis on different events leading to functional translation and self-sustained system. Here, we propose a set of interactions that could have taken place in the prebiotic environment. According to our hypothesis, hybridization-induced proximity of short aminoacylated RNAs led to the synthesis of peptides of random sequence. We postulate that among these emerged a type of peptide(s) capable of stimulating the interaction between specific RNAs and specific amino acids, which we call "bridge peptide" (BP). We conclude that translation should have emerged at the same time when the standard genetic code begun to evolve due to the stabilizing effect on RNA-peptide complexes with the help of BPs. Ribosomes, ribozymes, and the enzyme-directed RNA replication could co-evolve within the same period, as logical outcome of RNA-peptide world without the need of RNA only self-sustained step.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Roswell Park Cancer Institute, Department of Molecular & Cellular Biology, Buffalo, NY 14263, USA.
| | - Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, Sofia 1113, Bulgaria.
| |
Collapse
|
42
|
Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J. Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 2017; 1:1716-1721. [PMID: 28970480 PMCID: PMC5659384 DOI: 10.1038/s41559-017-0311-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
Abstract
The rTCA cycle (also known as the reverse Krebs cycle) is a central anabolic biochemical pathway whose origins are proposed to trace back to geochemistry, long before the advent of enzymes, RNA or cells, and whose imprint still remains intimately embedded in the structure of core metabolism. If it existed, a primordial version of the rTCA cycle would necessarily have been catalyzed by naturally occurring minerals at the earliest stage of the transition from geochemistry to biochemistry. Here we report non-enzymatic promotion of multiple reactions of the rTCA cycle in consecutive sequence, whereby 6 of its 11 reactions are promoted by Zn2+, Cr3+ and Fe0 in an acidic aqueous solution. Two distinct three-reaction sequences can be achieved under a common set of conditions. Selectivity is observed for reduction reactions producing rTCA cycle intermediates compared to those leading off-cycle. Reductive amination of ketoacids to furnish amino acids is observed under similar conditions. The emerging reaction network supports the feasibility of primitive anabolism in an acidic, metal-rich reducing environment.
Collapse
Affiliation(s)
- Kamila B Muchowska
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France
| | - Sreejith J Varma
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France
| | - Elodie Chevallot-Beroux
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France
| | - Lucas Lethuillier-Karl
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France
| | - Guang Li
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France
| | - Joseph Moran
- Institute of Supramolecular Science and Engineering (ISIS UMR 7006), University of Strasbourg, National Center for Scientific Research (CNRS), F-67000, Strasbourg, France.
| |
Collapse
|
43
|
Double Hydrogen Bonding between Side Chain Carboxyl Groups in Aqueous Solutions of Poly (β-L-Malic Acid): Implication for the Evolutionary Origin of Nucleic Acids. Life (Basel) 2017; 7:life7030035. [PMID: 29061955 PMCID: PMC5617960 DOI: 10.3390/life7030035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 01/09/2023] Open
Abstract
The RNA world hypothesis holds that in the evolutionary events that led to the emergence of life RNA preceded proteins and DNA and is supported by the ability of RNA to act as both a genetic polymer and a catalyst. On the other hand, biosynthesis of nucleic acids requires a large number of enzymes and chemical synthesis of RNA under presumed prebiotic conditions is complicated and requires many sequential steps. These observations suggest that biosynthesis of RNA is the end product of a long evolutionary process. If so, what was the original polymer from which RNA and DNA evolved? In most syntheses of simpler RNA or DNA analogs, the D-ribose phosphate polymer backbone is altered and the purine and pyrimidine bases are retained for hydrogen bonding between complementary base pairs. However, the bases are themselves products of complex biosynthetic pathways and hence they too may have evolved from simpler polymer side chains that had the ability to form hydrogen bonds. We hypothesize that the earliest evolutionary predecessor of nucleic acids was the simple linear polyester, poly (β-D-malic acid), for which the carboxyl side chains could form double hydrogen bonds. In this study, we show that in accord with this hypothesis a closely related polyester, poly (β-L-malic acid), uses carboxyl side chains to form robust intramolecular double hydrogen bonds in moderately acidic solution.
Collapse
|
44
|
Mojarro A, Ruvkun G, Zuber MT, Carr CE. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection. ASTROBIOLOGY 2017; 17:747-760. [PMID: 28704064 PMCID: PMC5567878 DOI: 10.1089/ast.2016.1535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life. Life (Basel) 2016; 6:life6010012. [PMID: 26999216 PMCID: PMC4810243 DOI: 10.3390/life6010012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets.
Collapse
|
46
|
Abstract
The methodological status of origin-of-life research as an experimental science, predicated on deductive logic, is assessed and illustrated by recent examples.
Collapse
|
47
|
Ma W, Yu C, Zhang W, Wu S, Feng Y. The emergence of DNA in the RNA world: an in silico simulation study of genetic takeover. BMC Evol Biol 2015; 15:272. [PMID: 26643199 PMCID: PMC4672488 DOI: 10.1186/s12862-015-0548-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is now popularly accepted that there was an "RNA world" in early evolution of life. This idea has a direct consequence that later on there should have been a takeover of genetic material - RNA by DNA. However, since genetic material carries genetic information, the "source code" of all living activities, it is actually reasonable to question the plausibility of such a "revolutionary" transition. Due to our inability to model relevant "primitive living systems" in reality, it is as yet impossible to explore the plausibility and mechanisms of the "genetic takeover" by experiments. RESULTS Here we investigated this issue by computer simulation using a Monte-Carlo method. It shows that an RNA-by-DNA genetic takeover may be triggered by the emergence of a nucleotide reductase ribozyme with a moderate activity in a pure RNA system. The transition is unstable and limited in scale (i.e., cannot spread in the population), but can get strengthened and globalized if certain parameters are changed against RNA (i.e., in favor of DNA). In relation to the subsequent evolution, an advanced system with a larger genome, which uses DNA as genetic material and RNA as functional material, is modeled - the system cannot sustain if the nucleotide reductase ribozyme is "turned off" (thus, DNA cannot be synthesized). Moreover, the advanced system cannot sustain if only DNA's stability, template suitability or replication fidelity (any of the three) is turned down to the level of RNA's. CONCLUSIONS Genetic takeover should be plausible. In the RNA world, such a takeover may have been triggered by the emergence of some ribozyme favoring the formation of deoxynucleotides. The transition may initially have been "weak", but could have been reinforced by environmental changes unfavorable to RNA (such as temperature or pH rise), and would have ultimately become irreversible accompanying the genome's enlargement. Several virtues of DNA (versus RNA) - higher stability against hydrolysis, greater suitability as template and higher fidelity in replication, should have, each in its own way, all been significant for the genetic takeover in evolution. This study enhances our understandings of the relationship between information and material in the living world.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China.
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Wentao Zhang
- College of Computer Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Sanmao Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China
| |
Collapse
|
48
|
Kitadai N. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments. ORIGINS LIFE EVOL B 2015; 45:377-409. [PMID: 25796392 DOI: 10.1007/s11084-015-9428-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023]
Abstract
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
Collapse
Affiliation(s)
- Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan,
| |
Collapse
|
49
|
Ball R, Brindley J. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J R Soc Interface 2015; 12:20150366. [PMID: 26202683 PMCID: PMC4535408 DOI: 10.1098/rsif.2015.0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
50
|
Hassoun A, Huff MD, Weisman D, Chahal K, Asis E, Stalons D, Grigorenko E, Green J, Malone LL, Clemmons S, Lu S. Seasonal variation of respiratory pathogen colonization in asymptomatic health care professionals: A single-center, cross-sectional, 2-season observational study. Am J Infect Control 2015; 43:865-70. [PMID: 26052103 PMCID: PMC7115326 DOI: 10.1016/j.ajic.2015.04.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND The purpose of this study was to determine the seasonal variance of potentially pathogenic bacterial and viral organisms in nasopharyngeal specimens obtained from asymptomatic health care professionals (HCPs) during the 2014 winter and summer months. METHODS Nasopharyngeal specimens from 100 HCPs were collected from Huntsville Hospital (Huntsville, AL) during the winter and from 100 HCPs during the summer. All subjects were tested for 22 viruses and 19 bacteria using Target Enriched Multiplex Polymerase Chain Reaction. Both seasonal cohorts were composed of students, nurses, physicians, and residents. RESULTS Of the 100 HCPs tested during the winter, 34 subjects were colonized with at least 1 bacterium, and 11 tested positive for at least 1 virus. Methicillin-resistant Staphylococcus aureus (MRSA), Moraxella catarrhalis, and coronavirus were the most frequently detected potentially infectious agents. Of the 100 HCPs tested during the summer, 37 tested positive for at least 1 bacterium, and 4 tested positive for a viral agent. The most prevalent bacteria were MRSA and Klebsiella pneumonia. CONCLUSION Nasopharyngeal carriage among asymptomatic HCPs was common, but the frequency and presence of potential pathogens varied with each season. Understanding the colonization and infection potential of upper respiratory organisms is important, particularly for viruses. Although asymptomatic HCPs certainly harbor a number of different potentially infectious agents, future studies are needed to determine whether colonized pathogens are transmitted or initiate infection in at-risk patient populations.
Collapse
|