1
|
Chen G, Chen Z. LINC01518 predicts poor prognosis of prostate cancer and promotes its progression by regulating hsa-miR-320a/CNKSR2 axis. Discov Oncol 2024; 15:576. [PMID: 39432224 PMCID: PMC11493929 DOI: 10.1007/s12672-024-01458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy of the male genitourinary system. Understanding the molecular mechanism of PCa and its prognostic markers will assist in the selection of better treatment. AIM To explore the role of LINC01518 in the development of PCa and its prognostic value, and to understand its specific regulatory mechanism. METHODS The levels of LINC01518, hsa-miR-320a, and CNKSR2 mRNA were detected by RT-qPCR. ROC curve was constructed to evaluate the prognostic value of LINC01518 in PCa. The effects of LINC01518 on the functions of PCa cells were demonstrated by CCK-8, Transwell test, and the detection of apoptotic markers, after LINC01518 knockdown. The interaction between hsa-miR-320a and LINC01518 or CNKSR2 mRNA was examined by constructing luciferase vectors. RESULTS LINC01518 was abnormally expressed in PCa cells and tumor tissues, and knockdown of it inhibited the growth of PCa cells. LINC01518 predicted castration-resistant prostate cancer (CRPC) outcomes in PCa patients with AUC of 0.803, sensitivity and specificity of 75.4% and 74.6%, respectively. Hsa-miR-320a mimics reduced luciferase activity in PCa cells transfected with WT-LINC01518/CNKSR2 plasmids. Knocking down LINC01518 reduced CNKSR2 level, and this regulatory effect disappeared with the inhibition of hsa-miR-320a. CONCLUSION High levels of LINC01518 predicted poor prognosis in PCa patients and promoted CNKSR2 expression by competitively binding hsa-miR-320a, contributing to the progression of PCa.
Collapse
Affiliation(s)
- Guodong Chen
- Center for Reproductive Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Zixin Chen
- The Science and Education Department, Nantong Rici Hospital, Nantong Rici Hospital Affiliated to Yangzhou University, No. 2000, Xinghu Avenue, Economic and Technological Development Zone, Nantong, 226000, China.
| |
Collapse
|
2
|
Yu L, Chen Y, Chen Y, Luo K. The crosstalk between metabolic reprogramming and epithelial-mesenchymal transition and their synergistic roles in distant metastasis in breast cancer. Medicine (Baltimore) 2024; 103:e38462. [PMID: 38875364 PMCID: PMC11175907 DOI: 10.1097/md.0000000000038462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Metabolic reprogramming (MR) and epithelial-mesenchymal transition (EMT) are crucial phenomena involved in the distant metastasis of breast cancer (BRCA). This study aims to assess the risk of distant metastasis in BRCA patients based on MR and EMT processes and investigate their underlying mechanisms. METHODS Gene sets related to EMT and MR were downloaded. MR-related genes (MRG) and EMT-related genes (ERG) were obtained. Principal Component Analysis method was used to define the EMT Potential Index (EPI) and MR Potential Index (MPI) to quantify the EMT and MR levels in each tumor tissue. A linear scoring model, the Metastasis Score, was derived using the union of MRGs and ERGs to evaluate the risk of distant metastasis/recurrence in BRCA. The Metastasis Score was then validated in multiple datasets. Additionally, our study explored the underlying mechanism of the Metastasis Score and its association with tumor immunity, focusing on HPRT1 gene expression in breast cancer tissues of transfer and untransferred groups using experimental methods. RESULTS A total of 59 MRGs and 30 ERGs were identified in the present study. Stratifying the dataset based on EPI and MPI revealed significantly lower survival rates (P < .05) in the MPI_high and EPI_high groups. Kaplan-Meier analysis indicated the lowest survival rate in the EPI-high + MPI-high group. The Metastasis Score demonstrated its ability to distinguish prognoses in GSE2034, GSE17705, and TCGA-BRCA datasets. Additionally, differences in mutated genes were found between the high- and the low-Metastasis Score groups, displaying significant associations with immune cell infiltration and anti-tumor immune status. Notably, the 13 genes included in the Metastasis Score showed a strong association with prognosis and tumor immunity. Immunohistochemistry and western blot results revealed high expression of the HPRT1 gene in the transfer group. CONCLUSION This study established the Metastasis Score as a reliable tool for evaluating the risk of distant metastasis/recurrence in BRCA patients. Additionally, we identified key genes involved in MR and EMT crosstalk, offering valuable insights into their roles in tumor immunity and other relevant aspects.
Collapse
Affiliation(s)
- Liyan Yu
- Department of Breast Surgery, Guangdong Medical University Affiliated Hospital, Zhanjiang, P.R. China
| | | | | | | |
Collapse
|
3
|
Weinberg J, Whitcomb E, Bohm A, Chekkilla UK, Taylor A. The E3 ligase SMURF1 stabilizes p27 via UbcH7 catalyzed K29-linked ubiquitin chains to promote cell migration SMURF1-UbcH7 K29 ubiquitination of p27 and cell migration. J Biol Chem 2024; 300:105693. [PMID: 38301893 PMCID: PMC10897894 DOI: 10.1016/j.jbc.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Ubiquitination is a key regulator of protein stability and function. The multifunctional protein p27 is known to be degraded by the proteasome following K48-linked ubiquitination. However, we recently reported that when the ubiquitin-conjugating enzyme UbcH7 (UBE2L3) is overexpressed, p27 is stabilized, and cell cycle is arrested in multiple diverse cell types including eye lens, retina, HEK-293, and HELA cells. However, the ubiquitin ligase associated with this stabilization of p27 remained a mystery. Starting with an in vitro ubiquitination screen, we identified RSP5 as the yeast E3 ligase partner of UbcH7 in the ubiquitination of p27. Screening of the homologous human NEDD4 family of E3 ligases revealed that SMURF1 but not its close homolog SMURF2, stabilizes p27 in cells. We found that SMURF1 ubiquitinates p27 with K29O but not K29R or K63O ubiquitin in vitro, demonstrating a strong preference for K29 chain formation. Consistent with SMURF1/UbcH7 stabilization of p27, we also found that SMURF1, UbcH7, and p27 promote cell migration, whereas knockdown of SMURF1 or UbcH7 reduces cell migration. We further demonstrated the colocalization of SMURF1/p27 and UbcH7/p27 at the leading edge of migrating cells. In sum, these results indicate that SMURF1 and UbcH7 work together to produce K29-linked ubiquitin chains on p27, resulting in the stabilization of p27 and promoting its cell-cycle independent function of regulating cell migration.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Elizabeth Whitcomb
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Andrew Bohm
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Uday Kumar Chekkilla
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University.
| |
Collapse
|
4
|
Li G, Chen Q, Hong S, Yang X, Liang X, Yang J. CNKSR2 expression is correlated with immune infiltrates in Cervical Cancer as a favorable prognostic factor. J Cancer 2024; 15:444-455. [PMID: 38169557 PMCID: PMC10758040 DOI: 10.7150/jca.87622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Connector enhancer of kinase suppressor of Ras 2 (CNKSR2) is a scaffold protein that mediates mitogen-activated protein kinase pathways. However, the molecular function of CNKSR2 in cervical squamous cell carcinoma (CESC) remains unknown. This study aimed to characterize the role of CNKSR2 in patients with CESC. Immunohistochemistry revealed that the expression of CNKSR2 in CESCs is relatively low compared with that in normal cells. We also explored the gene expression profile of high- and low-CNKSR2 expression in patients with cervical cancer. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the expression of CNKSR2 was upregulated in synapse assembly, which was coordinately regulated using the cAMP signaling pathway and calcium signaling pathway. The correlation between CNKSR2 and cancer immune cell infiltration was investigated via single-sample gene set enrichment analysis (ssGSEA). High CNKSR2 expression was associated with better overall survival (OS) and disease-free survival (DFS). Interestingly, high CNKSR2 expression was a good predictor of the survival outcome in cervical cancer patients. Additionally, CNKSR2 expression was strongly correlated with diverse immune cells in CESCs, including NK cells and T cells. These findings suggest that CNKSR2 is correlated with prognosis and immune infiltration, laying the foundation for future studies on the functional role of CNKSR2 in CESC.
Collapse
Affiliation(s)
- Guangxiao Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Qiaoqiao Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shihao Hong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Xiaoli Yang
- Department of Obstetrics and Gynecology, Huzhou Nanxun People's Hospital, Huzhou,313009, China
| | - Xiaoling Liang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province Assisted Reproduction Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
| |
Collapse
|
5
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
6
|
Zhang R, Shi S. The role of NEDD4 related HECT-type E3 ubiquitin ligases in defective autophagy in cancer cells: molecular mechanisms and therapeutic perspectives. Mol Med 2023; 29:34. [PMID: 36918822 PMCID: PMC10015828 DOI: 10.1186/s10020-023-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
The homologous to the E6-AP carboxyl terminus (HECT)-type E3 ubiquitin ligases are the selective executers in the protein ubiquitination, playing a vital role in modulation of the protein function and stability. Evidence shows the regulatory role of HECT-type E3 ligases in various steps of the autophagic process. Autophagy is an intracellular digestive and recycling process that controls the cellular hemostasis. Defective autophagy is involved in tumorigenesis and has been detected in various types of cancer cells. A growing body of findings indicates that HECT-type E3 ligases, in particular members of the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) including NEDD4-1, NEDD4-L, SMURFs, WWPs, and ITCH, play critical roles in dysregulation or dysfunction of autophagy in cancer cells. The present review focuses on NEDD4 E3 ligases involved in defective autophagy in cancer cells and discusses their autophagic function in different cancer cells as well as substrates and the signaling pathways in which they participate, conferring a basis for the cancer treatment through the modulating of these E3 ligases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thoracic Surgery, The Seventh People's Hospital of Chengdu, Chengdu, 610021, Sichuan, People's Republic of China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
7
|
Tumor-suppressive role of Smad ubiquitination regulatory factor 2 in patients with colorectal cancer. Sci Rep 2022; 12:5495. [PMID: 35361871 PMCID: PMC8971512 DOI: 10.1038/s41598-022-09390-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Smad ubiquitination regulatory factor 2 (Smurf2) plays various roles in cancer progression. However, the correlation between Smurf2 and clinical outcomes has not been determined in patients diagnosed with colorectal cancer and colorectal liver metastases. We analyzed 66 patients with colorectal cancer who developed liver metastases. Smurf2 expression was assessed using immunohistochemical analysis of primary and metastatic liver tumors. High Smurf2 expression in both primary and metastatic tumors was significantly associated with longer overall survival time and time to surgical failure. Multivariate analyses revealed that low Smurf2 expression in primary tumors was an independent predictor of poor prognosis. In vitro experiments using colon cancer cell lines demonstrated that short interfering RNA knockdown of Smurf2 increased cell migration and tumor sphere formation. Western blot analyses revealed that Smurf2 knockdown increased the protein expression of epithelial cell adhesion molecule (EpCAM). Thus, in summary, high Smurf2 expression in cancer cells was found to be an independent predictor of better prognosis in patients with primary colorectal cancer and consequent liver metastases. The tumor-suppressive role of Smurf2 was found to be associated with cell migration and EpCAM expression; hence, Smurf2 can be considered a positive biomarker of cancer stem cell-like properties.
Collapse
|
8
|
Song D, Li S, Ning L, Zhang S, Cai Y. Smurf2 suppresses the metastasis of hepatocellular carcinoma via ubiquitin degradation of Smad2. Open Med (Wars) 2022; 17:384-396. [PMID: 35509688 PMCID: PMC8874264 DOI: 10.1515/med-2022-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose Smurf2, one of C2-WW-HECT domain E3 ubiquitin ligases, is closely related to the development and progression in different cancer types, including hepatocellular carcinoma (HCC). This study aims to illustrate the expression and molecular mechanism of Smurf2 in regulating the progression of HCC. Methods The expression of Smurf2 in human HCC and adjacent non-tumor liver specimens was detected using tissue microarray studies from 220 HCC patients who underwent curative resection. The relationships of Smurf2 and HCC progression and survival were analyzed using the chi-square test, Kaplan–Meier analysis, and Cox proportional hazards model. For Smurf2 was low expression in HCC cell lines, Smurf2 overexpression cell lines were established. The effect of Smurf2 on cell proliferation and migration was detected by Cell Counting Kit-8 and colony formation assay, and the epithelial–mesenchymal transition (EMT) markers and its transcription factors were tested by immunoblotting. The interaction and ubiquitination of Smad2 by Smurf2 were detected by co-immunoprecipitation and immunoprecipitation assay. Finally, the effect of Smurf2 on HCC was verified using the mouse lung metastasis model. Results Smurf2 was downregulated in HCC tissues compared to that of corresponding non-tumor liver specimens. The low expression of Smurf2 in HCC was significantly associated with macrovascular or microvascular tumor thrombus and the impairment of overall survival and disease-free survival. In vitro and in vivo analysis showed that Smurf2 overexpression decreased the EMT potential of HCC cells by promoting the ubiquitination of Smad2 via the proteasome-dependent degradation pathway. Conclusion The expression of Smurf2 was downregulated in HCC specimens and affected the survival of patients. Smurf2 inhibited the EMT of HCC by enhancing Smad2 ubiquitin-dependent proteasome degradation.
Collapse
Affiliation(s)
- Dongqiang Song
- Liver Cancer Institute, Zhongshan Hospital of Fudan University , Xuhui District , Shanghai , P. R. China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University , Xuhui District , Shanghai , P. R. China
| | - Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University , Xuhui District , Shanghai , P. R. China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University , Xuhui District , Shanghai , P. R. China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University , Xuhui District , Shanghai , P. R. China
| |
Collapse
|
9
|
Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells 2022; 11:cells11020303. [PMID: 35053419 PMCID: PMC8774548 DOI: 10.3390/cells11020303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The Connector Enhancer of Kinase Suppressor of Ras-2 (CNKSR2), also known as CNK2 or MAGUIN, is a scaffolding molecule that contains functional protein binding domains: Sterile Alpha Motif (SAM) domain, Conserved Region in CNK (CRIC) domain, PSD-95/Dlg-A/ZO-1 (PDZ) domain, Pleckstrin Homology (PH) domain, and C-terminal PDZ binding motif. CNKSR2 interacts with different molecules, including RAF1, ARHGAP39, and CYTH2, and regulates the Mitogen-Activated Protein Kinase (MAPK) cascade and small GTPase signaling. CNKSR2 has been reported to control the development of dendrite and dendritic spines in primary neurons. CNKSR2 is encoded by the CNKSR2 gene located in the X chromosome. CNKSR2 is now considered as a causative gene of the Houge type of X-linked syndromic mental retardation (MRXHG), an X-linked Intellectual Disability (XLID) that exhibits delayed development, intellectual disability, early-onset seizures, language delay, attention deficit, and hyperactivity. In this review, we summarized molecular features, neuronal function, and neurodevelopmental disorder-related variations of CNKSR2.
Collapse
|
10
|
Ito H, Morishita R, Noda M, Ishiguro T, Nishikawa M, Nagata KI. The synaptic scaffolding protein CNKSR2 interacts with CYTH2 to mediate hippocampal granule cell development. J Biol Chem 2021; 297:101427. [PMID: 34800437 DOI: 10.1016/j.jbc.2021.101427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tomoki Ishiguro
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
11
|
Wang Y, Dai J, Zeng Y, Guo J, Lan J. E3 Ubiquitin Ligases in Breast Cancer Metastasis: A Systematic Review of Pathogenic Functions and Clinical Implications. Front Oncol 2021; 11:752604. [PMID: 34745984 PMCID: PMC8569917 DOI: 10.3389/fonc.2021.752604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Female breast cancer has become the most commonly occurring cancer worldwide. Although it has a good prognosis under early diagnosis and appropriate treatment, breast cancer metastasis drastically causes mortality. The process of metastasis, which includes cell epithelial–mesenchymal transition, invasion, migration, and colonization, is a multistep cascade of molecular events directed by gene mutations and altered protein expressions. Ubiquitin modification of proteins plays a common role in most of the biological processes. E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer cells, including breast cancer metastasis. In this review, we provide an overview of these ligases, summarize the metastatic processes in which E3s are involved, and comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast cancer patients. Finally, we consider how our knowledge can be used for E3s’ potency in the therapeutic intervention or prognostic assessment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yingshuang Wang
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Dai
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqin Zeng
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ma M, Yang W, Cai Z, Wang P, Li H, Mi R, Jiang Y, Xie Z, Sui P, Wu Y, Shen H. SMAD-specific E3 ubiquitin ligase 2 promotes angiogenesis by facilitating PTX3 degradation in MSCs from patients with ankylosing spondylitis. STEM CELLS (DAYTON, OHIO) 2021; 39:581-599. [PMID: 33547700 PMCID: PMC8248389 DOI: 10.1002/stem.3332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Dysregulated angiogenesis of mesenchymal stem cells (MSCs) is closely related to inflammation and disrupted bone metabolism in patients with various autoimmune diseases. However, the role of MSCs in the development of abnormal angiogenesis in patients with ankylosing spondylitis (AS) remains unclear. In this study, we cultured human umbilical vein endothelial cells (HUVECs) with bone marrow-derived MSCs from patients with AS (ASMSCs) or healthy donors (HDMSCs) in vitro. Then, the cocultured HUVECs were assayed using a cell counting kit-8 (CCK-8) to evaluate the cell proliferation. A wound healing assay was performed to investigate cell migration, and a tube formation assay was conducted to determine the angiogenesis efficiency. ASMSCs exhibited increased angiogenesis, and increased expression of SMAD-specific E3 ubiquitin ligase 2 (Smurf2) in MSCs was the main cause of abnormal angiogenesis in patients with AS. Downregulation of Smurf2 in ASMSCs blocked angiogenesis, whereas overexpression of Smurf2 in HDMSCs promoted angiogenesis. The pro-angiogenic effect of Smurf2 was confirmed by the results of a Matrigel plug assay in vivo. By functioning as an E3 ubiquitin ligase in MSCs, Smurf2 regulated the levels of pentraxin 3 (PTX3), which has been shown to suppress angiogenesis through the PTX3-fibroblast growth factor 2 pathway. Moreover, Smurf2 transcription was regulated by activating transcription factor 4-induced endoplasmic reticulum stress. In conclusion, these results identify novel roles of Smurf2 in negatively regulating PTX3 stability and promoting angiogenesis in ASMSCs.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
14
|
Guo Y, Li X, He Z, Ma D, Zhang Z, Wang W, Xiong J, Kuang X, Wang J. HDAC3 Silencing Enhances Acute B Lymphoblastic Leukaemia Cells Sensitivity to MG-132 by Inhibiting the JAK/Signal Transducer and Activator of Transcription 3 Signaling Pathway. Chemotherapy 2020; 65:85-100. [PMID: 32966974 DOI: 10.1159/000500713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE HDAC3, which is associated with smurf2, has been shown to be associated with poor prognosis in B-ALL. This study examined the efficacy of targeting HDAC3 combined with MG-132 as a possible therapeutic strategy for B-ALL patients. METHODS Real-time PCR and western blot were used to measure the expression of smurf2 and HDAC3 from B-ALL patients bone marrow samples. Sup-B15 and CCRF-SB cells were treated with MG-132, small interfering RNA of smurf2 or HDAC3. A plasmid designed to up-regulate smurf2 expression was transfected into B-ALL cells. Flow cytometry and western blot were used to measure variation due to these treatments in terms of apoptosis and cell cycle arrest. RESULTS Expression of Smurf2 and HDAC3 mRNA were inversely related in B-ALL patients. Up-regulation of smurf2 or MG-132 influenced HDAC3, further inhibiting the JAK/signal transducer and activator of transcription 3 (STAT3) signal pathway and inducing apoptosis in B-ALL cells. When we treated Sup-B15 and CCRF-SB cells with siHDAC3 and MG-132 for 24 h, silencing HDAC3 enhanced the apoptosis rate induced by MG-132 in B-ALL cells and further inhibited the JAK/STAT3 pathway. Furthermore, MG-132 was observed to cause G2/M phase arrest in B-ALL cells and inhibited the JAK/STAT3 pathway, leading to apoptosis. CONCLUSIONS Silencing of HDAC3 enhanced the sensitivity of B-ALL cells to MG-132. The combination of targeting HDAC3 and MG-132 may provide a new avenue for clinical treatment of acute B lymphocytic leukaemia and improve the poor survival of leukaemia patients.
Collapse
Affiliation(s)
- Yongling Guo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hematology, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, China
| | - Xinyao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhengchang He
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China
| | - Zhaoyuan Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Weili Wang
- College of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Xiong
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China
| | - Xinyi Kuang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, China,
| |
Collapse
|
15
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
16
|
de la Ballina NR, Villalba A, Cao A. Differences in proteomic profile between two haemocyte types, granulocytes and hyalinocytes, of the flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2020; 100:456-466. [PMID: 32205190 DOI: 10.1016/j.fsi.2020.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Haemocytes play a dominant role in shellfish immunity, being considered the main defence effector cells in molluscs. These cells are known to be responsible for many functions, including chemotaxis, cellular recognition, attachment, aggregation, shell repair and nutrient transport and digestion. There are two basic cell types of bivalve haemocytes morphologically distinguishable, hyalinocytes and granulocytes; however, functional differences and specific abilities are poorly understood: granulocytes are believed to be more efficient in killing microorganisms, while hyalinocytes are thought to be more specialised in clotting and wound healing. A proteomic approach was implemented to find qualitative differences in the protein profile between granulocytes and hyalinocytes of the European flat oyster, Ostrea edulis, as a way to evaluate functional differences. Oyster haemolymph cells were differentially separated by Percoll® density gradient centrifugation. Granulocyte and hyalinocyte proteins were separated by 2D-PAGE and their protein profiles were analysed and compared with PD Quest software; the protein spots exclusive for each haemocyte type were excised from gels and analysed by MALDI-TOF/TOF with a combination of mass spectrometry (MS) and MS/MS for sequencing and protein identification. A total of 34 proteins were identified, 20 unique to granulocytes and 14 to hyalinocytes. The results suggested differences between the haemocyte types in signal transduction, apoptosis, oxidation reduction processes, cytoskeleton, phagocytosis and pathogen recognition. These results contribute to identify differential roles of each haemocyte type and to better understand the oyster immunity mechanisms, which should help to fight oyster diseases.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
17
|
Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci 2020; 133:133/7/jcs228072. [PMID: 32265230 DOI: 10.1242/jcs.228072] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases play a critical role in various cellular pathways, including but not limited to protein trafficking, subcellular localization, innate immune response, viral infections, DNA damage responses and apoptosis. To date, 28 HECT E3 ubiquitin ligases have been identified in humans, and recent studies have begun to reveal how these enzymes control various cellular pathways by catalyzing the post-translational attachment of ubiquitin to their respective substrates. New studies have identified substrates and/or interactors with different members of the HECT E3 ubiquitin ligase family, particularly for E6AP and members of the neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) family. However, there still remains many unanswered questions about the specific roles that each of the HECT E3 ubiquitin ligases have in maintaining cellular homeostasis. The present Review discusses our current understanding on the biological roles of the HECT E3 ubiquitin ligases in the cell and how they contribute to disease development. Expanded investigations on the molecular basis for how and why the HECT E3 ubiquitin ligases recognize and regulate their intracellular substrates will help to clarify the biochemical mechanisms employed by these important enzymes in ubiquitin biology.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054.,Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Diana Argiles-Castillo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| |
Collapse
|
18
|
Disease-associated synaptic scaffold protein CNK2 modulates PSD size and influences localisation of the regulatory kinase TNIK. Sci Rep 2020; 10:5709. [PMID: 32235845 PMCID: PMC7109135 DOI: 10.1038/s41598-020-62207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present in the correct place at desirable levels. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights that CNK2 functions as a scaffold with the potential to direct the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that alterations in CNK2 localisation and expression have the potential to influence the behaviour of TNIK and other important regulatory molecules in neurons.
Collapse
|
19
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
20
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH, Song EJ. MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol 2019; 13:2663-2678. [PMID: 31581360 PMCID: PMC6887584 DOI: 10.1002/1878-0261.12581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor‐β (TGF‐β) signaling through ubiquitin‐mediated degradation of TGF‐β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R‐195 and miR‐497 putatively target SMURF2 using several target prediction databases. Both miR‐195 and miR‐497 bind to the 3′‐UTR of the SMURF2 mRNA and inhibit SMURF2 expression. Furthermore, miR‐195 and miR‐497 regulate SMURF2‐dependent TβRI ubiquitination and cause the activation of the TGF‐β signaling pathway in lung cancer cells. Upregulation of miR‐195 and miR‐497 significantly reduced cell viability and colony formation through the activation of TGF‐β signaling. Interestingly, miR‐195 and miR‐497 also reduced the invasion ability of lung cancer cells when cells were treated with TGF‐β1. Subsequent in vivo studies in xenograft nude mice model revealed that miR‐195 and miR‐497 repress tumor growth. These findings demonstrate that miR‐195 and miR‐497 act as a tumor suppressor by suppressing ubiquitination‐mediated degradation of TGF‐β receptors through SMURF2, and suggest that miR‐195 and miR‐497 are potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Dong-Kyu Chae
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Moonsoo Cho
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Eunmi Ban
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
21
|
Wu L, Deng L, Hong H, Peng C, Zhang X, Chen Z, Ling J. Comparison of long non‑coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells. Mol Med Rep 2019; 20:939-950. [PMID: 31173189 PMCID: PMC6625187 DOI: 10.3892/mmr.2019.10308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
The dental follicle develops into the periodontal ligament, cementum and alveolar bone. Human dental follicle cells (hDFCs) are the precursor cells of periodontal development. Long non-coding RNAs (lncRNAs) have been revealed to be crucial factors that regulate a variety of biological processes; however, whether lncRNAs serve a role in human periodontal development remains unknown. Therefore, the present study used microarrays to detect the differentially expressed lncRNAs and mRNAs between hDFCs and human periodontal ligament cells (hPDLCs). A total of 845 lncRNAs and 1,012 mRNAs were identified to be differentially expressed in hDFCs and hPDLCs (fold change >2.0 or <-2.0; P<0.05). Microarray data were validated by reverse transcription-quantitative polymerase chain reaction. Bioinformatics analyses, including gene ontology, pathway analysis and coding-non-coding gene co-expression network analysis, were performed to determine the functions of the differentially expressed lncRNAs and mRNAs. Bioinformatics analysis identified that a number of pathways may be associated with periodontal development, including the p53 and calcium signaling pathways. This analysis also revealed a number of lncRNAs, including NR_033932, T152410, ENST00000512129, ENST00000540293, uc021sxs.1 and ENST00000609146, which may serve important roles in the biological process of hDFCs. In addition, the lncRNA termed maternally expressed 3 (MEG3) was identified to be differentially expressed in hDFCs by reverse transcription-quantitative polymerase chain reaction. The knockdown of MEG3 was associated with a reduction of pluripotency makers in hDFCs. In conclusion, for the first time, to the best of our knowledge, the current study determined the different expression profiles of lncRNAs and mRNAs between hDFCs and hPDLCs. The observations made may provide a solid foundation for further research into the molecular mechanisms of lncRNAs in human periodontal development.
Collapse
Affiliation(s)
- Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hong Hong
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Caixia Peng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
22
|
Klupp F, Giese C, Halama N, Franz C, Lasitschka F, Warth A, Schmidt T, Kloor M, Ulrich A, Schneider M. E3 ubiquitin ligase Smurf2: a prognostic factor in microsatellite stable colorectal cancer. Cancer Manag Res 2019; 11:1795-1803. [PMID: 30863185 PMCID: PMC6391146 DOI: 10.2147/cmar.s178111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Smurf2 is a member of the homologous to E6-AP carboxyl terminus family of E3 ubiquitin ligases. Changes in their expression pattern are known to contribute to tumorigenesis. Smurf2 plays a decisive role in cell differentiation, proliferation, and migration and exhibits a dual role in cancer – functioning as both oncogene and tumor suppressor. Dysregulation of Smurf2 in different cancer types has been described, besides colorectal cancer (CRC). We therefore examined the expression and oncogenic potential of Smurf2 in human CRC patients. Materials and methods Expression levels of Smurf2 were analyzed via qRT-PCR in CRC specimens and healthy mucosa from 98 patients who had undergone surgery due to CRC. Spatial expression of Smurf2 was additionally studied by immunohistochemistry. siRNA-mediated knockdown of Smurf2 was applied for migration and invasion assays in DLD-1 and SW-480 cells. Results Smurf2 was significantly overexpressed in CRC tissue compared to corresponding healthy colon mucosa. Smurf2 expression levels differed significantly between microsatellite instable (MSI) and microsatellite stable (MSS) CRC. In patients suffering from MSS CRC, high tumoral expression of Smurf2 was significantly associated with impaired overall survival. Consistently, in vitro analysis revealed that knockdown of Smurf2 reduced the invasive and migratory potential of MSS CRC cells. Conclusion Smurf2 expression is upregulated in CRC specimens and affects survival dependent on patients’ MSI status. Moreover, Smurf2 supports cancer cell migration and invasion, collectively suggesting an oncogenic function in CRC.
Collapse
Affiliation(s)
- Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| | - Christina Giese
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| | - Niels Halama
- National Center for Tumor Diseases, Medical Oncology and Internal Medicine VI, Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg 69120, Germany.,Tissue Bank of the National Center for Tumor Diseases, Heidelberg 69120, Germany
| | - Arne Warth
- Institute of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| | - Matthias Kloor
- Department of Applied Tumor Biology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany,
| |
Collapse
|
23
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
24
|
Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression. BMC Cancer 2018. [PMID: 29534682 PMCID: PMC5850909 DOI: 10.1186/s12885-018-4188-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. METHODS Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. RESULTS CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. CONCLUSIONS Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf2-CNKSR2 interaction may serve as a common strategy to control proliferation of human breast cancer cells by modulating CNKSR2 protein stability.
Collapse
|
25
|
Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S. IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 2017; 8:103601-103612. [PMID: 29262587 PMCID: PMC5732753 DOI: 10.18632/oncotarget.22063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Interleukin-22 (IL-22) is a well-known tumor related inflammatory factor that is associated with variety of cancers. HOXB-AS5, a long non-coding RNA located in HOX gene clusters, has been elevated in breast cancer (BC) tissues. Herein, IL-22 and HOXB-AS5 were upregulated in the serum and tissues of BC patients and were associated with clinical stages. Furthermore, we also investigated the effects of IL-22-HOXB-AS5 pathway on progression of BC, and the results suggested that IL-22 and HOXB-AS5 synergistically promoted MDA-MB-231 cell growth, migration and invasion and activated the PI3K-AKT-mTOR pathway. These findings demonstrated that the IL-22-HOXB-AS5-PI3K/AKT functional axes may serve as potential molecule biomarkers for diagnosis and therapy evaluation or targeted therapeutic strategy in BC.
Collapse
Affiliation(s)
- Jiang Rui
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhao Chunming
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Gao Binbin
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shao Na
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Wang Shengxi
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Song Wei
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
26
|
Chandhoke AS, Chanda A, Karve K, Deng L, Bonni S. The PIAS3-Smurf2 sumoylation pathway suppresses breast cancer organoid invasiveness. Oncotarget 2017; 8:21001-21014. [PMID: 28423498 PMCID: PMC5400561 DOI: 10.18632/oncotarget.15471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
Tumor metastasis profoundly reduces the survival of breast cancer patients, but the mechanisms underlying breast cancer invasiveness and metastasis are incompletely understood. Here, we report that the E3 ubiquitin ligase Smurf2 acts in a sumoylation-dependent manner to suppress the invasive behavior of MDA-MB-231 human breast cancer cell-derived organoids. We also find that the SUMO E3 ligase PIAS3 inhibits the invasive growth of breast cancer cell-derived organoids. In mechanistic studies, PIAS3 maintains breast cancer organoids in a non-invasive state via sumoylation of Smurf2. Importantly, the E3 ubiquitin ligase activity is required for sumoylated Smurf2 to suppress the invasive growth of breast cancer-cell derived organoids. Collectively, our findings define a novel role for the PIAS3-Smurf2 sumoylation pathway in the suppression of breast cancer cell invasiveness. These findings lay the foundation for the development of novel biomarkers and targeted therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
- Amrita Singh Chandhoke
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Kunal Karve
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| |
Collapse
|
27
|
ImageJ macros for the user-friendly analysis of soft-agar and wound-healing assays. Biotechniques 2017; 62:175-179. [PMID: 28403808 DOI: 10.2144/000114535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Recent advances in biological imaging techniques and the enormous amount of data they generate call for the development of computational tools for efficient and reliable high-throughput analysis. Several software applications with this functionality are available, and one of the most commonly used is ImageJ. Here, we present two independent macros (WH_NJ and SA_NJ) for automating and facilitating the analysis of images acquired from two in vitro assays frequently used in cancer studies and drug screening: the wound-healing and soft-agar assays. These two algorithms combine, in a single command, the steps required for the individual analysis of each image using ImageJ. WH_NJ and SA_NJ allow fast, reproducible data analysis without the experimental bias inherent in manual analyses, thus guaranteeing the robustness and reliability of the results.
Collapse
|
28
|
Wu B, Guo B, Kang J, Deng X, Fan Y, Zhang X, Ai K. Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation. Tumour Biol 2016; 37:10.1007/s13277-016-5432-0. [PMID: 27730540 DOI: 10.1007/s13277-016-5432-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide range of cellular responses. However, the exact mechanism whereby Smurf2 controls TGF-β-induced signaling pathways remains unknown. Here, we identified the relationship between the alternate TGF-β signaling pathways: TGF-β/PI3K/Akt/β-catenin and TGF-β/Smad2/3/FoxO1/PUMA and Smurf2. The results showed that TGF-β promoted proliferation, invasion, and migration of human pancreatic carcinoma (PANC-1) cells through the PI3K/Akt/β-catenin pathway. Inhibiting the PI3K/Akt signal transformed the TGF-β-induced cell response from promoting proliferation to Smad2/3/FoxO1/PUMA-mediated apoptosis. The activation of Akt inhibited the phosphorylation/activation of Smad3 and promoted the phosphorylation/inactivation of FoxO1, inhibiting the nuclear translocation of both Smad3 and FoxO1 and inhibiting the expression of PUMA, a key apoptotic mediator. However, downregulation of Smurf2 in PANC-1 cells removed Akt-mediated suppression of Smad3 and FoxO1, allowing TGF-β-induced phosphorylation/activation of Smad2/3, dephosphorylation/activation of FoxO1, nuclear translocation of both factors, and activation of PUMA-mediated apoptosis. Downregulation of Smurf2 also decreased invasion and migration in TGF-β-induced PANC-1 cells. The in vivo experiments also revealed that downregulation of Smurf2 delayed the growth of xenograft tumors originating from PANC-1 cells especially when treated with TGF-β. Taken together, these results indicate that expression of Smurf2 plays a central role in the determination and activation/inhibition of particular cellular pathways and the ultimate fate of cells induced by TGF-β. An increased understanding of the intricacies of the TGF-β signaling pathway may provide a new anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Jie Kang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xianzhao Deng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoping Zhang
- Institution of Interventional and Vascular Surgery, Tongji Univerity, No. 301 Middle Yan Chang Rd, Shanghai, 200072, China.
| | - Kaixing Ai
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
29
|
Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Mol Cell 2016; 62:121-36. [PMID: 26949039 DOI: 10.1016/j.molcel.2016.02.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 11/20/2022]
Abstract
HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Kuen-Phon Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maria A Sartori
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Hari B Kamadurai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Jiang
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Peter Y Mercredi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan Murchie
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Jicheng Hu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Manjeet Mukherjee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Anne Doye
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario M3J1P3, Canada
| | - Zhenyue Hao
- Campbell Family Cancer Research Institute, University Health Network, Toronto, ON M5G2C1, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Emmanuel Lemichez
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G1L7, Canada
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
30
|
Ravi M, Tentu S, Baskar G, Rohan Prasad S, Raghavan S, Jayaprakash P, Jeyakanthan J, Rayala SK, Venkatraman G. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer 2015; 15:768. [PMID: 26499490 PMCID: PMC4619068 DOI: 10.1186/s12885-015-1784-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Triple-negative breast cancers represent an important clinical challenge, as these cancers do not respond to conventional endocrine therapies or other available targeted agents. Phycocyanin (PC), a natural, water soluble and non-toxic molecule is shown to have potent anti-cancer property. Methods In this study, we determined the efficacy of PC as an anti-neoplastic agent in vitro on a series of breast cancer cell lines. We studied effects of PC in inducing DNA damage and apoptosis through western blot and qPCR. Also, anti-metastatic and anti-angiogenic properties were studied by classic wound healing and vasculogenic mimicry assays. Results We found that triple negative MDA-MB-231 cells were most sensitive to PC (IC50 : 5.98 ± 0.95 μM) as compared to other cells. They also showed decreased cell proliferation and reduced colony formation ability upon treatment with PC. Profile of Cell cycle analysis showed that PC caused G1 arrest which could be attributed to decreased mRNA levels of Cyclin E and CDK-2 and increased p21 levels. Mechanistic studies revealed that PC induced apoptosis as evident by increase in percentage of annexin positive cells, increase in γ-H2AX levels, and by changing the Bcl-2/Bax ratio followed by release of cytochrome C and increased Caspase 9 levels. MDA MB 231 cells treated with PC resulted in decreased cell migration and increased cell adhesive property and also showed anti-angiogenic effects. We also observed that PC suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) production. All these biological effects of phycocyanin on MDA MB 231 cells could be attributed to decreased MAPK signaling pathway. We also observed that PC is non-toxic to non-malignant cells, platelets and RBC’s. Conclusion Taken together, these findings demonstrate, for the first time, that PC may be a promising anti-neoplastic agent for treatment of triple negative breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1784-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mathangi Ravi
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| | - Shilpa Tentu
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Ganga Baskar
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| | - Surabhi Rohan Prasad
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Swetha Raghavan
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | | | | | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, 600036, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra University, Chennai, 600116, India.
| |
Collapse
|
31
|
Yasuhara R, Irié T, Suzuki K, Sawada T, Miwa N, Sasaki A, Tsunoda Y, Nakamura S, Mishima K. The β-catenin signaling pathway induces aggressive potential in breast cancer by up-regulating the chemokine CCL5. Exp Cell Res 2015; 338:22-31. [DOI: 10.1016/j.yexcr.2015.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022]
|