1
|
Perez-Calatayud MJ, Menéndez A, Lliso F, Carmona V, Conde A, Celada F, Bernisz M, Botella C, Perez-Calatayud J. A single center, inter-observer evaluation of vestibular schwannoma stereotactic radiosurgery and its dosimetric impact. JOURNAL OF RADIOSURGERY AND SBRT 2024; 9:113-120. [PMID: 39087056 PMCID: PMC11288650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2024]
Abstract
The aim of this work was to evaluate the inter- and intra-observer variation in contouring vestibular schwannoma (VS) and the organs-at-risk (OAR), and its dosimetric impact in Volumetric Modulated Arc Therapy (VMAT). Three VS typical cases were contoured by four clinicians. The Agreement Volume Index (AVI) appeared to be notably higher in VS than in OARs, such that the dose coverage of VS is fairly robust. In OARs, the largest variation was +1.02Gy in dmax for the brainstem, +0.78Gy in dmean for the cochlea and +1.05Gy in dmax of the trigeminal nerve. Accordingly, it was decided that all VS delineations for stereotactic radiosurgery (SRS), and all frame-based SRS contouring in general, should always be reviewed by a second physician. In addition, the retrospective presentation of VS cases at daily peer review meetings has also been adopted to ensure that the consensus is constantly updated, as well as for training purposes.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Conde
- Radiotherapy Department, Hospital La Fe, Valencia, Spain
| | | | | | - Carlos Botella
- Neurosurgery Department, Hospital La Fe, Valencia, Spain
| | - Jose Perez-Calatayud
- Radiotherapy Department, Hospital La Fe, Valencia, Spain
- Radiotherapy Department, Hospital Clinica Benidorm, Alicante, Spain
| |
Collapse
|
2
|
Khong J, Govindaraj R, Ramm D, Edwards S, Roos D. Cochlear sparing in LINAC-based radiosurgery for vestibular schwannoma: a dosimetric comparison of dynamic conformal arc, IMRT and VMAT treatment plans. Radiat Oncol 2023; 18:2. [PMID: 36600254 DOI: 10.1186/s13014-022-02188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is the preferred treatment for vestibular schwannoma (VS) in patients with preserved hearing and tumour diameter < 3 cm. Emerging evidence suggests restricting cochlear dose could preserve hearing. This retrospective replanning study aims to compare dynamic conformal arc therapy (DCAT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for superiority of cochlear dose sparing without compromising tumour coverage. METHODS Eligibility criteria included sporadic VS, serviceable hearing and availability of CT and MRI for planning. The original gross tumour volume and brainstem OAR volume were retained; the cochlea was newly contoured on the planning CT scan (bone window). Each case was replanned using the three above techniques, prescribing 12 Gy to the 80% isodose line. No dose constraint was applied to the cochlea. RESULTS Eighteen patients were replanned. Mean tumour volume was 2.25 cc. Tumour coverage and tumour mean dose (DCAT: 14.2, IMRT: 14.6, VMAT: 14.5 Gy) were comparable. Paddick and RTOG conformity indices were better for DCAT (0.66 and 1.6) and VMAT (0.69 and 1.5) compared to IMRT (0.56 and 1.9). DCAT had superior gradient index (3.0) compared to VMAT (3.4) and IMRT (3.4). VMAT delivered the lowest mean brainstem maximum dose (8.3 Gy) and decreased the mean cochlear dose (3.4 Gy) by 2.3 and 2.1 Gy, and the mean cochlear maximum dose (3.6 Gy) by 2.4 and 2.5 Gy relative to DCAT and IMRT, respectively. CONCLUSION LINAC-based SRS treatment using VMAT can achieve better cochlear dose sparing than DCAT or IMRT while maintaining tumour coverage.
Collapse
Affiliation(s)
- Jeremy Khong
- Department of Radiation Oncology, Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia.
| | - Ramkumar Govindaraj
- Department of Radiation Oncology, Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Ramm
- Department of Radiation Oncology, Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia
| | - Suzanne Edwards
- Adelaide Health Technology Assessment (AHTA), School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel Roos
- Department of Radiation Oncology, Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Flattening filter free Stereotactic radiosurgery for brain metastases using dynamic conformal arcs: 6 MV or 10 MV? JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396920001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Stereotactic radiosurgery (SRS) has proven itself as an effective tool in the treatment of intracranial lesions. Image-guided high dose single fraction treatments have the potential to deliver ablative doses to tumours; however, treatment times can be long. Flattening filter free (FFF) beams are available on most modern linacs and offer a higher dose rate compared to conventional flattened beams which should reduce treatment times. This study aimed to compare 6 MV FFF and 10 MV FFF to a 6 MV flattened beam for single fraction dynamic conformal arc SRS for a Varian Truebeam linac.Materials and methods:In total, 21 individual clinical treatment plans for 21 brain metastases treated with 6 MV were retrospectively replanned using both 6 MV FFF and 10 MV FFF. Plan quality and efficiency metrics were evaluated by analysing dose coverage, dose conformity, dose gradients, dose to normal brain, beam-on-time (BOT), treatment time and monitor units.Results:FFF resulted in a significant reduction in median BOT for both 6 MV FFF (57·9%; p < 0·001) and 10 MV FFF (76·3%; p < 0·001) which led to reductions in treatment times of 16·8 and 21·5% respectively. However, 6 MV FFF showed superior normal brain dose sparing (p < 0·001) and dose gradient (p < 0·001) compared to 10 MV FFF. No differences were observed for conformity.Conclusion:6 MV FFF offers a significant reduction in average treatment time compared to 6 MV (3·7 minutes; p = 0·002) while maintaining plan quality.
Collapse
|
4
|
Ghemiş DM, Marcu LG. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit Rev Oncol Hematol 2021; 163:103396. [PMID: 34146680 DOI: 10.1016/j.critrevonc.2021.103396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to summarize and evaluate the current status of knowledge on flattening filter free (FFF) beams and their applications in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). A PubMed search was undertaken in order to identify relevant publications using FFF and stereotactic radiotherapy as keywords. On a clinical aspect, lung tumors treated with FFF SBRT show promising results in terms of local control and overall survival with acute toxicities consistent with those that occur with standard radiotherapy. Beside lung, SBRT is suitable for different anatomical sites such as liver, prostate, cervix, etc. offering similar results: reduced treatment time, good tumor control and mild acute toxicities. Regarding brain tumors, the employment of SRS with FFF beams significantly reduces treatment time and provides notable normal tissue sparing due to the sharp dose fall-off outside the tumor.
Collapse
Affiliation(s)
- Diana M Ghemiş
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
5
|
Bossart E, Mellon EA, Monterroso I, Elsayyad N, Diwanji T, Samuels S, Dogan N. Assessment of single isocenter linear accelerator radiosurgery for metastases and base of skull lesions. Phys Med 2020; 81:1-8. [PMID: 33278764 DOI: 10.1016/j.ejmp.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/22/2020] [Accepted: 11/07/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Newer technology for stereotactic radiosurgery (SRS) should be assessed for different multi-leaf collimators (MLC). OBJECTIVE Assess plan quality of an automated, frameless, linear accelerator based (linac) planning and delivery system (HyperArc) for SRS using both standard MLC (SMLC) and high definition MLC (HDMLC) compared to a cobalt-60 based SRS system (Gamma Knife, GK). METHODS We re-planned twenty GK Perfexion-treated SRS patients (27 lesions) for HyperArc using SMLC and HDMLC. We assessed plan quality using the following metrics: gradient index (GI), Paddick and RTOG conformity indices (CIPaddick, CIRTOG), volume receiving half of prescription isodose (PIVhalf) and maximum dose to 0.03 cc for brainstem, optic chiasm and optic nerves, and V12Gy for brain-GTV. RESULTS Linac plans had better conformity with HDMLC being most conformal. GK exhibited better GI. PIVhalf demonstrated no statistically significant difference between HDMLC and GK, and SMLC was nominally worse than GK. Mean PIVhalf was generally 0.85 cc larger for SMLC than HDMLC. For TV > 1.0 cc, the relative differences in CIRTOG, GI, and PIVhalf for SMLC vs. HDMLC were less than 21%. For TV less than < 1.0 cc, there were more obvious relative differences for SMLC vs. HDMLC in CIRTOG (mean 146%, max 700%), GI (mean 49%, max 162%), and PIVhalf (mean 77%, max 522%). Organ at risk doses were met in all plans. CONCLUSIONS New linac-based plans positively compare to GK plans overall. HDMLC should be strongly considered for treatment of lesions < 1.0 cc given the significant improvements in conformity and PIVhalf over SMLC.
Collapse
Affiliation(s)
- Elizabeth Bossart
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irene Monterroso
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nagy Elsayyad
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart Samuels
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Wang D, DeNittis A, Hu Y. Strategies to optimize stereotactic radiosurgery plans for brain tumors with volumetric-modulated arc therapy. J Appl Clin Med Phys 2020; 21:45-51. [PMID: 32043810 PMCID: PMC7075387 DOI: 10.1002/acm2.12818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Prescription practice in SRS plans for brain tumors differs significantly for different modalities. In this retrospective study, the strategies to optimize SRS plans for brain tumors with volumetric arc therapy (VMAT) were presented. Methods Fifty clinically treated cases were stratified by the maximum target size into two groups (≥ 2 cm in 25 cases and <2 cm but ≥1 cm in 25 cases), which were optimized using traditional LINAC MLC‐based approaches with the average prescription isodose line (P‐IDL) of (91.4 ± 0.6)%. Four to five plans have been created for each case with variation of the P‐IDL from 65% to 90%. The optimization strategies to select an optimal P‐IDL, to use tuning structures within the target and beyond as well as to use NTO (normal tissue objectives), were applied to all new plans. Results The optimal P‐IDL was found to be around 75%. After applying the new optimization strategies with an average P‐IDL of 74.8%, the mean modified gradient index (mGI) and V12 were reduced by 25% and 35%, respectively for both groups. The Paddick conformity index (PCI) was averagely improved by 8%. The average homogeneity index (HI) and focal index (FI) were increased by 22% and 50%, respectively. The mGI was inversely proportional to the PTV volumes. The shape of the dose distribution in target was also changed from concave to convex. The comparison of PCI with historical data from other institutes and modalities shows that the plans in this study have the best conformity near the target. Conclusions With the new optimization strategies for VMAT SRS plan of brain tumor more conformal plans in both high and intermediate dose region (~50% of the PD) were created, in which the dose in the core of the target was notably increased while V12 and mGI were significantly decreased, and PCI was improved. The mGI was inversely proportional to the PTV volumes. The optimal P‐IDL is around 75%. The average PCI is the best in this study compared with the published historical data. These strategies are applicable to treatment planning for multiple brain and liver tumors where sparing the tissue peripheral to the target is critical.
Collapse
Affiliation(s)
- David Wang
- Lankenau Medical Center, Wynnewood, PA, USA
| | - Albert DeNittis
- Lankenau Medical Center, Wynnewood, PA, USA.,Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Yibing Hu
- Lankenau Medical Center, Wynnewood, PA, USA
| |
Collapse
|
7
|
Narayanasamy G, Morrill S, Cousins D, Liu J, Deshazer G, Garner W, Galhardo E, Serletis D, Penagaricano J. Radiosurgery for mesial temporal lobe epilepsy following ROSE trial guidelines - A planning comparison between Gamma Knife, Eclipse, and Brainlab. J Appl Clin Med Phys 2019; 20:134-141. [PMID: 31532068 PMCID: PMC6806476 DOI: 10.1002/acm2.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose This study aims to compare stereotactic radiosurgery (SRS) planning of epilepsy that complies with Radiosurgery or Open Surgery for Epilepsy (ROSE) guidelines in GammaKnife, non‐coplanar conformal (NCC) plan in Eclipse, dynamic conformal arc (DCA) plan in Brainlab, and a volumetric modulated arc therapy (VMAT) plan in Eclipse. Methods Twenty plans targeting Mesial temporal lobe epilepsy (MTLE) was generated using GammaKnife, Eclipse with 20 NCC beams, Brainlab with 5 DCA, and Eclipse VMAT with 4 arcs observing ROSE trial guidelines. Multivariate analysis of variance and Wilcoxon signed‐rank test were used to compare dosimetric data of the plans and perform pairwise comparison, respectively. Results The plans obeyed the recommended prescription isodose volume (PIV) within 5.5–7.5 cc and maximum doses to brainstem, optic apparatus (OA) of 10 and 8 Gy, respectively, for a prescription dose of 24 Gy. The volumes of the target were in the range 4.0–7.4 cc. Mean PIV, maximum dose to brainstem, OA were 6.5 cc, 10 Gy, 7.9 Gy in GammaKnife; 7.2 cc, 6.1 Gy, 4.5 Gy in Eclipse NCC; 7.2 cc, 6.4 Gy, 5.7 Gy in Brainlab DCA; and 5.2 cc, 8.4 Gy, 6.1 Gy in Eclipse VMAT plans, respectively. Multivariate analysis of variance showed significant differences among the 4 SRS planning techniques (P‐values < 0.01). Conclusions Among the 4 SRS planning methods, VMAT with least PIV and acceptable maximum doses to brainstem and OA showed highest compliance with ROSE trial. Having the most conformal dose distribution and least dose inhomogeneity, VMAT scored higher than GK, Eclipse NCC, and Brainlab DCA plans.
Collapse
Affiliation(s)
- Ganesh Narayanasamy
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven Morrill
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David Cousins
- College Of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua Liu
- College Of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Garron Deshazer
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wesley Garner
- College Of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edvaldo Galhardo
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Demitre Serletis
- Section of Neurosurgery, Children's Hospital & Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jose Penagaricano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
8
|
Lower doses to hippocampi and other brain structures for skull-base meningiomas with intensity modulated proton therapy compared to photon therapy. Radiother Oncol 2019; 142:147-153. [PMID: 31522879 DOI: 10.1016/j.radonc.2019.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy of skull-base meningiomas is challenging due to the close proximity of multiple sensitive organs at risk (OARs). This study systematically compared intensity modulated proton therapy (IMPT), non-coplanar volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) based on automated treatment planning. Differences in OARs sparing, with specific focus on the hippocampi, and low-dose delivery were quantified. MATERIALS AND METHODS Twenty patients, target diameter >3 cm, were included. Automated plan generation was used to calculate a VMAT plan with three non-coplanar arcs, an IMRT plan with nine non-coplanar beams with optimized gantry and couch angles, and an IMPT plan with three patient-specific selected non-coplanar beams. A prescription dose of 50.4 GyRBE in 28 fractions was used. The same set of constraints and prioritized objectives was used. All plans were rescaled to the same target coverage. Repeated measures ANOVA was used to assess the statistical significance of differences in OAR dose parameters between planning techniques. RESULTS Compared to VMAT and IMRT, IMPT significantly improved dose conformity to the target volume. Consequently, large dose reductions in OARs were observed. With respect to VMAT, the mean dose and D40% in the bilateral hippocampus were on average reduced by 48% and 74%, respectively (p ≤ 0.005). With IMPT, the mean dose in the normal brain and volumes receiving 20-30 Gy were up to 47% lower (p ≤ 0.01). When comparing IMPT and IMRT, even larger dose differences in those OARs were observed. CONCLUSION For skull-base meningiomas IMPT allows for a considerable dose reduction in the hippocampi, normal brain and other OARs compared to both non-coplanar VMAT and IMRT, which may lead to a clinically relevant reduction of late neurocognitive side effects.
Collapse
|
9
|
Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit 2018; 24:8500-8505. [PMID: 30472719 PMCID: PMC6276721 DOI: 10.12659/msm.910218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate the therapeutic role of flattening filter-free (FFF) mode in volumetric modulated arc therapy (VMAT) compared with flattening filter (FF) mode in patients with locally advanced nasopharyngeal carcinoma (NPC). MATERIAL AND METHODS Ten previously treated patients with NPC underwent treatment re-planning with FFF and FF VMAT. Radiotherapy dose distribution on planning target volume (PTV), organs at risk (OAR), target conformity index (CI), total monitor units (MUs), and therapeutic time were compared. RESULTS Maximum and mean radiotherapy dose in PTV and PGTV (primary lesions of NPC and cervical lymph node metastases) in FFF VMAT planning were significantly increased compared with FF VMAT planning, but PTV and OAR showed no significant differences. The CI value of PTV in FFF VMAT planning was significantly reduced compared with FF planning (P<0.05). No differences were found for the maximum radiotherapy dose in the spinal cord and left and right optic nerve, and the mean radiotherapy dose in the brainstem, left and right parotid gland (P>0.05). The maximum dose in the brainstem in the FFF planning was significantly higher compared with FF planning (P>0.05). The maximum radiotherapy dose in left and right crystalline lens (P<0.05) in FFF planning was significantly reduced compared with FF planning. The total hop count in FFF planning was significantly increased compared with FF planning (P<0.05). CONCLUSIONS Both 6 MV X-ray FFF mode and FF mode in the treatment of patients with NPC showed that FFF VMAT planning provided improved protection for OAR.
Collapse
Affiliation(s)
- Fei Jia
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dandan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital and Institute, Beijing, China (mainland)
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital and Institute, Beijing, China (mainland)
| | - Guowen Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
10
|
Eaton DJ, Lee J, Patel R, Millin AE, Paddick I, Walker C. Stereotactic radiosurgery for benign brain tumors: Results of multicenter benchmark planning studies. Pract Radiat Oncol 2018; 8:e295-e304. [PMID: 29884596 DOI: 10.1016/j.prro.2018.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is strongly indicated for treatment of surgically inaccessible benign brain tumors. Various treatment platforms are available, but few comparisons have included multiple centers. As part of a national commissioning program, benchmark planning cases were completed by all clinical centers in the region. METHODS AND MATERIALS Four benign cases were provided, with images and structures predelineated, including intracanalicular vestibular schwannoma (VS), larger VS, skull base meningioma, and secreting pituitary adenoma. Centers were asked to follow their local practice, and plans were reviewed centrally using metrics for target coverage, selectivity, gradient falloff, and normal tissue sparing. RESULTS Sixty-eight plans were submitted using 18 different treatment platforms. Fourteen plans were subsequently revised following feedback, and review of 5 plans led to a restriction of service on 2 platforms (2 centers). Prescription doses were consistent for VS and meningioma submissions, but a wide range of doses were used for the pituitary case. All centers prioritized coverage, with the prescription isodose covering ≥95% of 78/82 target volumes. Lower values may be expected next to air cavities when using advanced algorithms, and in general may be acceptable for some benign lesions. Selectivity was much more variable, and in some cases this was combined with high gradient index and/or >1 mm margin, resulting in large volumes of normal tissue being irradiated. Normal tissue doses were more variable across linear accelerator (LINAC)-based plans than with Gamma Knife or CyberKnife, and dose spillage seemed independent of prescription isodose (inhomogeneity). This may reflect the variety of LINAC-based approaches represented or the necessary tradeoff between different objectives. CONCLUSIONS These benchmarking exercises have highlighted areas of different clinical practice and priorities and potential for improvement. The subsequent sharing of plan data and margin philosophies between the neurosurgery and oncology communities allowed for meaningful comparison between centers and their peers.
Collapse
Affiliation(s)
- David J Eaton
- National Radiotherapy Trials Quality Assurance group, Mount Vernon Hospital, Northwood, United Kingdom.
| | - Jonathan Lee
- National Radiotherapy Trials Quality Assurance group, Mount Vernon Hospital, Northwood, United Kingdom
| | - Rushil Patel
- National Radiotherapy Trials Quality Assurance group, Mount Vernon Hospital, Northwood, United Kingdom
| | | | - Ian Paddick
- Medical Physics Ltd, Reading, United Kingdom; Cromwell Hospital, London, United Kingdom
| | | |
Collapse
|
11
|
Balik S, Chao S, Neyman G. Gamma Knife and volumetric modulated arc therapy stereotactic radiosurgery plan quality and OAR sparing comparison for pituitary adenomas and vestibular schwannomas. JOURNAL OF RADIOSURGERY AND SBRT 2018; 5:237-247. [PMID: 29988324 PMCID: PMC6018045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE To compare the plan quality and organs at risk (OAR) sparing of auto-planned volumetric modulated art therapy (VMAT) and Gamma Knife (GK) for stereotactic radiosurgery of pituitary adenomas (PA) and vestibular schwannomas (VS). METHODS VMAT radiosurgery plans were made using auto planning tool for eight vestibular schwannoma and eight pituitary adenoma patients previously treated with GK. VMAT plans were made with three non-coplanar arcs using 315, 0 and 45 degrees angles, 6MV FFF energy at 1400 MU/min dose rate and 2.5 mm thick MLC leaves. Both GK and VMAT plans were prescribed to similar isodose lines (50% - 60%). RESULTS Respectively for GK and VMAT, the mean Paddick conformity index (PCI) was 0.62 ± 0.08 and 0.67 ± 0.10 (p > 0.05) for PA and 0.72 ± 0.09 and 0.660 ± 0.13 (p > 0.05) for VS; the mean gradient index (GI) was 2.76 ± 0.14 and 3.14 ± 0.40 Gy (p < 0.05) for PA and 3.71 ± 1.83 and 3.60 ± 0.84 Gy (p > 0.05) for VS; mean brainstem maximum dose was 9.13 ± 3.50 Gy and 7.31 ± 2.01 Gy (p > 0.05) for PA and 11.67 ± 4.56 Gy and 12.22 ± 4.55 Gy (p > 0.05) for VS; mean optic nerve maximum dose was 9.66 ± 1.0 Gy and 7.67 ± 2.58 Gy (p < 0.05); mean cochlea mean dose was 7.31 ± 2.7 Gy and 7.23 ± 3.13 Gy (p > 0.05); and mean treatment time was 68 min and 5 min for PA and 40 min and 3 min for VS. CONCLUSIONS Auto planning with standard template simplified the planning stage for VMAT and provided clinically acceptable plans. Comparison of GK and VMAT for plan quality and OAR sparing varied across patients but both were overall comparable.
Collapse
Affiliation(s)
- Salim Balik
- Department of Radiation Oncology, Cleveland Clinic, Cleveland OH, USA
| | - Samuel Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland OH, USA
| | - Gennady Neyman
- Department of Radiation Oncology, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
12
|
Sahgal A, Ruschin M, Ma L, Verbakel W, Larson D, Brown PD. Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro Oncol 2017; 19:ii2-ii15. [PMID: 28380635 DOI: 10.1093/neuonc/nox001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past three decades several randomized trials have enabled evidence-based practice for patients presenting with limited brain metastases. These trials have focused on the role of surgery or stereotactic radiosurgery (SRS) with or without whole brain radiation therapy (WBRT). As a result, it is clear that local control should be optimized with surgery or SRS in patients with optimal prognostic factors presenting with up to 4 brain metastases. The routine use of adjuvant WBRT remains debatable, as although greater distant brain control rates are observed, there is no impact on survival, and modern outcomes suggest adverse effects from WBRT on patient cognition and quality of life. With dramatic technologic advances in radiation oncology facilitating the adoption of SRS into mainstream practice, the optimal management of patients with multiple brain metastases is now being put forward. Practice is evolving to SRS alone in these patients despite a lack of level 1 evidence to support a clinical departure from WBRT. The purpose of this review is to summarize the current state of the evidence for patients presenting with limited and multiple metastases, and to present an in-depth analysis of the technology and dosimetric issues specific to the treatment of multiple metastases.
Collapse
Affiliation(s)
- Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Wilko Verbakel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam,The Netherlands
| | - David Larson
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Gardner SJ, Lu S, Liu C, Wen N, Chetty IJ. Tuning of AcurosXB source size setting for small intracranial targets. J Appl Clin Med Phys 2017; 18:170-181. [PMID: 28470819 PMCID: PMC5689841 DOI: 10.1002/acm2.12091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
This study details a method to evaluate the source size selection for small field intracranial stereotactic radiosurgery (SRS) deliveries in Eclipse treatment planning system (TPS) for AcurosXB dose calculation algorithm. Our method uses end‐to‐end dosimetric data to evaluate a total of five source size selections (0.50 mm, 0.75 mm, 1.00 mm, 1.25 mm, and 1.50 mm). The dosimetric leaf gap (DLG) was varied in this analysis (three DLG values were tested for each scenario). We also tested two MLC leaf designs (standard and high‐definition MLC) and two delivery types for intracranial SRS (volumetric modulated arc therapy [VMAT] and dynamic conformal arc [DCA]). Thus, a total of 10 VMAT plans and 10 DCA plans were tested for each machine type (TrueBeam [standard MLC] and Edge [high‐definition MLC]). Each plan was mapped to a solid water phantom and dose was calculated with each iteration of source size and DLG value (15 total dose calculations for each plan). To measure the dose, Gafchromic film was placed in the coronal plane of the solid water phantom at isocenter. The phantom was localized via on‐board CBCT and the plans were delivered at planned gantry, collimator, and couch angles. The planned and measured film dose was compared using Gamma (3.0%, 0.3 mm) criteria. The vendor‐recommended 1.00 mm source size was suitable for TrueBeam planning (both VMAT and DCA planning) and Edge DCA planning. However, for Edge VMAT planning, the 0.50 mm source size yielded the highest passing rates. The difference in dose calculation among the source size variations manifested primarily in two regions of the dose calculation: (1) the shoulder of the high‐dose region, and (2) for small targets (volume ≤ 0.30 cc), in the central portion of the high‐dose region. Selection of a larger than optimal source size can result in increased blurring of the shoulder for all target volume sizes tested, and can result in central axis dose discrepancies in excess of 10% for target volumes sizes ≤ 0.30 cc. Our results indicate a need for evaluation of the source size when AcurosXB is used to model intracranial SRS delivery, and our methods represent a feasible process for many clinics to perform tuning of the AcurosXB source size parameter.
Collapse
Affiliation(s)
- Stephen J Gardner
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Siming Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Commack, NY, USA
| | - Chang Liu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
14
|
Stereotactic ablative radiation therapy for brain metastases with volumetric modulated arc therapy and flattening filter free delivery: feasibility and early clinical results. Radiol Med 2017; 122:676-682. [DOI: 10.1007/s11547-017-0768-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
|
15
|
Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, Paynter D, Thomas R. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol 2016; 61:8360-8394. [DOI: 10.1088/0031-9155/61/23/8360] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Fractionated stereotactic radiation therapy for vestibular schwannomas: Dosimetric factors predictive of hearing outcomes. Pract Radiat Oncol 2016; 6:e155-e162. [DOI: 10.1016/j.prro.2015.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/31/2015] [Accepted: 11/27/2015] [Indexed: 11/21/2022]
|
17
|
Chang CS, Hwang JM, Tai PA, Chang YK, Wang YN, Shih R, Chuang KS. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem. Med Dosim 2016; 41:248-52. [PMID: 27396940 DOI: 10.1016/j.meddos.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/13/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
Abstract
Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2cm(3) to 21.9cm(3). Regarding the dose homogeneity index (HIICRU) and conformity index (CIICRU) were without significant difference between techniques statistically. However, the average CIICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V4Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V2Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better (p < 0.05) than either DCA or IMRS plans, at 9.2 ± 7% and 8.2 ± 6%, respectively. Owing to the multiple arc or beam planning designs of IMRS and VMAT, both of these techniques required higher MU delivery than DCA, with the averages being twice as high (p < 0.05). If linear accelerator is only 1 modality can to establish for SRS treatment. Based on statistical evidence retrospectively, we recommend VMAT as the optimal technique for delivering treatment to tumors adjacent to brainstem.
Collapse
Affiliation(s)
- Chiou-Shiung Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan.
| | - Jing-Min Hwang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; College of Medicine, Tzu Chi University, Hualan, Taiwan
| | - Po-An Tai
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Buddhist Tzu Chi University, Hualan, Taiwan
| | - You-Kang Chang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; College of Medicine, Tzu Chi University, Hualan, Taiwan
| | - Yu-Nong Wang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Rompin Shih
- Department of Radiation Oncology, New York-Presbyterian Hospital, New York, NY
| | - Keh-Shih Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Alongi F, Fiorentino A, Mancosu P, Navarria P, Giaj Levra N, Mazzola R, Scorsetti M. Stereotactic radiosurgery for intracranial metastases: linac-based and gamma-dedicated unit approach. Expert Rev Anticancer Ther 2016; 16:731-40. [DOI: 10.1080/14737140.2016.1190648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filippo Alongi
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Pietro Mancosu
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| | - Pierina Navarria
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| | | | - Rosario Mazzola
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Marta Scorsetti
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| |
Collapse
|
19
|
Swamy ST, Radha CA, Arun G, Kathirvel M, Subramanian S. Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma--6MV Flattening Filter Free Photon Beam. Asian Pac J Cancer Prev 2016; 16:5019-24. [PMID: 26163634 DOI: 10.7314/apjcp.2015.16.12.5019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS>10 cc). MATERIALS AND METHODS Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25 Gy in 5 fractions (5 fractions/ week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25 Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of 0.13 cm3, 0.009 cm3 and 0.002 cm3 respectively. RESULTS Average PTV volume of AS was 11.3 cc (±4.8), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (±0.05). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem V0.5 cc<23 Gy, cochlea maximum<25 Gy and Optic pathway<25 Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.
Collapse
|
20
|
Molinier J, Kerr C, Simeon S, Ailleres N, Charissoux M, Azria D, Fenoglietto P. Comparison of volumetric-modulated arc therapy and dynamic conformal arc treatment planning for cranial stereotactic radiosurgery. J Appl Clin Med Phys 2016; 17:92-101. [PMID: 26894335 PMCID: PMC5690199 DOI: 10.1120/jacmp.v17i1.5677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/14/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022] Open
Abstract
The aim was to analyze arc therapy techniques according to the number and position of the brain lesions reported by comparing dynamic noncoplanar conformal arcs (DCA), two coplanar full arcs (RAC) with volumetric-modulated arc therapy (VMAT), multiple noncoplanar partial arcs with VMAT (RANC), and two full arcs with VMAT and 10° table rotation (RAT). Patients with a single lesion (n= 10), multiple lesions (n = 10) or a single lesion close to organs at risk (n = 5) and previously treated with DCA were selected. For each patient, the DCA treatment was replanned with all VMAT techniques. All DCA plans were compared with VMAT plans and evaluated in regard to the different quality indices and dosimetric parameters. For single lesion, homogeneity index (HI) better results were found for the RANC technique (0.17 ± 0.05) compared with DCA procedure (0.27± 0.05). Concerning conformity index (CI), the RAT technique gave higher and better values (0.85 ± 0.04) compared with those obtained with the DCA technique (0.77 ± 0.05). DCA improved healthy brain protection (8.35 ± 5.61 cc vs. 10.52 ± 6.40 cc for RANC) and reduced monitor unit numbers (3046 ± 374 MU vs. 4651 ± 736 for RANC), even if global room occupation was higher. For multiple lesions, VMAT techniques provided better HI (0.16) than DCA (0.24 ± 0.07). The CI was improved with RAT (0.8 ± 0.08 for RAT vs. 0.71 ± 0.08 for DCA). The V10Gy healthy brain was better protected with DCA (9.27 ± 4.57 cc). Regarding the MU numbers: RANC < RAT< RAC < DCA. For a single lesion close to OAR, RAT achieved high degrees of homogeneity (0.27 ± 0.03 vs. 0.53 ± 0.2 for DCA) and conformity (0.72± 0.06vs. 0.56 ± 0.13 for DCA) while sparing organs at risk (Dmax = 12.36 ± 1.05Gyvs. 14.12 ± 0.59 Gy for DCA, and Dmean = 3.96 ± 3.57Gyvs. 4.72 ± 3.28Gy for DCA). On the other hand, MU numbers were lower with DCA (2254 ± 190 MUvs. 3438 ± 457 MU for RANC) even if overall time was inferior with RAC. For a single lesion, DCA provide better plan considering low doses to healthy brain even if quality indexes are better for the others techniques. For multiple lesions, RANC seems to be the best compromise, due to the ability to deliver a good conformity and homogeneity plan while sparing healthy brain tissue. For a single lesion close to organs at risk, RAT is the most appropriate technique.
Collapse
|
21
|
Esposito M, Maggi G, Marino C, Bottalico L, Cagni E, Carbonini C, Casale M, Clemente S, D'Alesio V, Fedele D, Giglioli FR, Landoni V, Martinotti A, Nigro R, Strigari L, Villaggi E, Mancosu P. Multicentre treatment planning inter-comparison in a national context: The liver stereotactic ablative radiotherapy case. Phys Med 2016; 32:277-83. [DOI: 10.1016/j.ejmp.2015.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/27/2015] [Accepted: 09/12/2015] [Indexed: 02/08/2023] Open
|
22
|
Sager O, Dincoglan F, Beyzadeoglu M. Stereotactic radiosurgery of glomus jugulare tumors: current concepts, recent advances and future perspectives. CNS Oncol 2015; 4:105-14. [PMID: 25768334 DOI: 10.2217/cns.14.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stereotactic radiosurgery (SRS), a very highly focused form of therapeutic irradiation, has been widely recognized as a viable treatment option in the management of intracranial pathologies including benign tumors, malign tumors, vascular malformations and functional disorders. The applications of SRS are continuously expanding thanks to the ever-increasing advances and corresponding improvements in neuroimaging, radiation treatment techniques, equipment, treatment planning and delivery systems. In the context of glomus jugulare tumors (GJT), SRS is being more increasingly used both as the upfront management modality or as a complementary or salvage treatment option. As its safety and efficacy is being evident with compiling data from studies with longer follow-up durations, SRS appears to take the lead in the management of most patients with GJT. Herein, we address current concepts, recent advances and future perspectives in SRS of GJT in light of the literature.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, Gulhane Military Medical Academy, Gn. Tevfik Saglam Cad. 06018, Etlik, Kecioren, Ankara, Turkey
| | | | | |
Collapse
|
23
|
Huss M, Barsoum P, Dodoo E, Sinclair G, Toma-Dasu I. Fractionated SRT using VMAT and Gamma Knife for brain metastases and gliomas--a planning study. J Appl Clin Med Phys 2015; 16:3-16. [PMID: 26699547 PMCID: PMC5691017 DOI: 10.1120/jacmp.v16i6.5255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 07/14/2015] [Accepted: 07/13/2015] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery using Gamma Knife (GK) or linear accelerators has been used for decades to treat brain tumors in one fraction. A new positioning system, Extend™, was introduced by Elekta AB for fractionated stereotactic radiotherapy (SRT) with GK. Another option for fractionated SRT is advanced planning and delivery using linacs and volumetric modulated arc therapy (VMAT). This project aims to assess the performance of GK Extend™ for delivering fractionated SRT by comparing GK treatments plans for brain targets performed using Leksell GammaPlan (LGP) with VMAT treatment plans. Several targets were considered for the planning: simulated metastasis‐ and glioma‐like targets surrounding an organ at risk (OAR), as well as three clinical cases of metastases. Physical parameters such as conformity, gradient index, dose to OARs, and brain volume receiving doses above the threshold associated with risk of damaging healthy tissue, were determined and compared for the treatment plans. The results showed that GK produced better dose distributions for target volumes below 15 cm3, while VMAT results in better dose conformity to the target and lower doses to the OARs in case of fractionated treatments for large or irregular volumes. The volume receiving doses above a threshold associated with increased risk of damage to normal brain tissue was also smaller for VMAT. The GK consistently performed better than VMAT in producing a lower dose‐bath to the brain. The above is subjected only to margin‐dependent fractionated radiotherapy (CTV/PTV). The results of this study could lead to clinically significant decisions regarding the choice of the radiotherapy technique for brain targets. PACS numbers: 87.53.Ly, 87.55.D‐
Collapse
|
24
|
Tumor volume threshold for achieving improved conformity in VMAT and Gamma Knife stereotactic radiosurgery for vestibular schwannoma. Radiother Oncol 2015; 115:229-34. [DOI: 10.1016/j.radonc.2015.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/12/2015] [Accepted: 03/27/2015] [Indexed: 11/23/2022]
|
25
|
Ruschin M, Lee Y, Beachey D, Yeboah C, Wronski M, Babic S, Lochray F, Nico A, Khan L, Soliman H, Sahgal A. Investigation of Dose Falloff for Intact Brain Metastases and Surgical Cavities Using Hypofractionated Volumetric Modulated Arc Radiotherapy. Technol Cancer Res Treat 2015; 15:130-8. [PMID: 25627201 DOI: 10.1177/1533034614567277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/05/2014] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Intact brain metastases tend to be small and spherical compared to postsurgery brain cavities, which tend to be large and irregular shaped and, as a result, a challenge with respect to treatment planning. The purpose of the present study is to develop guidelines for normal brain tissue dose and to investigate whether there is a dependence on target type for patients treated with hypofractionated volumetric modulated arc radiotherapy (HF-VMAT). METHODS Treatment plans from a total of 100 patients and 136 targets (55 cavity and 81 intact) were retrospectively reviewed. All targets were treated with HF-VMAT with total doses ranging between 20 and 30 gray (Gy) in 5 fractions. All plans met institutional objectives for organ-at-risk constraints and were clinically delivered. Dose falloff was quantified using gradient index (GI) and distance between the 100% and 50% isodose lines (R50). Additionally, the dose to normal brain tissue (brain contour excluding all gross tumor or clinical target volumes) was assessed using volume receiving specific doses (Vx) where x ranged from 5 to 30 Gy. Best-fit curves using power law relationships of the form y = ax(b) were generated for GI, R50, and Vx (normal brain tissue) versus target volume. RESULTS There was a statistically significant difference in planning target volume (PTV) for cavities versus intact metastases with mean volumes of 37.8 cm(3) and 9.5 cm(3), respectively (P < .0001). The GI and R50 were statistically different: 3.4 and 9.8 mm for cavities versus 4.6 and 8.3 mm for intact metastases (P < .0001). The R50 increased with PTV with power law coefficients (a, b) = (6.3, 0.12) and (5.9, 0.15) for cavities and intact, respectively. GI decreased with PTV with coefficients (a, b) = (5.9, -0.18) and (5.7, -0.14) for cavities and intact, respectively. The normal brain tissue Vx also exhibited power law relationships with PTV for x = 20 to 28.8 Gy. In conclusion, target volume is the main predictor of dose falloff. The results of the present study can be used for determining target volume-based thresholds for dose falloff and normal brain tissue dose-volume constraints.
Collapse
Affiliation(s)
- Mark Ruschin
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Young Lee
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - David Beachey
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Collins Yeboah
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Matt Wronski
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Steven Babic
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Fiona Lochray
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Anula Nico
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Luluel Khan
- Department of Radiation Oncology, University of Toronto, Toronto, Canada Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, University of Toronto, Toronto, Canada Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, Canada Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| |
Collapse
|
26
|
Ojala J. The accuracy of the Acuros XB algorithm in external beam radiotherapy – a comprehensive review. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0204.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|