1
|
Kratsios P, Zampieri N, Carrillo R, Mizumoto K, Sweeney LB, Philippidou P. Molecular and Cellular Mechanisms of Motor Circuit Development. J Neurosci 2024; 44:e1238242024. [PMID: 39358025 PMCID: PMC11450535 DOI: 10.1523/jneurosci.1238-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Robert Carrillo
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
2
|
Feng Y, Flanagan ME, Bonakdarpour B, Jamshidi P, Castellani RJ, Mao Q, Chu X, Gao H, Liu Y, Xu J, Hou Y, Martin W, Nelson PT, Leverenz JB, Pieper AA, Cummings J, Cheng F. Single-nucleus multiome analysis of human cerebellum in Alzheimer's disease-related dementia. RESEARCH SQUARE 2024:rs.3.rs-4871032. [PMID: 39184089 PMCID: PMC11343296 DOI: 10.21203/rs.3.rs-4871032/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although human cerebellum is known to be neuropathologically impaired in Alzheimer's disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from cerebellum from 9 human cases of AD/ADRD and 8 controls, and with frontal cortex of 6 AD donors for additional comparison. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we prioritized two likely causal genes, including Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and Hi-C looping data. This first cell subtype-specific regulatory landscape in the human cerebellum identified here offer novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Margaret E Flanagan
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pouya Jamshidi
- Department of Pathology and Northwestern Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph J. Castellani
- Department of Pathology and Northwestern Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William Martin
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Andrew A. Pieper
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland 44106, OH, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, Nevada 89154, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Cummins M, Watson C, Edwards RJ, Mattick JS. The Evolution of Ultraconserved Elements in Vertebrates. Mol Biol Evol 2024; 41:msae146. [PMID: 39058500 PMCID: PMC11276968 DOI: 10.1093/molbev/msae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.
Collapse
Affiliation(s)
- Mitchell Cummins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cadel Watson
- School of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Seto Y, Ogihara R, Takizawa K, Eiraku M. In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells. Nat Commun 2024; 15:1351. [PMID: 38355589 PMCID: PMC10867012 DOI: 10.1038/s41467-024-45285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early patterning of neural crest cells (NCCs) in the craniofacial primordium is important for subsequent development of proper craniofacial structures. However, because of the complexity of the environment of developing tissues, surveying the early specification and patterning of NCCs is difficult. In this study, we develop a simplified in vitro 3D model using human pluripotent stem cells to analyze the early stages of facial development. In this model, cranial NCC-like cells spontaneously differentiate from neural plate border-like cells into maxillary arch-like mesenchyme after a long-term culture. Upon the addition of EDN1 and BMP4, these aggregates are converted into a mandibular arch-like state. Furthermore, temporary treatment with EDN1 and BMP4 induces the formation of spatially separated domains expressing mandibular and maxillary arch markers within a single aggregate. These results suggest that this in vitro model is useful for determining the mechanisms underlying cell fate specification and patterning during early facial development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ryoma Ogihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kaori Takizawa
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Huber PB, LaBonne C. Small molecule-mediated reprogramming of Xenopus blastula stem cells to a neural crest state. Dev Biol 2024; 505:34-41. [PMID: 37890713 PMCID: PMC11541498 DOI: 10.1016/j.ydbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Neural crest cells are a stem cell population unique to vertebrates that give rise to a diverse array of derivatives, including much of the peripheral nervous system, pigment cells, cartilage, mesenchyme, and bone. Acquisition of these cells drove the evolution of vertebrates and defects in their development underlies a broad set of neurocristopathies. Moreover, studies of neural crest can inform differentiation protocols for pluripotent stem cells and regenerative medicine applications. Xenopus embryos are an important system for studies of the neural crest and have provided numerous insights into the signals and transcription factors that control the formation and later lineage diversification of these stem cells. Pluripotent animal pole explants are a particularly powerful tool in this system as they can be cultured in simple salt solution and instructed to give rise to any cell type including the neural crest. Here we report a protocol for small molecule-mediated induction of the neural crest state from blastula stem cells and validate it using transcriptome analysis and grafting experiments. This is an powerful new tool for generating this important cell type that will facilitate future studies of neural crest development and mutations and variants linked to neurocristopathies.
Collapse
Affiliation(s)
- Paul B Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
6
|
Fedoseyeva VB, Novosadova EV, Nenasheva VV, Novosadova LV, Grivennikov IA, Tarantul VZ. Activation of Embryonic Gene Transcription in Neural Precursor Cells Derived from the Induced Pluripotent Stem Cells of the Patients with Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:515-525. [PMID: 37080937 DOI: 10.1134/s0006297923040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis. Neural cell cultures derived from the induced pluripotent stem cells (IPSCs) provide a great potential for studying molecular events underlying the pathogenesis of PD. This paper presents the results of bioinformatic analysis of the data obtained using RNA-seq technology in the study of neural precursors (NP) derived from IPSCs of the healthy donors and patients with PD carrying various mutations that are commonly associated with familial PD. This analysis showed that the level of transcription of multiple genes actively expressed in the nervous system at the embryonic stage of development was significantly increased in the NP cells obtained from the patients with PD, unlike in the case of healthy donors. Bioinformatic data have been, in general, confirmed using real-time PCR. The obtained data suggest that one of the causes of PD may be the shift of the gene expression pattern in neuronal cells towards embryonic gene expression pattern (termed dematuration).
Collapse
Affiliation(s)
- Viya B Fedoseyeva
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | | | | | | | | | | |
Collapse
|
7
|
Long-Term Treatment with Bortezomib Induces Specific Methylation Changes in Differentiated Neuronal Cells. Cancers (Basel) 2022; 14:cancers14143402. [PMID: 35884461 PMCID: PMC9319119 DOI: 10.3390/cancers14143402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary We exposed LUHMES cells, differentiated into mature neurons, to bortezomib (BTZ) in two treatment cycles and analyzed the methylomes of these cells after each cycle, controlling the analysis for the methylation changes potentially induced by the long-term culture. Our results show that BTZ induces methylation changes that may affect cell morphogenesis, neurogenesis, and neurotransmission. These changes are specifically enriched within transcription factor binding sites of EBF, PAX, DLX, LHX, and HNF family members, which have been shown to regulate neurogenesis and neuronal differentiation. We further show that the observed methylation changes are not present in the SH-SY5Y cells that we used to study mechanisms of development of BTZ resistance. Altogether, our results show that BTZ treatment induces very specific changes in the methylomes of neuronal cells. Abstract Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.
Collapse
|
8
|
Deisseroth CA, Lerma VC, Magyar CL, Pfliger JM, Nayak A, Bliss ND, LeMaire AW, Narayanan V, Balak C, Zanni G, Valente EM, Bertini E, Benke PJ, Wangler MF, Chao HT. An Integrated Phenotypic and Genotypic Approach Reveals a High-Risk Subtype Association for EBF3 Missense Variants Affecting the Zinc Finger Domain. Ann Neurol 2022; 92:138-153. [PMID: 35340043 DOI: 10.1002/ana.26359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD. METHODS A phenotypic assessment of 41 individuals was combined with a literature meta-analysis for a total of 83 individuals diagnosed with EBF3-related NDD. Quantitative diagnostic phenotypic and symptom severity scales were developed to compare EBF3 variant type and location to identify genotype-phenotype correlations. To stratify the effects of EBF3 variants disrupting either the DNA-binding domain (DBD) or the ZNF, we used in vivo fruit fly UAS-GAL4 expression and in vitro luciferase assays. RESULTS We show that patient symptom severity correlates with EBF3 missense variants perturbing the ZNF, which is a key protein domain required for stabilizing the interaction between EBF3 and the target DNA sequence. We found that ZNF-associated variants failed to restore viability in the fruit fly and impaired transcriptional activation. However, the recurrent variant EBF3 p.Arg209Trp in the DBD is capable of partially rescuing viability in the fly and preserved transcriptional activation. INTERPRETATION We describe a symptom severity risk association with ZNF perturbations and EBF3 loss-of-function in the largest reported cohort to date of EBF3-related NDD patients. This analysis should have potential predictive clinical value for newly identified patients with EBF3 gene variants. ANN NEUROL 2022;92:138-153.
Collapse
Affiliation(s)
- Cole A Deisseroth
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Vanesa C Lerma
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Christina L Magyar
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica Mae Pfliger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models, and Therapeutics Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Aarushi Nayak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan D Bliss
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ashley W LeMaire
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christopher Balak
- Biomedical Sciences Graduate Program, University of California at San Diego, San Diego, CA, USA
| | - Ginevra Zanni
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Michael F Wangler
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| |
Collapse
|
9
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
10
|
Jiménez de la Peña M, Jiménez de Domingo A, Tirado P, Calleja-Pérez B, Alcaraz LA, Álvarez S, Williams J, Hagman JR, Németh AH, Fernández-Jaén A. Neuroimaging Findings in Patients with EBF3 Mutations: Report of Two Cases. Mol Syndromol 2021; 12:186-193. [PMID: 34177436 DOI: 10.1159/000513583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Early B cell factor 3 (EBF3) is a transcription factor involved in brain development. Heterozygous, loss-of-function mutations in EBF3 have been reported in an autosomal dominant neurodevelopmental syndrome characterized by hypotonia, ataxia, and developmental delay (sometimes described as "HADD"s). We report 2 unrelated cases with novel de novo EBF3 mutations: c.455G>T (p.Arg152Leu) and c.962dup (p.Tyr321*) to expand the genotype/phenotype correlations of this disorder; clinical, neuropsychological, and MRI studies were used to define the phenotype. IQ was in the normal range and diffusion tensor imaging revealed asymmetric alterations of the longitudinal fasciculus in both cases. Our results demonstrate that EBF3 mutations can underlie neurodevelopmental disorders without intellectual disability. Long tract abnormalities have not been previously recognized and suggest that they may be an unrecognized and characteristic feature in this syndrome.
Collapse
Affiliation(s)
| | | | - Pilar Tirado
- Department of Pediatric Neurology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, United Kingdom
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, and Medicine School, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Arora D, Srikanth K, Lee J, Lee D, Park N, Wy S, Kim H, Park JE, Chai HH, Lim D, Cho IC, Kim J, Park W. Integration of multi-omics approaches for functional characterization of muscle related selective sweep genes in Nanchukmacdon. Sci Rep 2021; 11:7219. [PMID: 33785872 PMCID: PMC8009959 DOI: 10.1038/s41598-021-86683-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Pig as a food source serves daily dietary demand to a wide population around the world. Preference of meat depends on various factors with muscle play the central role. In this regards, selective breeding abled us to develop "Nanchukmacdon" a pig breeds with an enhanced variety of meat and high fertility rate. To identify genomic regions under selection we performed whole-genome resequencing, transcriptome, and whole-genome bisulfite sequencing from Nanchukmacdon muscles samples and used published data for three other breeds such as Landrace, Duroc, Jeju native pig and analyzed the functional characterization of candidate genes. In this study, we present a comprehensive approach to identify candidate genes by using multi-omics approaches. We performed two different methods XP-EHH, XP-CLR to identify traces of artificial selection for traits of economic importance. Moreover, RNAseq analysis was done to identify differentially expressed genes in the crossed breed population. Several genes (UGT8, ZGRF1, NDUFA10, EBF3, ELN, UBE2L6, NCALD, MELK, SERP2, GDPD5, and FHL2) were identified as selective sweep and differentially expressed in muscles related pathways. Furthermore, nucleotide diversity analysis revealed low genetic diversity in Nanchukmacdon for identified genes in comparison to related breeds and whole-genome bisulfite sequencing data shows the critical role of DNA methylation pattern in identified genes that leads to enhanced variety of meat. This work demonstrates a way to identify the molecular signature and lays a foundation for future genomic enabled pig breeding.
Collapse
Affiliation(s)
- Devender Arora
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Krishnamoorthy Srikanth
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea ,grid.5386.8000000041936877XDepartment of Animal Science, Cornell University, Ithaca, NY 14853 USA
| | - Jongin Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Daehwan Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Nayoung Park
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Suyeon Wy
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyeonji Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Jong-Eun Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Han-Ha Chai
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Dajeong Lim
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - In-Cheol Cho
- grid.484502.f0000 0004 5935 1171Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju, 63242 Korea
| | - Jaebum Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woncheoul Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| |
Collapse
|
12
|
Badaloni A, Casoni F, Croci L, Chiara F, Bizzoca A, Gennarini G, Cremona O, Hawkes R, Consalez GG. Dynamic Expression and New Functions of Early B Cell Factor 2 in Cerebellar Development. THE CEREBELLUM 2019; 18:999-1010. [DOI: 10.1007/s12311-019-01051-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Novel de novo variant in EBF3 is likely to impact DNA binding in a patient with a neurodevelopmental disorder and expanded phenotypes: patient report, in silico functional assessment, and review of published cases. Cold Spring Harb Mol Case Stud 2017; 3:a001743. [PMID: 28487885 PMCID: PMC5411688 DOI: 10.1101/mcs.a001743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants in EBF3 were recently described in three back-to-back publications in association with a novel neurodevelopmental disorder characterized by intellectual disability, speech delay, ataxia, and facial dysmorphisms. In this report, we describe an additional patient carrying a de novo missense variant in EBF3 (c.487C>T, p.(Arg163Trp)) that falls within a conserved residue in the zinc knuckle motif of the DNA binding domain. Without a solved structure of the DNA binding domain, we generated a homology-based atomic model and performed molecular dynamics simulations for EBF3, which predicted decreased DNA affinity for p.(Arg163Trp) compared with wild-type protein and control variants. These data are in agreement with previous experimental studies of EBF1 showing the paralogous residue is essential for DNA binding. The conservation and experimental evidence existing for EBF1 and in silico modeling and dynamics simulations to validate comparable behavior of multiple variants in EBF3 demonstrates strong support for the pathogenicity of p.(Arg163Trp). We show that our patient presents with phenotypes consistent with previously reported patients harboring EBF3 variants and expands the phenotypic spectrum of this newly identified disorder with the additional feature of a bicornuate uterus.
Collapse
|
14
|
Li SZ, Liu W, Li Z, Li WH, Wang Y, Zhou L, Gui JF. greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 2017; 627:176-187. [DOI: 10.1016/j.gene.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
|
15
|
Thomas JT, Eric Dollins D, Andrykovich KR, Chu T, Stultz BG, Hursh DA, Moos M. SMOC can act as both an antagonist and an expander of BMP signaling. eLife 2017; 6:e17935. [PMID: 28323621 PMCID: PMC5360445 DOI: 10.7554/elife.17935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/14/2017] [Indexed: 01/19/2023] Open
Abstract
The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone (pent), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.
Collapse
Affiliation(s)
- J Terrig Thomas
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - D Eric Dollins
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Kristin R Andrykovich
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Tehyen Chu
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Brian G Stultz
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Deborah A Hursh
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Malcolm Moos
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| |
Collapse
|
16
|
Chatterjee A, Stockwell PA, Ahn A, Rodger EJ, Leichter AL, Eccles MR. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 2017; 8:6085-6101. [PMID: 28030832 PMCID: PMC5351615 DOI: 10.18632/oncotarget.14042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
17
|
Riddiford N, Schlosser G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 2016; 5. [PMID: 27576864 PMCID: PMC5035141 DOI: 10.7554/elife.17666] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.
Collapse
Affiliation(s)
- Nick Riddiford
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| |
Collapse
|
18
|
Hatch VL, Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S, van Kruijsbergen I, Veenstra GJC, Münsterberg AE, Wheeler GN. The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. Dev Biol 2016; 416:361-72. [PMID: 27343897 DOI: 10.1016/j.ydbio.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/06/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.
Collapse
Affiliation(s)
- Victoria L Hatch
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Christopher T Ford
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nicole J Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew L Tomlinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ines Desanlis
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Adam E Hendry
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Saartje Hontelez
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
19
|
Bizzoca A, Picocci S, Corsi P, Arbia S, Croci L, Consalez GG, Gennarini G. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-Cell factor 2 transcription factor. Dev Neurobiol 2015; 75:1420-40. [DOI: 10.1002/dneu.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Stefania Arbia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Laura Croci
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
| | - G. Giacomo Consalez
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
- Università Vita-Salute San Raffaele; Milano I-20132 Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| |
Collapse
|
20
|
Ratié L, Ware M, Jagline H, David V, Dupé V. Dynamic expression of Notch-dependent neurogenic markers in the chick embryonic nervous system. Front Neuroanat 2014; 8:158. [PMID: 25565981 PMCID: PMC4270182 DOI: 10.3389/fnana.2014.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/04/2014] [Indexed: 11/13/2022] Open
Abstract
The establishment of a functional nervous system requires a highly orchestrated process of neural proliferation and differentiation. The evolutionary conserved Notch signaling pathway is a key regulator of this process, regulating basic helix-loop-helix (bHLH) transcriptional repressors and proneural genes. However, little is known about downstream Notch targets and subsequently genes required for neuronal specification. In this report, the expression pattern of Transgelin 3 (Tagln3), Chromogranin A (Chga) and Contactin 2 (Cntn2) was described in detail during early chick embryogenesis. Expression of these genes was largely restricted to the nervous system including the early axon scaffold populations, cranial ganglia and spinal motor neurons. Their temporal and spatial expression were compared with the neuronal markers Nescient Helix-Loop-Helix 1 (Nhlh1), Stathmin 2 (Stmn2) and HuC/D. We show that Tagln3 is an early marker for post-mitotic neurons whereas Chga and Cntn2 are expressed in mature neurons. We demonstrate that inhibition of Notch signaling during spinal cord neurogenesis enhances expression of these markers. This data demonstrates that Tagln3, Chga and Cntn2 represent strong new candidates to contribute to the sequential progression of vertebrate neurogenesis.
Collapse
Affiliation(s)
- Leslie Ratié
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Michelle Ware
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Hélène Jagline
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Véronique David
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France ; Laboratoire de Génétique Moléculaire, CHU Pontchaillou Rennes Cedex, France
| | - Valérie Dupé
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| |
Collapse
|
21
|
Cowles MW, Omuro KC, Stanley BN, Quintanilla CG, Zayas RM. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians. PLoS Genet 2014; 10:e1004746. [PMID: 25356635 PMCID: PMC4214590 DOI: 10.1371/journal.pgen.1004746] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. COE transcription factors are conserved across widely divergent animals and are crucial for organismal development. COE genes also play roles in adult animals and have been implicated in central nervous system (CNS) diseases; however, the function of COE in the post-embryonic CNS remains poorly understood. Planarian regeneration provides an excellent model to study the function of transcription factors in cell differentiation and in terminally differentiated cells. In planarians, coe is expressed in differentiating and mature neurons, and its function is required for CNS regeneration. In this study, we show that coe is required to maintain structure and function of the CNS in uninjured planarians. We took advantage of this phenotype to identify genes regulated by coe by comparing global gene expression changes between control and coe mRNA-deficient planarians. This approach revealed downregulated genes downstream of coe with biological roles in CNS function. Expression analysis of downregulated genes uncovered previously unknown candidate targets of coe in the CNS. Furthermore, functional analysis of downstream targets identified coe-regulated genes required for CNS regeneration. These results demonstrate that the roles of COE in stem cell specification and neuronal function are active and indispensable during CNS renewal in adult animals.
Collapse
Affiliation(s)
- Martis W. Cowles
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kerilyn C. Omuro
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Brianna N. Stanley
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Carlo G. Quintanilla
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kim J, Badaloni A, Willert T, Zimber-Strobl U, Kühn R, Wurst W, Kieslinger M. An RNAi-based approach to down-regulate a gene family in vivo. PLoS One 2013; 8:e80312. [PMID: 24265806 PMCID: PMC3827190 DOI: 10.1371/journal.pone.0080312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Genetic redundancy poses a major problem to the analysis of gene function. RNA interference allows the down-regulation of several genes simultaneously, offering the possibility to overcome genetic redundancy, something not easily achieved with traditional genetic approaches. Previously we have used a polycistronic miR155-based framework to knockdown expression of three genes of the early B cell factor family in cultured cells. Here we develop the system further by generating transgenic mice expressing the RNAi construct in vivo in an inducible manner. Expression of the transgene from the strong CAG promoter is compatible with a normal function of the basal miRNA/RNAi machinery, and the miR155 framework readily allows inducible expression from the Rosa26 locus as shown by Gfp. However, expression of the transgene in hematopoietic cells does not lead to changes in B cell development and neuronal expression does not affect cerebellar architecture as predicted from genetic deletion studies. Protein as well as mRNA levels generated from Ebf genes in hetero- and homozygous animals are comparable to wild-type levels. A likely explanation for the discrepancy in the effectiveness of the RNAi construct between cultured cells and transgenic animals lies in the efficiency of the sequences used, possibly together with the complexity of the transgene. Since new approaches allow to overcome efficiency problems of RNAi sequences, the data lay the foundation for future work on the simultaneous knockdown of several genes in vivo.
Collapse
Affiliation(s)
- Jeehee Kim
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Aurora Badaloni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Torsten Willert
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Matthias Kieslinger
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
23
|
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 2013; 140:2867-78. [PMID: 23739135 DOI: 10.1242/dev.088096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
24
|
Parlier D, Moers V, Van Campenhout C, Preillon J, Leclère L, Saulnier A, Sirakov M, Busengdal H, Kricha S, Marine JC, Rentzsch F, Bellefroid EJ. The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Dev Biol 2012; 373:39-52. [PMID: 23064029 DOI: 10.1016/j.ydbio.2012.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/16/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022]
Abstract
The Dmrt (doublesex and mab-3 related transcription factor) genes encode a large family of evolutionarily conserved transcription factors whose function in sex specific differentiation has been well studied in all animal lineages. In vertebrates, their function is not restricted to the developing gonads. For example, Xenopus Dmrt4 is essential for neurogenesis in the olfactory system. Here we have isolated and characterized Xenopus Dmrt5 and found that it is coexpressed with Dmrt4 in the developing olfactory placodes. As Dmrt4, Dmrt5 is positively regulated in the ectoderm by neural inducers and negatively by proneural factors. Both Dmrt5 and Dmrt4 genes are also activated by the combined action of the transcription factor Otx2, broadly transcribed in the head ectoderm and of Notch signaling, activated in the anterior neural ridge. As for Dmrt4, knockdown of Dmrt5 impairs neurogenesis in the embryonic olfactory system and in neuralized animal caps. Conversely, its overexpression promotes neuronal differentiation in animal caps, a property that requires the conserved C-terminal DMA and DMB domains. We also found that the sea anenome Dmrt4/5 related gene NvDmrtb also induces neurogenesis in Xenopus animal caps and that conversely, its knockdown in Nematostella reduces elav-1 positive neurons. Together, our data identify Dmrt5 as a novel important regulator of neurogenesis whose function overlaps with that of Dmrt4 during Xenopus olfactory system development. They also suggest that Dmrt may have had a role in neurogenesis in the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Damien Parlier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Green YS, Vetter ML. EBF proteins participate in transcriptional regulation of Xenopus muscle development. Dev Biol 2011; 358:240-50. [PMID: 21839736 DOI: 10.1016/j.ydbio.2011.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 07/24/2011] [Accepted: 07/27/2011] [Indexed: 01/08/2023]
Abstract
EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|