1
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang W, Pope A, Ward-Shaw E, Buehler D, Bachelerie F, Lambert PF. Increased Susceptibility of WHIM Mice to Papillomavirus-induced Disease is Dependent upon Immune Cell Dysfunction. PLoS Pathog 2024; 20:e1012472. [PMID: 39226327 PMCID: PMC11398641 DOI: 10.1371/journal.ppat.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Francoise Bachelerie
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR-996, Université Paris-Saclay, Orsay, France
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Dancy E, Stratton P, Pichard DC, Marciano BE, Cowen EW, McBride AA, Van Doorslaer K, Merideth MA, Salmeri N, Hughes MS, Heller T, Parta M, Hickstein DD, Kong HH, Holland SM, Zerbe CS. Human papillomavirus disease in GATA2 deficiency: a genetic predisposition to HPV-associated female anogenital malignancy. Front Immunol 2024; 15:1445711. [PMID: 39267745 PMCID: PMC11390362 DOI: 10.3389/fimmu.2024.1445711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Objective Patients with pathogenic variants in the GATA Binding Protein 2 (GATA2), a hematopoietic transcription factor, are at risk for human papillomavirus-related (HPV) anogenital cancer at younger than expected ages. A female cohort with GATA2 haploinsufficiency was systematically assessed by two gynecologists to characterize the extent and severity of anogenital HPV disease, which was also compared with affected males. Methods A 17-year retrospective review of medical records, including laboratory, histopathology and cytopathology records was performed for patients diagnosed with GATA2 haploinsufficiency followed at the National Institutes of Health. Student's t-test and Mann-Whitney U test or Fisher's exact test were used to compare differences in continuous or categorical variables, respectively. Spearman's rho coefficient was employed for correlations. Results Of 68 patients with GATA2 haploinsufficiency, HPV disease was the initial manifestation in 27 (40%). HPV occurred at median 18.9 (15.2-26.2) years in females, and 25.6 (23.4-26.9) years in males. Fifty-two (76%), 27 females and 25 males, developed HPV-related squamous intraepithelial lesions (SIL) including two males with oral cancer. Twenty-one patients developed anogenital high-grade SIL (HSIL) or carcinoma (16 females versus 5 males, (59% versus 20%, respectively, p=0.005) at median 27 (18.6-59.3) years for females and 33 (16.5-40.1) years for males. Females were more likely than males to require >2 surgeries to treat recurrent HSIL (p=0.0009). Of 30 patients undergoing hematopoietic stem cell transplant (HSCT) to manage disease arising from GATA2 haploinsufficiency, 12 (nine females, three males) had persistent HSIL/HPV disease. Of these nine females, eight underwent peri-transplant surgical treatment of HSIL. Five of seven who survived post-HSCT received HPV vaccination and had no or minimal evidence of HPV disease 2 years post-HSCT. HPV disease persisted in two receiving immunosuppression. HPV disease/low SIL (LSIL) resolved in all three males. Conclusion Females with GATA2 haploinsufficiency exhibit a heightened risk of recurrent, multifocal anogenital HSIL requiring frequent surveillance and multiple treatments. GATA2 haploinsufficiency must be considered in a female with extensive, multifocal genital HSIL unresponsive to multiple surgeries. This population may benefit from early intervention like HSCT accompanied by continued, enhanced surveillance and treatment by gynecologic oncologists and gynecologists in those with anogenital HPV disease.
Collapse
Affiliation(s)
- Ehren Dancy
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dominique C Pichard
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Koenraad Van Doorslaer
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Immunobiology, College of Medicine, BIO5 Institute, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Noemi Salmeri
- Gynecology/Obstetrics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Marybeth S Hughes
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Dennis D Hickstein
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
7
|
Badolato R, Alsina L, Azar A, Bertrand Y, Bolyard AA, Dale D, Deyà-Martínez À, Dickerson KE, Ezra N, Hasle H, Kang HJ, Kiani-Alikhan S, Kuijpers TW, Kulagin A, Langguth D, Levin C, Neth O, Olbrich P, Peake J, Rodina Y, Rutten CE, Shcherbina A, Tarrant TK, Vossen MG, Wysocki CA, Belschner A, Bridger GJ, Chen K, Dubuc S, Hu Y, Jiang H, Li S, MacLeod R, Stewart M, Taveras AG, Yan T, Donadieu J. A phase 3 randomized trial of mavorixafor, a CXCR4 antagonist, for WHIM syndrome. Blood 2024; 144:35-45. [PMID: 38643510 PMCID: PMC11251404 DOI: 10.1182/blood.2023022658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT We investigated efficacy and safety of mavorixafor, an oral CXCR4 antagonist, in participants with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency caused by CXCR4 gain-of-function variants. This randomized (1:1), double-blind, placebo-controlled, phase 3 trial enrolled participants aged ≥12 years with WHIM syndrome and absolute neutrophil count (ANC) ≤0.4 × 103/μL. Participants received once-daily mavorixafor or placebo for 52 weeks. The primary end point was time (hours) above ANC threshold ≥0.5 × 103/μL (TATANC; over 24 hours). Secondary end points included TAT absolute lymphocyte count ≥1.0 × 103/μL (TATALC; over 24 hours); absolute changes in white blood cell (WBC), ANC, and absolute lymphocyte count (ALC) from baseline; annualized infection rate; infection duration; and total infection score (combined infection number/severity). In 31 participants (mavorixafor, n = 14; placebo, n = 17), mavorixafor least squares (LS) mean TATANC was 15.0 hours and 2.8 hours for placebo (P < .001). Mavorixafor LS mean TATALC was 15.8 hours and 4.6 hours for placebo (P < .001). Annualized infection rates were 60% lower with mavorixafor vs placebo (LS mean 1.7 vs 4.2; nominal P = .007), and total infection scores were 40% lower (7.4 [95% confidence interval [CI], 1.6-13.2] vs 12.3 [95% CI, 7.2-17.3]). Treatment with mavorixafor reduced infection frequency, severity, duration, and antibiotic use. No discontinuations occurred due to treatment-emergent adverse events (TEAEs); no related serious TEAEs were observed. Overall, mavorixafor treatment demonstrated significant increases in LS mean TATANC and TATALC, reduced infection frequency, severity/duration, and was well tolerated. The trial was registered at www.clinicaltrials.gov as #NCT03995108.
Collapse
Affiliation(s)
- Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD
| | - Yves Bertrand
- Pediatric Hematology and Oncology Institute, Hospices Civils de Lyon and Claude Bernard University, Lyon, France
| | | | - David Dale
- University of Washington Medical Center, Seattle, WA
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Navid Ezra
- California Dermatology Institute, Thousand Oaks, CA
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Sorena Kiani-Alikhan
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Daman Langguth
- Immunology Department, Sullivan Nicolaides Pathology Auchenflower, Wesley Medical Center, Auchenflower, QLD, Australia
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Olaf Neth
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Peter Olbrich
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
- Departmento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jane Peake
- Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Caroline E. Rutten
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
| | - Matthias G. Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Assistance Publique–Hôpitaux de Paris Sorbonne Université-Hôpital d’Enfants Armand-Trousseau, Paris, France
| |
Collapse
|
8
|
Geier CB. Mavorixafor: a new hope for WHIM syndrome. Blood 2024; 144:1-2. [PMID: 38963672 DOI: 10.1182/blood.2024024942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Affiliation(s)
- Christoph B Geier
- Carl von Ossietzky University Oldenburg and Medical Center University of Freiburg
| |
Collapse
|
9
|
Marin-Esteban V, Molet L, Laganà M, Ciocan D, Dominguez-Lafage C, Alouche N, Nguyen J, Gallego C, Mercier-Nomé F, Jaracz-Ros A, Beaupain B, Bouligand J, Proust A, Habib C, Bonnin RA, Girlich D, Fouyssac F, Schmutz JL, Bursztejn AC, Bellanné-Chantelot C, Bourrat E, Herfs M, Espéli M, Balabanian K, Schlecht-Louf G, Donadieu J, Bachelerie F, Deback C. CXCR4 Antagonist in HPV5-Associated Perianal Squamous-Cell Carcinoma. N Engl J Med 2024; 390:1339-1341. [PMID: 38598804 DOI: 10.1056/nejmc2213180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
| | - Lucie Molet
- Université Paris-Saclay, INSERM, Orsay, France
| | | | - Dragos Ciocan
- Assistance Publique-Hôpitaux de Paris, Clamart, France
| | | | | | | | | | | | | | | | | | - Alexis Proust
- Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Christophe Habib
- Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- Université Paris-Saclay, INSERM, Le Kremlin-Bicêtre, France
| | | | - Fanny Fouyssac
- Centre Hospitalo-Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Luc Schmutz
- Centre Hospitalo-Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | - Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Paris, France
| | | | | |
Collapse
|
10
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|
11
|
Moulin C, Beaupain B, Suarez F, Bertrand Y, Beaussant SC, Fischer A, Durin J, Ranta D, Espéli M, Bachelerie F, Bellanné-Chantelot C, Molina T, Emile JF, Balabanian K, Deback C, Donadieu J. CXCR4 WHIM syndrome is a cancer predisposition condition for virus-induced malignancies. Br J Haematol 2024; 204:1383-1392. [PMID: 38442908 DOI: 10.1111/bjh.19373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome (WHIMS) is a rare combined primary immunodeficiency caused by the gain of function of the CXCR4 chemokine receptor. We present the prevalence of cancer in WHIMS patients based on data from the French Severe Chronic Neutropenia Registry and an exhaustive literature review. The median follow-up of the 14 WHIMS 'patients was 28.5 years. A central review and viral evaluation of pathological samples were organized, and we conducted a thorough literature review to identify all reports of WHIMS cases. Six French patients were diagnosed with cancer at a median age of 37.6 years. The 40-year risk of malignancy was 39% (95% confidence interval [CI]: 6%-74%). We observed two human papillomavirus (HPV)-induced vulvar carcinomas, three lymphomas (two Epstein-Barr virus [EBV]-related) and one basal cell carcinoma. Among the 155 WHIMS cases from the literature, 22 cancers were reported in 16 patients, with an overall cancer 40-year risk of 23% (95% CI: 13%-39%). Malignancies included EBV-associated lymphoproliferative disorders and HPV-positive genital and anal cancers as in the French cohort. Worldwide, nine cases of malignancy were associated with HPV and four with EBV. Immunocompromised WHIMS patients appear to be particularly susceptible to developing early malignancy, mainly HPV-induced carcinomas, followed by EBV-related lymphomas.
Collapse
Affiliation(s)
- Clémentine Moulin
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Blandine Beaupain
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Felipe Suarez
- Service d'hématologie, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Yves Bertrand
- Institut d'hémato oncologie Pédiatrique, Hospice Civil de Lyon, Paris, France
| | - Sarah Cohen Beaussant
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Alain Fischer
- Centre de référence des déficits immunitaires héréditaires, Unité d'Immuno-Hématologie Pédiatrique, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Julie Durin
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Dana Ranta
- Service d'hématologie, CHU Nancy, Nancy, France
| | - Marion Espéli
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | | | - Thierry Molina
- Service d'anatomie pathologique Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Jean François Emile
- Service d'anatomie pathologique Hôpital Ambroise Paré, APHP, Boulogne-Billancourt, France
| | - Karl Balabanian
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Claire Deback
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
- Laboratoire de Virologie, Hôpitaux Universitaires Paris-Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, France
| | - Jean Donadieu
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| |
Collapse
|
12
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
13
|
Manougian HH, Mehta B, Beekman MK, Murphy PM, McDermott DH. Neutropenia, Recurrent Infections, and Warts in a 6-year-old Boy. Pediatr Rev 2024; 45:162-165. [PMID: 38425164 DOI: 10.1542/pir.2021-005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Haig H Manougian
- Department of Pediatrics, University of Illinois College of Medicine Peoria, OSF Children's Hospital of Illinois, Peoria, IL
| | - Brinda Mehta
- Department of Pediatrics, University of Illinois College of Medicine Peoria, OSF Children's Hospital of Illinois, Peoria, IL
| | - Michele K Beekman
- Department of Pediatrics, University of Illinois College of Medicine Peoria, OSF Children's Hospital of Illinois, Peoria, IL
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
15
|
McDermott DH, Velez D, Cho E, Cowen EW, DiGiovanna JJ, Pastrana DV, Buck CB, Calvo KR, Gardner PJ, Rosenzweig SD, Stratton P, Merideth MA, Kim HJ, Brewer C, Katz JD, Kuhns DB, Malech HL, Follmann D, Fay MP, Murphy PM. A phase III randomized crossover trial of plerixafor versus G-CSF for treatment of WHIM syndrome. J Clin Invest 2023; 133:e164918. [PMID: 37561579 PMCID: PMC10541188 DOI: 10.1172/jci164918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDWarts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a primary immunodeficiency disorder caused by heterozygous gain-of-function CXCR4 mutations. Myelokathexis is a kind of neutropenia caused by neutrophil retention in bone marrow and in WHIM syndrome is associated with lymphopenia and monocytopenia. The CXCR4 antagonist plerixafor mobilizes leukocytes to the blood; however, its safety and efficacy in WHIM syndrome are undefined.METHODSIn this investigator-initiated, single-center, quadruple-masked phase III crossover trial, we compared the total infection severity score (TISS) as the primary endpoint in an intent-to-treat manner in 19 patients with WHIM who each received 12 months treatment with plerixafor and 12 months treatment with granulocyte CSF (G-CSF, the standard of care for severe congenital neutropenia). The treatment order was randomized for each patient.RESULTSPlerixafor was nonsuperior to G-CSF for TISS (P = 0.54). In exploratory endpoints, plerixafor was noninferior to G-CSF for maintaining neutrophil counts of more than 500 cells/μL (P = 0.023) and was superior to G-CSF for maintaining lymphocyte counts above 1,000 cells/μL (P < 0.0001). Complete regression of a subset of large wart areas occurred on plerixafor in 5 of 7 patients with major wart burdens at baseline. Transient rash occurred on plerixafor, and bone pain was more common on G-CSF. There were no significant differences in drug preference or quality of life or the incidence of drug failure or serious adverse events.CONCLUSIONPlerixafor was not superior to G-CSF in patients with WHIM for TISS, the primary endpoint. Together with wart regression and hematologic improvement, the infection severity results support continued study of plerixafor as a potential treatment for WHIM syndrome.TRIAL REGISTRATIONClinicaltrials.gov NCT02231879.FUNDINGThis study was funded by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Elena Cho
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | | | | | | | | | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research
| | | | | | | | - H. Jeffrey Kim
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - Carmen Brewer
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - James D. Katz
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
16
|
Jourdain J, Barasc H, Faraut T, Calgaro A, Bonnet N, Marcuzzo C, Suin A, Barbat A, Hozé C, Besnard F, Taussat S, Grohs C, Kuchly C, Iampietro C, Donnadieu C, Pinton A, Boichard D, Capitan A. Large-scale detection and characterization of interchromosomal rearrangements in normozoospermic bulls using massive genotype and phenotype data sets. Genome Res 2023; 33:957-971. [PMID: 37414574 PMCID: PMC10519396 DOI: 10.1101/gr.277787.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023]
Abstract
In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.
Collapse
Affiliation(s)
- Jeanlin Jourdain
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Nathalie Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Camille Marcuzzo
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Chris Hozé
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
- Idele, 75012 Paris, France
| | - Sébastien Taussat
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Aurélien Capitan
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
Donadieu J. Genetics of severe congenital neutropenia as a gateway to personalized therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:658-665. [PMID: 36485107 PMCID: PMC9821599 DOI: 10.1182/hematology.2022000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Registre National des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
18
|
Geier CB, Ellison M, Cruz R, Pawar S, Leiss-Piller A, Zmajkovicova K, McNulty SM, Yilmaz M, Evans MO, Gordon S, Ujhazi B, Wiest I, Abolhassani H, Aghamohammadi A, Barmettler S, Bhar S, Bondarenko A, Bolyard AA, Buchbinder D, Cada M, Cavieres M, Connelly JA, Dale DC, Deordieva E, Dorsey MJ, Drysdale SB, Ehl S, Elfeky R, Fioredda F, Firkin F, Förster-Waldl E, Geng B, Goda V, Gonzalez-Granado L, Grunebaum E, Grzesk E, Henrickson SE, Hilfanova A, Hiwatari M, Imai C, Ip W, Jyonouchi S, Kanegane H, Kawahara Y, Khojah AM, Kim VHD, Kojić M, Kołtan S, Krivan G, Langguth D, Lau YL, Leung D, Miano M, Mersyanova I, Mousallem T, Muskat M, Naoum FA, Noronha SA, Ouederni M, Ozono S, Richmond GW, Sakovich I, Salzer U, Schuetz C, Seeborg FO, Sharapova SO, Sockel K, Volokha A, von Bonin M, Warnatz K, Wegehaupt O, Weinberg GA, Wong KJ, Worth A, Yu H, Zharankova Y, Zhao X, Devlin L, Badarau A, Csomos K, Keszei M, Pereira J, Taveras AG, Beaussant-Cohen SL, Ong MS, Shcherbina A, Walter JE. Disease Progression of WHIM Syndrome in an International Cohort of 66 Pediatric and Adult Patients. J Clin Immunol 2022; 42:1748-1765. [PMID: 35947323 PMCID: PMC9700649 DOI: 10.1007/s10875-022-01312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS) is a combined immunodeficiency caused by gain-of-function mutations in the C-X-C chemokine receptor type 4 (CXCR4) gene. We characterize a unique international cohort of 66 patients, including 57 (86%) cases previously unreported, with variable clinical phenotypes. Of 17 distinct CXCR4 genetic variants within our cohort, 11 were novel pathogenic variants affecting 15 individuals (23%). All variants affect the same CXCR4 region and impair CXCR4 internalization resulting in hyperactive signaling. The median age of diagnosis in our cohort (5.5 years) indicates WHIM syndrome can commonly present in childhood, although some patients are not diagnosed until adulthood. The prevalence and mean age of recognition and/or onset of clinical manifestations within our cohort were infections 88%/1.6 years, neutropenia 98%/3.8 years, lymphopenia 88%/5.0 years, and warts 40%/12.1 years. However, we report greater prevalence and variety of autoimmune complications of WHIM syndrome (21.2%) than reported previously. Patients with versus without family history of WHIM syndrome were diagnosed earlier (22%, average age 1.3 years versus 78%, average age 5 years, respectively). Patients with a family history of WHIM syndrome also received earlier treatment, experienced less hospitalization, and had less end-organ damage. This observation reinforces previous reports that early treatment for WHIM syndrome improves outcomes. Only one patient died; death was attributed to complications of hematopoietic stem cell transplantation. The variable expressivity of WHIM syndrome in pediatric patients delays their diagnosis and therapy. Early-onset bacterial infections with severe neutropenia and/or lymphopenia should prompt genetic testing for WHIM syndrome, even in the absence of warts.
Collapse
Affiliation(s)
- Christoph B Geier
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maryssa Ellison
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sumit Pawar
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | - Shannon M McNulty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | | | - Sumai Gordon
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Boglarka Ujhazi
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Ivana Wiest
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology and Critical Care Medicine, Bone Marrow Transplantation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Audrey Anna Bolyard
- Severe Chronic Neutropenia International Registry, University of Washington, Seattle, WA, USA
| | - David Buchbinder
- Division of Hematology, CHOC Children's Hospital, Orange, CA, USA
| | - Michaela Cada
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mirta Cavieres
- Hematology Unit, Dr Luis Calvo Mackenna Children's Hospital, Santiago, Chile
| | | | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ekaterina Deordieva
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Morna J Dorsey
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Simon B Drysdale
- Paediatric Infectious Diseases Research Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | | | - Frank Firkin
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Vic, Fitzroy, Australia
- Department of Clinical Haematology, St Vincent's Hospital, Vic, Fitzroy, Australia
| | - Elizabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Center for Congenital Immunodeficiencies, Medical University of Vienna & Jeffrey Modell Diagnostic and Research Center, Vienna, Austria
| | - Bob Geng
- Divisions of Adult and Pediatric Allergy and Immunology, University of California, San Diego, CA, USA
| | - Vera Goda
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Luis Gonzalez-Granado
- Immunodeficiencies Unit, Department of Pediatrics, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre, Madrid, Spain
| | - Eyal Grunebaum
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elzbieta Grzesk
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Hilfanova
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Winnie Ip
- Great Ormond Street Hospital for Children, London, UK
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Amer M Khojah
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vy Hong-Diep Kim
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marina Kojić
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Gergely Krivan
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Daman Langguth
- Department of Immunology, Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Maurizio Miano
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Irina Mersyanova
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Talal Mousallem
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Mica Muskat
- Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Flavio A Naoum
- Academia de Ciência e Tecnologia, Sao Jose do Rio Preto, Brazil
| | - Suzie A Noronha
- Department of Pediatrics, Division of Hematology-Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Monia Ouederni
- Faculty of Médecine, University Tunis El Manar, Tunis, Tunisia
- Department of Pediatrics: Immuno-Hematology and Stem Cell Transplantation, Bone Marrow Transplantation Center of Tunisia, Tunis, Tunisia
| | - Shuichi Ozono
- Department of Pediatrics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, Japan
| | - G Wendell Richmond
- Section of Allergy and Immunology, Rush University Medical Center, Chicago, IL, USA
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filiz Odabasi Seeborg
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Katja Sockel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Alla Volokha
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Malte von Bonin
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Dresden, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Wegehaupt
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, University of Rochester Golisano Children's Hospital, Rochester, NY, USA
| | - Ke-Juin Wong
- Sabah Women and Children's Hospital, Sabah, Malaysia
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Huang Yu
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yulia Zharankova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Lisa Devlin
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
- Regional Immunology Service, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | | | - Krisztian Csomos
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Marton Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Joao Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Anna Shcherbina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jolan E Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA.
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
19
|
Zmajkovicova K, Pawar S, Maier-Munsa S, Maierhofer B, Wiest I, Skerlj R, Taveras AG, Badarau A. Genotype–phenotype correlations in WHIM syndrome: a systematic characterization of CXCR4WHIM variants. Genes Immun 2022; 23:196-204. [PMID: 36089616 PMCID: PMC9519442 DOI: 10.1038/s41435-022-00181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022]
Abstract
Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in CXCR4 C-terminus. We assessed genotype–phenotype correlations for known pathogenic CXCR4 variants and in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. We used cell-based assays to analyze CXCL12-induced receptor trafficking and downstream signaling of 14 pathogenic CXCR4 variants previously identified in patients with WHIM syndrome. All CXCR4 variants displayed impaired receptor trafficking, hyperactive downstream signaling, and enhanced chemotaxis in response to CXCL12. Mavorixafor inhibited CXCL12-dependent signaling and hyperactivation in cells harboring CXCR4WHIM mutations. A strong correlation was found between CXCR4 internalization defect and severity of blood leukocytopenias and infection susceptibility, and between AKT activation and immunoglobulin A level and CD4+ T-cell counts. This study is the first to show WHIM syndrome clinical phenotype variability as a function of both CXCR4WHIM genotype diversity and associated functional dysregulation. Our findings suggest that CXCR4 internalization may be used to assess the pathogenicity of CXCR4 variants in vitro and also as a potential WHIM-related disease biomarker. The investigational CXCR4 antagonist mavorixafor inhibited CXCL12-dependent signaling in all tested CXCR4-variant cell lines at clinically relevant concentrations.
Collapse
|
20
|
Walkovich K, Grunebaum E. A Sherlock Approach to a Kindred With a Variable Immunohematologic Phenotype. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1714-1722. [PMID: 35470097 DOI: 10.1016/j.jaip.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Given the ubiquity of leukopenia and sinopulmonary infections in childhood, differentiating patients with inborn errors of immunity (IEI) from otherwise healthy patients can be challenging. The diagnostic complexity is further exacerbated in disorders with wide phenotypic variability such as warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. However, using a Sherlock approach with careful attention to details in the patient's medical history and physical examination coupled with a comprehensive family history can heighten the index of suspicion for underlying IEI. Subsequent iterative and deductive reasoning incorporating results from laboratory interrogation, response (or lack thereof) to standard therapy, and emergence of new symptoms can further aid in a timely diagnosis of IEI. Herein, we detail a WHIM syndrome kindred with marked phenotype variability, identified after the presentation of a child with intermittent neutropenia and sinopulmonary infections. The complexity of this kindred highlights the utility of an interspecialty, collaborative Sherlock approach to diagnosis, and care. In addition, the genetic underpinnings, diagnostic approaches, clinical features, supportive care options, and management of WHIM syndrome are reviewed.
Collapse
Affiliation(s)
- Kelly Walkovich
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Mich.
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Yilmaz M, Potts DE, Geier C, Walter JE. Can we identify WHIM in infancy? Opportunities with the public newborn screening process. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:215-221. [PMID: 36210583 DOI: 10.1002/ajmg.c.32002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.
Collapse
Affiliation(s)
- Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, Ahmadiankia N, Faridhosseini R, Dastpak M, Shabgah AG, Matin MM. Mesenchymal Stem/Stromal Cells Overexpressing CXCR4 R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell Transplant 2021; 30:9636897211054498. [PMID: 34807749 PMCID: PMC8647223 DOI: 10.1177/09636897211054498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), initially recognized as a co-receptor
for HIV, contributes to several disorders, including the WHIM (Warts,
Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. CXCR4 binds to
its ligand SDF-1 to make an axis involved in the homing property of stem cells.
This study aimed to employ WHIM syndrome pathogenesis as an inspirational
approach to reinforce cell therapies. Wild type and WHIM-type variants of the
CXCR4 gene were chemically synthesized and cloned in the
pCDH-513B-1 lentiviral vector. Molecular cloning of the synthetic genes was
confirmed by DNA sequencing, and expression of both types of CXCR4 at the
protein level was confirmed by western blotting in HEK293T cells. Human
adipose-derived mesenchymal stem cells (Ad-MSCs) were isolated, characterized,
and subjected to lentiviral transduction with Wild type and WHIM-type variants
of CXCR4. The presence of copGFP-positive MSCs confirmed the
high efficiency of transduction. The migration ability of both groups of
transduced cells was then assessed by transwell migration assay in the presence
or absence of a CXCR4-blocking agent. Our qRT-PCR results showed overexpression
of CXCR4 at mRNA level in both groups of transduced MSCs, and
expression of WHIM-type CXCR4 was significantly higher than
Wild type CXCR4 (P<0.05). Our results
indicated that the migration of genetically modified MSCs expressing WHIM-type
CXCR4 had significantly enhanced towards SDF1 in comparison with Wild type CXCR4
(P<0.05), while it was reduced after treatment with
CXCR4 antagonist. These data suggest that overexpression of WHIM-type CXCR4
could lead to enhanced and sustained expression of CXCR4 on human MSCs, which
would increase their homing capability; hence it might be an appropriate
strategy to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Reza Faridhosseini
- Department of Immunology, Mashhad Universityof Medical Sciences, Mashhad, Iran
| | - Mahtab Dastpak
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Multicenter Experience of Hematopoietic Stem Cell Transplantation in WHIM Syndrome. J Clin Immunol 2021; 42:171-182. [PMID: 34697698 PMCID: PMC8821066 DOI: 10.1007/s10875-021-01155-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare disease, caused by CXCR4 gene mutations, which incorporates features of combined immunodeficiency, congenital neutropenia, and a predisposition to human papillomavirus infection. Established conventional treatment for WHIM syndrome does not fully prevent infectious complications in these patients. Only single case reports of hematopoietic stem cell transplantation (HSCT) efficacy in WHIM have been published. METHODS To summarize current information on HSCT efficacy in disease treatment, seven pediatric patients with WHIM syndrome who underwent allogeneic HSCT were identified in five centers worldwide. RESULTS All patients presented early after birth with neutropenia. Two of seven patients exhibited severe disease complications: poorly controlled autoimmunity (arthritis and anemia) in one and progressive myelofibrosis with recurrent infections in the other. The remaining patients received HSCT to correct milder disease symptoms (recurrent respiratory infections, progressing thrombocytopenia) and/or to preclude severe disease course in older age. All seven patients engrafted but one developed graft rejection and died of infectious complications after third HSCT. Three other patients experienced severe viral infections after HSCT (including post-transplant lymphoproliferative disease in one) which completely resolved with therapy. At last follow-up (median 6.7 years), all six surviving patients were alive with full donor chimerism. One patient 1.4 years after HSCT had moderate thrombocytopenia and delayed immune recovery; the others had adequate immune recovery and were free of prior disease symptoms. CONCLUSION HSCT in WHIM syndrome corrects neutropenia and immunodeficiency, and leads to resolution of autoimmunity and recurrent infections, including warts.
Collapse
|
24
|
CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood 2021; 137:2770-2784. [PMID: 33512478 DOI: 10.1182/blood.2020006675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.
Collapse
|
25
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
26
|
Wang L, Xiong Q, Li P, Chen G, Tariq N, Wu C. The negative charge of the 343 site is essential for maintaining physiological functions of CXCR4. BMC Mol Cell Biol 2021; 22:8. [PMID: 33485325 PMCID: PMC7825245 DOI: 10.1186/s12860-021-00347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Warts, hypogammaglobulinemia, recurrent bacterial infections and myelokathexis (WHIM) syndrome is a primary immunodeficiency disease (PID) usually caused by autosomal dominant mutations in the chemokine receptor CXCR4 gene. To date, a total of nine different mutations including eight truncation mutations and one missense mutation (E343K, CXCR4E343K) distributed in the C-terminus of CXCR4 have been identified in humans. Studies have clarified that the loss of phosphorylation sites in the C-terminus of truncated CXCR4 impairs the desensitization process, enhances the activation of G-protein, prolongs downstream signaling pathways and introduces over immune responses, thereby causing WHIM syndrome. So far, there is only one reported case of WHIM syndrome with a missense mutation, CXCR4E343K, which has a full length of C-terminus with entire phosphorylation sites, no change in all potential phosphorylation sites. The mechanism of the missense mutation (CXCR4E343K) causing WHIM syndrome is unknown. This study aimed to characterize the effect of mutation at the 343 site of CXCR4 causing the replacement of arginine/E with glutamic acid/K on the receptor signal transduction, and elucidate the mechanism underling CXCR4E343K causing WHIM in the reported family. RESULTS We completed a series of mutagenesis to generate different mutations at the 343 site of CXCR4 tail, and established a series of HeLa cell lines stably expressing CXCR4WT or CXCR4E343D (glutamic acid/E replaced with aspartic acid/D) or CXCR4E343K (glutamic acid/E replaced with lysine/K) or CXCR4E343R (glutamic acid/E replaced with arginine/R) or CXCR4E343A (glutamic acid/E replaced with alanine/A) and then systematically analyzed functions of the CXCR4 mutants above. Results showed that the cells overexpressing of CXCR4E343D had no functional changes with comparison that of wild type CXCR4. However, the cells overexpressing of CXCR4E343K or CXCR4E343R or CXCR4E343A had enhanced cell migration, prolonged the phosphorylation of ERK1/2, p38, JNK1/2/3, aggravated activation of PI3K/AKT/NF-κB signal pathway, introduced higher expression of TNFa and IL6, suggesting over immune response occurred in CXCR4 mutants with charge change at the 343 site of receptor tail, as a result, causing WHIM syndrome. Biochemical analysis of those mutations at the 343 site of CXCR4 above shows that CXCR4 mutants with no matter positive or neutral charge have aberrant signal pathways downstream of activated mutated CXCR4, only CXVR4 with negative charge residues at the site shows normal signal pathway post activation with stromal-derived factor (SDF1, also known as CXCL12). CONCLUSION Taken together, our results demonstrated that the negative charge at the 343 site of CXCR4 plays an essential role in regulating the down-stream signal transduction of CXCR4 for physiological events, and residue charge changes, no matter positive or neutral introduce aberrant activities and functions of CXCR4, thus consequently lead to WHIM syndrome.
Collapse
Affiliation(s)
- Liqing Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Nayab Tariq
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China. .,Key laboratory of Medical Molecular Biology of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
27
|
Abstract
PURPOSE T cell receptor excision circle (TREC) quantification is a recent addition to newborn screening (NBS) programs and is intended to identify infants with severe combined immunodeficiencies (SCID). However, other primary immunodeficiency diseases (PID) have also been identified as the result of TREC screening. We recently reported a newborn with a low TREC level on day 1 of life who was diagnosed with WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome, a non-SCID primary immunodeficiency caused by mutations in the chemokine receptor CXCR4. METHODS We have now retrospectively reviewed the birth and clinical histories of all known WHIM infants born after the implementation of NBS for SCID. RESULTS We identified six infants with confirmed WHIM syndrome who also had TREC quantification on NBS. Three of the six WHIM infants had low TREC levels on NBS. All six patients were lymphopenic but only one infant had a T cell count below 1,500 cells/μL. The most common clinical manifestation was viral bronchiolitis requiring hospitalization. One infant died of complications related to Tetralogy of Fallot, a known WHIM phenotype. CONCLUSION The results suggest that WHIM syndrome should be considered in the differential diagnosis of newborns with low NBS TREC levels. TRIAL REGISTRATION Not applicable.
Collapse
|
28
|
The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells 2021; 10:cells10010075. [PMID: 33466410 PMCID: PMC7824814 DOI: 10.3390/cells10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.
Collapse
|
29
|
Dale DC, Firkin F, Bolyard AA, Kelley M, Makaryan V, Gorelick KJ, Ebrahim T, Garg V, Tang W, Jiang H, Skerlj R, Beaussant Cohen S. Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood 2020; 136:2994-3003. [PMID: 32870250 PMCID: PMC7770568 DOI: 10.1182/blood.2020007197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare primary immunodeficiency caused by gain-of-function mutations in the CXCR4 gene. We report the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of mavorixafor from a phase 2 open-label dose-escalation and extension study in 8 adult patients with genetically confirmed WHIM syndrome. Mavorixafor is an oral small molecule selective antagonist of the CXCR4 receptor that increases mobilization and trafficking of white blood cells from the bone marrow. Patients received escalating doses of mavorixafor, up to 400 mg once daily. Five patients continued on the extension study for up to 28.6 months. Mavorixafor was well tolerated with no treatment-related serious adverse events. At a median follow-up of 16.5 months, we observed dose-dependent increases in absolute neutrophil count (ANC) and absolute lymphocyte count (ALC). At doses ≥300 mg/d, ANC was maintained at >500 cells per microliter for a median of 12.6 hours, and ALC was maintained at >1000 cells per microliter for up to 16.9 hours. Continued follow-up on the extension study resulted in a yearly infection rate that decreased from 4.63 events (95% confidence interval, 3.3-6.3) in the 12 months prior to the trial to 2.27 events (95% confidence interval, 1.4-3.5) for patients on effective doses. We observed an average 75% reduction in the number of cutaneous warts. This study demonstrates that mavorixafor, 400 mg once daily, mobilizes neutrophil and lymphocytes in adult patients with WHIM syndrome and provides preliminary evidence of clinical benefit for patients on long-term therapy. The trial was registered at www.clinicaltrials.gov as #NCT03005327.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, WA
| | - Frank Firkin
- Department of Medicine and
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA; and
| | - Audrey Anna Bolyard
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA; and
| | - Merideth Kelley
- Department of Medicine, University of Washington, Seattle, WA
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Smit MJ, Schlecht-Louf G, Neves M, van den Bor J, Penela P, Siderius M, Bachelerie F, Mayor F. The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annu Rev Pharmacol Toxicol 2020; 61:541-563. [PMID: 32956018 DOI: 10.1146/annurev-pharmtox-010919-023340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.
Collapse
Affiliation(s)
- Martine J Smit
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Maria Neves
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France.,Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jelle van den Bor
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marco Siderius
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
32
|
Rotulo GA, Beaupain B, Rialland F, Paillard C, Nachit O, Galambrun C, Gandemer V, Bertrand Y, Neven B, Dore E, Moshous D, Filhon B, Aladjdi N, Sicre de Fontbrune F, de la Tour RP, Ouachee M, Bellanne-Chantelot C, Dalle JH, Donadieu J. HSCT may lower leukemia risk in ELANE neutropenia: a before-after study from the French Severe Congenital Neutropenia Registry. Bone Marrow Transplant 2020; 55:1614-1622. [PMID: 31992846 PMCID: PMC7091645 DOI: 10.1038/s41409-020-0800-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/28/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
ELANE neutropenia is associated with myelodysplasia and acute leukemia (MDS–AL), and severe infections. Because the MDS–AL risk has also been shown to be associated with exposure to GCSF, since 2005, in France, patients receiving high daily GCSF doses (>15 μg/kg/day) are eligible for HSCT, in addition to classic indications (MDS–AL or GCSF refractoriness). We analyzed the effect of this policy. Among 144 prospectively followed ELANE-neutropenia patients enrolled in the French Severe Congenital Neutropenia Registry, we defined two groups according to period: “before 2005” for those born before 2005 and followed until 31/12/2004 (1588 person-years); and “after 2005” comprised of those born after 2005 or born before 2005 but followed after 2005 until 31/03/2019 (1327 person-years). Sixteen of our cohort patients underwent HSCT (14 long-term survivors) and six developed MDS–ALs. Six leukemic transformations occurred in the before-2005 group and none after 2005 (respective frequencies 3.8 × 10–3 vs. 0; P < 0.01), while four HSCTs were done before 2005 and 12 since 2005 (respective HSCT rates increased 2.5 × 10–3 vs. 9 × 10–3; P < 0.01). Our results support early HSCT for patients with ELANE mutations who received high GCSF doses, as it might lower the risk of leukemic transformation.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France.,IRCCS Giannina Gaslini and Università degli Studi di Genova, Genoa, Italy
| | - Blandine Beaupain
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France
| | | | | | - Ouahiba Nachit
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France
| | | | - Virginie Gandemer
- Department of Pediatric Hematology/Oncology, University Hospital of Rennes, Rennes, France
| | - Yves Bertrand
- Institut d'Hémato-Oncologie Pédiatrie IHOPE, Lyon, France
| | - Benedicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Dore
- CHU Clermont-Ferrand, Centre Régional de Cancérologie et Thérapie Cellulaire Pédiatrique, Clermont-Ferrand, France
| | - Despina Moshous
- Unité d'Immunologie Hématologie Pédiatrique, Necker Children's Hospital, Paris, France
| | - Bruno Filhon
- Départment de Pédiatrie, Hémato-Oncologie, CHU de Bordeaux, Bordeaux, France
| | - Nathalie Aladjdi
- Départment de Pédiatrie, Hémato-Oncologie, CHU de Rouen, Rouen, France
| | - Flore Sicre de Fontbrune
- Department d'Hématologie, Service de Transplantation Médullaire, Hôpital Saint-Louis, Paris, France
| | | | - Marie Ouachee
- Institut d'Hémato-Oncologie Pédiatrie IHOPE, Lyon, France
| | | | - Jean-Hugues Dalle
- Pediatric Hematology Department, Robert-Debré Hospital, Paris, France
| | - Jean Donadieu
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France.
| |
Collapse
|
33
|
Dale DC, Bolyard AA, Steele LA, Zeidler C, Welte K. Registries for study of nonmalignant hematological diseases: the example of the Severe Chronic Neutropenia International Registry. Curr Opin Hematol 2020; 27:18-26. [PMID: 31764167 PMCID: PMC7236759 DOI: 10.1097/moh.0000000000000558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Registries provide 'real world' perspectives on the natural history and outcomes for many clinical conditions. The purpose of this review is to identify registries for nonmalignant hematological disease and to describe the operation of a successful long-term registry for patients with severe chronic neutropenia. RECENT FINDINGS There was an upswing in registries about 20 years ago, based on optimism about their utility to improve patient care. To show value, registries must define outcomes for populations of patients with specific medical conditions and the effects of treatment. This is challenging for many reasons. The Severe Chronic Neutropenia International Registry is an example of a successful registry. This report describes underlying reasons for its success. SUMMARY Registries are important to organize and analyze clinical information across geographic, ethnic and social boundaries. They are also challenging to organize, administer and support.
Collapse
Affiliation(s)
- David C. Dale
- University of Washington, Department of Medicine, Seattle, WA
| | - Audrey Anna Bolyard
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA
| | | | - Cornelia Zeidler
- Hannover Medical School, Department of Molecular Hematopoiesis, Hannover, Germany
| | - Karl Welte
- University Hospital Tübingen, Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Tübingen, Germany
| | | |
Collapse
|
34
|
Gao JL, Owusu-Ansah A, Paun A, Beacht K, Yim E, Siwicki M, Yang A, Liu Q, McDermott DH, Murphy PM. Low-level Cxcr4-haploinsufficient HSC engraftment is sufficient to correct leukopenia in WHIM syndrome mice. JCI Insight 2019; 4:132140. [PMID: 31687976 DOI: 10.1172/jci.insight.132140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function mutations in chemokine receptor CXCR4. Patient WHIM-09 was spontaneously cured by chromothriptic deletion of 1 copy of 164 genes, including the CXCR4WHIM allele, presumably in a single hematopoietic stem cell (HSC) that repopulated HSCs and the myeloid lineage. Testing the specific contribution of CXCR4 hemizygosity to her cure, we previously demonstrated enhanced engraftment of Cxcr4+/o HSCs after transplantation in WHIM (Cxcr4+/w) model mice, but the potency was not quantitated. We now report graded-dose competitive transplantation experiments using lethally irradiated Cxcr4+/+ recipients in which mixed BM cells containing approximately 5 Cxcr4+/o HSCs and a 100-fold excess of Cxcr4+/w HSCs achieved durable 50% Cxcr4+/o myeloid and B cell chimerism in blood and approximately 20% Cxcr4+/o HSC chimerism in BM. In Cxcr4+/o/Cxcr4+/w parabiotic mice, we observed 80%-100% Cxcr4+/o myeloid and lymphoid chimerism in the blood and 15% Cxcr4+/o HSC chimerism in BM from the Cxcr4+/w parabiont, which was durable after separation from the Cxcr4+/o parabiont. Thus, CXCR4 haploinsufficiency likely significantly contributed to the selective repopulation of HSCs and the myeloid lineage from a single chromothriptic HSC in WHIM-09. Moreover, the results suggest that WHIM allele silencing of patient HSCs is a viable gene therapy strategy.
Collapse
Affiliation(s)
- Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | | | - Andrea Paun
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kimberly Beacht
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Erin Yim
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Marie Siwicki
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Alexander Yang
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Qian Liu
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| |
Collapse
|
35
|
Zhang A, Chen X, Li Z, Ruan M, Zhang Y, Zhu X. Acute myeloid leukemia arising after Hodgkin lymphoma in a patient with WHIM syndrome. Pediatr Blood Cancer 2019; 66:e27951. [PMID: 31368255 DOI: 10.1002/pbc.27951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Aoli Zhang
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Chen
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhanqi Li
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Min Ruan
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - YingChi Zhang
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
36
|
Family studies of warts, hypogammaglobulinemia, immunodeficiency, myelokathexis syndrome. Curr Opin Hematol 2019; 27:11-17. [PMID: 31652152 DOI: 10.1097/moh.0000000000000554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW WHIM syndrome (warts, hypogammaglobulinemia, immunodeficiency, myelokathexis, or WHIMs) is a very rare autosomal dominant immunodeficiency disorder attributable to mutations in CXCR4. We reviewed clinical manifestations in 24 patients in 9 families to expand understanding of this syndrome. RECENT FINDINGS Warts, cellulitis and respiratory infections are common in patients with WHIMs. Less commonly these patients have congenital heart disease, human papilloma virus-associated malignancies (cervical and vulvular) and lymphomas. Hearing loss because of recurrent otitis media is another important complication. Treatment with granulocyte colony-stimulating factor is controversial; this review indicates that it is effective to prevent and treat infections based upon long-term observations of patients enrolled in the Severe Chronic Neutropenia International Registry. Understanding the natural history and diversity of this syndrome are important for ongoing clinical trials of novel agents to treat WHIMs. SUMMARY WHIM syndrome has diverse manifestations; some features occur consistently in almost all patients, for example, neutropenia, lymphocytopenia and mild hypogammaglobulinemia. However, the clinical consequences are quite variable across patient cohorts and within families. Each complication is important as a cause for morbidity and a source for patient and family concerns.
Collapse
|
37
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
38
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
40
|
Walkovich K, Connelly JA. Congenital Neutropenia and Rare Functional Phagocyte Disorders in Children. Hematol Oncol Clin North Am 2019; 33:533-551. [PMID: 31030818 DOI: 10.1016/j.hoc.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both profound neutropenia and functional phagocyte disorders render patients susceptible to recurrent, unusual, and/or life-threatening infections. Many disorders also have nonhematologic manifestations and a substantial risk of leukemogenesis. Diagnosis relies on clinical suspicion and interrogation of the complete blood count with differential/bone marrow examination coupled with immunologic and genetic analyses. Treatment of the quantitative neutrophil disorders depends on granulocyte colony-stimulating factor, whereas management of functional phagocyte disease is reliant on antimicrobials and/or targeted therapies. Hematopoietic stem cell transplant remains the only curative option for most disorders but is not used on a routine basis.
Collapse
Affiliation(s)
- Kelly Walkovich
- Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Drive, D4202 Medical Professional Building, SPC 5718, Ann Arbor, MI 48109-5718, USA.
| | - James A Connelly
- Pediatric Hematopoietic Stem Cell Transplant, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Pierce Avenue, 397 PRB, Nashville, TN 37232-6310, USA
| |
Collapse
|
41
|
Shin DW, Kim SM, Kim JA, Park HS, Hwang SM, Im K, Kim S, Kim J, Kwon S, Yoon SS, Lee DS. Characteristics of Waldenström Macroglobulinemia in Korean Patients According to Mutational Status of MYD88 and CXCR4: Analysis Using Ultra-Deep Sequencing. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e496-e505. [PMID: 31221512 DOI: 10.1016/j.clml.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/21/2019] [Accepted: 03/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Little is known about the mutational frequency of myeloid differentiation factor 88 (MYD88) and C-X-C chemokine receptor type 4 (CXCR4) and the corresponding characteristics in Asian individuals afflicted with Waldenström macroglobulinemia (WM). We investigated the characteristics of WM according to mutational status of MYD88/CXCR4, and attempted to determine the lineage commitment among hematopoietic cells by MYD88L265P single-cell sequencing on bone marrow (BM) smear slides. MATERIALS AND METHODS CXCR4 mutations (muts) were detected using ultra-deep sequencing using target capture. Mutational burden of MYD88 was assessed using real-time polymerase chain reaction. Single-cell sequencing for MYD88 was performed on lymphocytes, plasmacytoid lymphocytes, plasma cells, and neutrophils using laser microdissection. RESULTS Among 31 patients, the frequencies of MYD88/CXCR4 muts were as follows: MYD88 wild type (WT) CXCR4WT (6 patients, 19.4%), MYD88L265PCXCR4WT (19 patients, 61.4%), MYD88L265PCXCR4mut (6 patients, 19.4%; 1 frameshift and 5 nonsense muts). Immunoglobulin M levels of MYD88L265CXCR4WT patients were significantly higher than those of MYD88WTCXCR4WT patients (P = .024). Tumor burden in BM was highest in patients with MYD88L265PCXCR4mut (82.0%), followed by MYD88L265PCXCR4WT (52.8%) and MYD88WTCXCR4WT (14.2%) (P < .001). The quantity of MYD88-mutated DNA tended to correlate with tumor burden in BM (correlation coefficient 0.647; P = .009). MYD88L265P was detected in plasma cells, plasmacytoid lymphocytes, and lymphocytes but not neutrophils. CONCLUSION The frequency of MYD88/CXCR4 muts in Korean and Caucasian patients with WM was similar, however 5 of the 6 CXCR4 muts were nonsense-a proportion higher than reported frequencies in Caucasian individuals. Ultra-deep sequencing was capable of detecting CXCR4 muts not detectable using Sanger sequencing, suggesting a possible replacement of the B-cell sorting.
Collapse
Affiliation(s)
- Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Ah Kim
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Hee Sue Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sungsik Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Korea
| | - Jinhyun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Division of Hematology/Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Galli J, Pinelli L, Micheletti S, Palumbo G, Notarangelo LD, Lougaris V, Dotta L, Fazzi E, Badolato R. Cerebellar involvement in warts Hypogammaglobulinemia immunodeficiency myelokathexis patients: neuroimaging and clinical findings. Orphanet J Rare Dis 2019; 14:61. [PMID: 30819232 PMCID: PMC6396443 DOI: 10.1186/s13023-019-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4). WHIM patients display an increased incidence of non-hematopoietic conditions, such as congenital heart disease suggesting that abnormal CXCR4 may put these patients at increased risk of congenital anomalies. Studies conducted on CXCR4 and SDF-1-deficient mice have demonstrated the role of CXCR4 signaling in neuronal cell migration and brain development. In particular, CXCR4 conditional knockout mice display abnormal cerebellar morphology and poor coordination and balance on motor testing. Results In order to evaluate a possible neurological involvement in WHIM syndrome subjects, we performed neurological examination, including International Cooperative Ataxia Rating Scale, cognitive and psychopathological assessment and brain Magnetic Resonance Imaging (MRI) in 6 WHIM patients (age range 8–51 years) with typical gain of functions mutations of CXCR4 (R334X or G336X). In three cases (P3, P5, P6) neurological evaluation revealed fine and global motor coordination disorders, balance disturbances, mild limb ataxia and excessive talkativeness. Brain MRI showed an abnormal orientation of the cerebellar folia involving bilaterally the gracilis and biventer lobules together with the tonsils in four subjects (P3, P4, P5, P6). The neuropsychiatric evaluation showed increased risk of internalizing and/or externalizing problems in four patients (P2, P3, P4, P6). Conclusions Taken together, these observations suggest CXCR4 gain of function mutations can be associated with cerebellar malformation, mild neuromotor and psychopathological dysfunction in WHIM patients.
Collapse
Affiliation(s)
- Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Lorenzo Pinelli
- Neuroradiology Unit, Section of Pediatric Neuroradiology, ASST Spedali Civili, Brescia, Italy
| | - Serena Micheletti
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | | | - Vassilios Lougaris
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Laura Dotta
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Raffaele Badolato
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy. .,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy.
| |
Collapse
|
43
|
McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D, Cho E, Liu Q, Trout HH, Neves JF, Gardner PJ, Bianchi DA, Blair EA, Landon EM, Silva SL, Buck CB, Murphy PM. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med 2019; 380:163-170. [PMID: 30625055 PMCID: PMC6425947 DOI: 10.1056/nejmoa1808575] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis), a primary immunodeficiency disorder involving panleukopenia, is caused by autosomal dominant gain-of-function mutations in CXC chemokine receptor 4 (CXCR4). Myelokathexis is neutropenia caused by neutrophil retention in bone marrow. Patients with WHIM syndrome are often treated with granulocyte colony-stimulating factor (G-CSF), which can increase neutrophil counts but does not affect cytopenias other than neutropenia. In this investigator-initiated, open-label study, three severely affected patients with WHIM syndrome who could not receive G-CSF were treated with low-dose plerixafor, a CXCR4 antagonist, for 19 to 52 months. Myelofibrosis, panleukopenia, anemia, and thrombocytopenia were ameliorated, the wart burden and frequency of infection declined, human papillomavirus-associated oropharyngeal squamous-cell carcinoma stabilized, and quality of life improved markedly. Adverse events were mainly infections attributable to the underlying immunodeficiency. One patient died from complications of elective reconstructive surgery. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- David H McDermott
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Diana V Pastrana
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Katherine R Calvo
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Stefania Pittaluga
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Daniel Velez
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elena Cho
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Qian Liu
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Hugh H Trout
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - João F Neves
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Pamela J Gardner
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - David A Bianchi
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elizabeth A Blair
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Emily M Landon
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Susana L Silva
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Christopher B Buck
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| |
Collapse
|
44
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
45
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
47
|
Shin DW, Park SN, Kim SM, Im K, Kim JA, Hong KT, Choi JY, Hong CR, Park KD, Shin HY, Kang HJ, Kim HK, Lee DS. WHIM Syndrome With a Novel CXCR4 Variant in a Korean Child. Ann Lab Med 2018. [PMID: 28643496 PMCID: PMC5500746 DOI: 10.3343/alm.2017.37.5.446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Taek Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Yoon Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Che Ry Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Duk Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Young Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyoung Jin Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
49
|
Satgé D. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept. Front Immunol 2018; 9:1149. [PMID: 29881389 PMCID: PMC5976747 DOI: 10.3389/fimmu.2018.01149] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023] Open
Abstract
Under the concept of cancer immune surveillance, individuals with primary immune deficiencies would be expected to develop many more malignancies and show an excess of all types of cancers, compared to people with a normal immune system. A review of the nine most frequent and best-documented human conditions with primary immune deficiency reveals a 1.6- to 2.3-fold global increase of cancer in the largest epidemiological studies. However, the spectrum of cancer types with higher frequencies is narrow, limited mainly to lymphoma, digestive tract cancers, and virus-induced cancers. Increased lymphoma is also reported in animal models of immune deficiency. Overstimulation of leukocytes, chronic inflammation, and viruses explain this tumor profile. This raises the question of cancers being foreign organisms or tissues. Organisms, such as bacteria, viruses, and parasites as well as non-compatible grafts are seen as foreign (non-self) and identified and destroyed or rejected by the body (self). As cancer cells rarely show strong (and unique) surface antibodies, their recognition and elimination by the immune system is theoretically questionable, challenging the immune surveillance concept. In the neonatal period, the immune system is weak, but spontaneous regression and good outcomes occur for some cancers, suggesting that non-immune factors are effective in controlling cancer. The idea of cancer as a group of cells that must be destroyed and eliminated appears instead as a legacy of methods and paradigms in microbiological medicine. As an alternative approach, cancer cells could be considered part of the body and could be controlled by an embryonic and neonatal environment.
Collapse
Affiliation(s)
- Daniel Satgé
- Institut Universitaire de Recherche Clinique, Biostatistics, Epidemiology and Public Health, Team Cancer EA 2415 and Oncodéfi, Montpellier, France
| |
Collapse
|
50
|
Saettini F, Notarangelo LD, Biondi A, Bonanomi S. Neutropenia, hypogammaglobulinemia, and pneumonia: A case of WHIM syndrome. Pediatr Int 2018; 60:318-319. [PMID: 29575308 DOI: 10.1111/ped.13488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Andrea Biondi
- Department of Pediatrics, University of Milan-Bicocca, Brescia, Italy
- MBBM Foundation, Monza, Italy
| | | |
Collapse
|