1
|
Taylor BK, Pulliam H, Smith OV, Rice DL, Johnson HJ, Coutant AT, Glesinger R, Wilson TW. Effects of chronic home radon exposure on cognitive, behavioral, and mental health in developing children and adolescents. Front Psychol 2024; 15:1330469. [PMID: 38469220 PMCID: PMC10925658 DOI: 10.3389/fpsyg.2024.1330469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction It is well-established that chronic exposure to environmental toxins can have adverse effects on neuropsychological health, particularly in developing youths. However, home radon, a ubiquitous radiotoxin, has been seldom studied in this context. In the present study, we investigated the degree to which chronic everyday home radon exposure was associated with alterations in transdiagnostic mental health outcomes. Methods A total of 59 children and adolescents ages 6- to 14-years-old (M = 10.47 years, SD = 2.58; 28 males) completed the study. Parents completed questionnaires detailing aspects of attention and executive function. We used a principal components analysis to derive three domains of neuropsychological functioning: 1) task-based executive function skills, 2) self-and emotion-regulation abilities, and 3) inhibitory control. Additionally, parents completed a home radon test kit and provided information on how long their child had lived in the tested home. We computed a radon exposure index per person based on the duration of time that the child had lived in the home and their measured home radon concentration. Youths were divided into terciles based on their radon exposure index score. Using a MANCOVA design, we determined whether there were differences in neuropsychological domain scores across the three groups, controlling for age, sex, and socioeconomic status. Results There was a significant multivariate effect of radon group on neuropsychological dysfunction (λ = 0.77, F = 2.32, p = 0.038, ηp2 = 0.12). Examination of univariate effects revealed specific increases in self-and emotion-regulation dysfunction among the youths with the greatest degree of chronic home radon exposure (F = 7.21, p = 0.002, ηp2 = 0.21). There were no significant differences by group in the other tested domains. Discussion The data suggest potential specificity in the neurotoxic effects of everyday home radon exposure in developing youths, with significant aberrations in self-and emotion-regulation faculties. These findings support the need for better public awareness and public health policy surrounding home radon safety and mitigation strategies.
Collapse
Affiliation(s)
- Brittany K. Taylor
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, United States
| | - Haley Pulliam
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - OgheneTejiri V. Smith
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - Danielle L. Rice
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - Hallie J. Johnson
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - Anna T. Coutant
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - Ryan Glesinger
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience Boys Town National Research Hospital, Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Zhang P, Wu Y, Piao C, Song Y, Zhao Y, Lyu Y, Sun Q, Liu J. DNA methylome profiling in occupational radon exposure miners using an Illumina Infinium Methylation EPIC BeadChip. Toxicol Res (Camb) 2023; 12:943-953. [PMID: 37915496 PMCID: PMC10615836 DOI: 10.1093/toxres/tfad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background A causal relationship between occupational radon exposure in underground miners and lung cancer risk has been demonstrated through large cohort epidemiological studies. However, the mechanisms by which radon exposure causes adverse effects on lung tissue remain unclear. Epigenetic alterations such as DNA methylation may provide new insights into interactions at molecular levels induced by prolonged radon exposure. Methods We used the Illumina Infinium Human Methylation 850 K BeadChip to detect and compare genome-wide DNA methylation profiles in peripheral blood samples from underground miners (n = 14) and aboveground workers (n = 9). Results The average concentration of radon in underground workplaces was significantly higher than that of aboveground places (1,198 Bq·m-3 vs 58 Bq·m-3, p < 0.001). A total of 191 differentially methylated positions (DMPs) corresponding to 104 hub genes were identified when |Δβ| ≥ 0.1 and p < 0.05, with 107 hypermethylated sites and 84 hypomethylated sites. GO and KEGG analysis revealed that differentially methylated genes between underground miners and aboveground workers were prominently enriched in pathways/networks involved in neurotransmitter regulation, immunomodulatory effects and cell adhesion ability. Furthermore, methylation changes of selected genes FERMT1, ALCAM, HLA-DPA1, PON1 and OR2L13 were validated by pyrosequencing, which may play vital roles in these biological processes induced by radon. Conclusion In summary, the DNA methylation pattern of the underground miners exposed to radon was distinct from that of the aboveground workers. Such abnormalities in the genomic DNA methylation profile associated with prolonged radon exposure are worth studying in terms of neuro- and immune-system regulation, as well as cell adhesion ability in the future.
Collapse
Affiliation(s)
- Pinhua Zhang
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yunyun Wu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Chunnan Piao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yanchao Song
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yanfang Zhao
- The Third People’s Hospital of Henan Province, Henan Hospital for Occupational Diseases, 3 Kangfu Middle Street, Erqi District, Zhengzhou 450052, China
| | - Yumin Lyu
- The Third People’s Hospital of Henan Province, Henan Hospital for Occupational Diseases, 3 Kangfu Middle Street, Erqi District, Zhengzhou 450052, China
| | - Quanfu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Jianxiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| |
Collapse
|
3
|
Zhang Y, Lu L, Chen C, Field RW, D'Alton M, Kahe K. Does protracted radon exposure play a role in the development of dementia? ENVIRONMENTAL RESEARCH 2022; 210:112980. [PMID: 35189101 PMCID: PMC9081166 DOI: 10.1016/j.envres.2022.112980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Radon is a ubiquitous radioactive gas that decays into a series of solid radioactive decay products. Radon, and its decay products, enter the human body primarily through inhalation and can be delivered to various tissues including the brain through systemic circulation. It can also reach the brain by neuronal pathways via the olfactory system. While ionizing radiation has been suggested as a risk factor of dementia for decades, studies exploring the possible role of radon exposure in the development of Alzheimer's Diseases (AD) and other dementias are sparse. We systematically reviewed the literature and found several lines of evidence suggesting that radon decay products (RDPs) disproportionally deposit in the brain of AD patients with selective accumulation within the protein fractions. Ecologic study findings also indicate a significant positive correlation between geographic-level radon distribution and AD mortality in the US. Additionally, pathologic studies of radon shed light on the potential pathways of radon decay product induced proinflammation and oxidative stress that may result in the development of dementia. In summary, there are plausible underlying biological mechanisms linking radon exposure to the risk of dementia. Since randomized clinical trials on radon exposure are not feasible, well-designed individual-level epidemiologic studies are urgently needed to elucidate the possible association between radon (i.e., RDPs) exposure and the onset of dementia.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Liping Lu
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - R William Field
- Department of Occupational and Environmental Health and Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Maier A, Wiedemann J, Rapp F, Papenfuß F, Rödel F, Hehlgans S, Gaipl US, Kraft G, Fournier C, Frey B. Radon Exposure-Therapeutic Effect and Cancer Risk. Int J Mol Sci 2020; 22:ijms22010316. [PMID: 33396815 PMCID: PMC7796069 DOI: 10.3390/ijms22010316] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023] Open
Abstract
Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Julia Wiedemann
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Felicitas Rapp
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franziska Papenfuß
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Udo S. Gaipl
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Gerhard Kraft
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Benjamin Frey
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence:
| |
Collapse
|
5
|
Gómez-Anca S, Barros-Dios JM. Radon Exposure and Neurodegenerative Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207439. [PMID: 33066046 PMCID: PMC7600778 DOI: 10.3390/ijerph17207439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/28/2022]
Abstract
Background: To carry out a systematic review of scientific literature about the association between radon exposure and neurodegenerative diseases. Methods: We performed a bibliographic search in the following databases: Pub med (Medline), Cochrane, BioMed Central and Web of Science. We collected the data by following a predetermined search strategy in which several terms werecombined. After an initial search, 77 articles were obtained.10 of which fulfilled the inclusion criteria. Five of these 10 studies were related to multiple sclerosis (MS), 2 were about motor neuron diseases (MND), in particular amyotrophic lateral sclerosis (ALS) and 3 were related to both Alzheimer's disease (AD) and Parkinson's disease (PD). Results: The majority of the included articles, suggested a possible association between radon exposure and a subsequent development of neurodegenerative diseases. Some of the studies that obtained statistically significant resultsrevealed a possible association between radon exposure and an increase in MS prevalence. Furthermore, it was also suggested that radon exposure increases MND and AD mortality. Regarding AD and PD, it was observed that certainde cay products of radon-222 (222Rn), specifically polonium-210 (210Po) and bismuth-210 (210Bi), present a characteristic distributionpattern within the brain anatomy. However, the study with the highest scientific evidence included in this review, which investigated a possible association between the concentration of residential radon gas and the MS incidence, revealed no significant results. Conclusions: It cannot be concluded, although it is observed, that there is a possible causal association between radon exposure and neurodegenerative diseases. Most of the available studies are ecological so, studies of higher statistical evidence are needed to establish a causal relationship. Further research is needed on this topic.
Collapse
Affiliation(s)
- Silvia Gómez-Anca
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, 15782 Santiago, Spain;
| | - Juan Miguel Barros-Dios
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, 15782 Santiago, Spain;
- Department of Preventive Medicine, Santiago de Compostela University Teaching Hospital Complex, Santiago de Compostela, 15706 Santiago, Spain
- Center for Biomedical Research on the Network of Epidemiology and Public Health (Centro DE Investigacion Biomédica en Red DE Epidemiología Y Salud Pública), 15706 Santiago de Compostela, Spain
- Correspondence:
| |
Collapse
|
6
|
Santos NVD, Vieira CLZ, Saldiva PHN, Paci Mazzilli B, Saiki M, Saueia CH, De André CDS, Justo LT, Nisti MB, Koutrakis P. Levels of Polonium-210 in brain and pulmonary tissues: Preliminary study in autopsies conducted in the city of Sao Paulo, Brazil. Sci Rep 2020; 10:180. [PMID: 31932745 PMCID: PMC6957520 DOI: 10.1038/s41598-019-56973-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
The accumulation of detectable amounts of radon progeny in human tissues may be a risk factor for development and progression of chronic diseases. In this preliminary study, we analyzed the levels of alpha-emitting radon progeny Polonium-210 (210Po) in the olfactory epithelium, olfactory bulb, frontal lobe, and lung tissues in cadavers from the city of Sao Paulo, SP, Brazil. We also assessed the association between 210Po levels and exposure parameters for urban air pollution using linear regression models adjusted for age, sex, smoke, time living in Sao Paulo, daily commuting, socioeconomic index, and anthracosis (traffic-related black carbon accumulation in the pleural region and in lymph). Our findings show that the concentration of 210Po was associated with anthracosis in lungs of non-smokers (coefficient = 6.0; standard error = 2.9; p = 0.04). Individuals with lower socioeconomic status also had significantly higher 210Po levels in lungs (coefficient = -1.19; standard error = 0.58; p = 0.042). The olfactory bulb had higher 210Po levels than either olfactory epithelium (p = 0.071), frontal lobe (p < 0.001), or lungs (p = 0.037). Our findings of the deposition of 210Po in autopsy tissues suggest that airborne radionuclides may contribute to the development of chronic diseases, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Nathalia Villa Dos Santos
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Paulo Hilario Nascimento Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Mitiko Saiki
- Nuclear and Energy Research Institute, IPEN-CNEN, São Paulo, SP, Brazil
| | | | | | - Lisie Tocci Justo
- Laboratory of Experimental Air Pollution, Department of Pathology, University of Sao Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Lehrer S, Rheinstein PH, Rosenzweig KE. Association of Radon Background and Total Background Ionizing Radiation with Alzheimer's Disease Deaths in U.S. States. J Alzheimers Dis 2018; 59:737-741. [PMID: 28671130 DOI: 10.3233/jad-170308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). OBJECTIVE Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. METHODS Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. RESULTS Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). CONCLUSION Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Pillalamarri I, Jagam P, Lykken GI. Internal dosimetry of 210Pb in the human cranium: preliminary results from instrumentation needs for in vivo counting in a low-background underground counting facility. RADIATION PROTECTION DOSIMETRY 2013; 157:6-10. [PMID: 23620563 DOI: 10.1093/rpd/nct109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Internal dosimetry of (210)Pb in the cranium deals with the determination of the amount of energy deposited in tissue by (210)Pb radiations within the cranium. (210)Pb in the human cranium was monitored by in vivo counting in a low background facility 640 m (2100 ft) underground with a germanium (Ge) gamma-ray detector having a beryllium window. The minimum detectable activity (MDA) was established with this system to be 0.2 Bq (5 pCi) in 25-h counting time with a 15-mm diameter and 7-mm thick Ge detector, having a beryllium window of thickness of 0.08 mm, in contact with the cranium just above the ear adjacent to the temple region. To establish an MDA of 0.004 Bq (0.1 pCi) with this system, the limitation arising from the ambient radon level at 10 Bq m(-3) was investigated.
Collapse
Affiliation(s)
- Ila Pillalamarri
- Carlsbad Environmental Monitoring and Research Center, 1400 University Dr, Carlsbad, NM 88220-3575, USA
| | | | | |
Collapse
|