1
|
Pietrzak-Wawrzyńska BA, Wnuk A, Przepiórska-Drońska K, Łach A, Kajta M. Posttreatment with PaPE-1 Protects from Aβ-Induced Neurodegeneration Through Inhibiting the Expression of Alzheimer's Disease-Related Genes and Apoptosis Process That Involves Enhanced DNA Methylation of Specific Genes. Mol Neurobiol 2024; 61:4130-4145. [PMID: 38064105 PMCID: PMC11236864 DOI: 10.1007/s12035-023-03819-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/19/2023] [Indexed: 07/11/2024]
Abstract
Targeting the non-nuclear estrogen receptor (ER) signaling has been postulated as novel therapeutic strategy for central nervous system pathologies. Recently, we showed that newly designed PaPE-1 (Pathway Preferential Estrogen-1), which selectively activates ER non-nuclear signaling pathways, elicited neuroprotection in a cellular model of Alzheimer's disease (AD) when it was applied at the same time as amyloid-β (Aβ). Since delayed treatment reflects clinical settings better than cotreatment does, current basic study proposes a novel therapeutic approach for AD that relies on a posttreatment with PaPE-1. In this study, mouse neuronal cell cultures treated with preaggregated Aβ1-42 (10 µM) showed the presence of extracellular Aβ1-42, confirming the adequacy of the AD model used. We are the first to demonstrate that a 24-h delayed posttreatment with PaPE-1 decreased the degree of Aβ-induced neurodegeneration, restored neurite outgrowth, and inhibited the expression of AD-related genes, i.e., Rbfox, Apoe, Bace2, App, and Ngrn, except for Chat, which was stimulated. In addition, PaPE-1 elicited anti-apoptotic effects by inhibiting Aβ-induced caspase activities as well as attenuating apoptotic chromatin condensation, and in these ways, PaPE-1 prevented neuronal cell death. Posttreatment with PaPE-1 also downregulated the Aβ-affected mRNA expression of apoptosis-specific factors, such as Bax, Gsk3b, Fas, and Fasl, except for Bcl2, which was upregulated by PaPE-1. In parallel, PaPE-1 decreased the protein levels of BAX, FAS, and FASL, which were elevated in response to Aβ. PaPE-1 elicited a decrease in the BAX/BCL2 ratio that corresponds to increased methylation of the Bax gene. However, the PaPE-1-evoked Bcl2 gene hypermethylation suggests other PaPE-1-dependent mechanisms to control Aβ-induced apoptosis.
Collapse
Affiliation(s)
- Bernadeta A Pietrzak-Wawrzyńska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Karolina Przepiórska-Drońska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Andrzej Łach
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
2
|
Yin T, Yesiltepe M, D'Adamio L. Functional BRI2-TREM2 interactions in microglia: implications for Alzheimer's and related dementias. EMBO Rep 2024; 25:1326-1360. [PMID: 38347225 PMCID: PMC10933458 DOI: 10.1038/s44319-024-00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction. α-secretase cleaves TREM2 into TREM2-CTF and sTREM2. As BRI2 hinders α-secretase cleavage of the AD-related Aβ-Precursor-Protein, we probed whether BRI2 influences TREM2 processing. Our findings indicate a BRI2-TREM2 interaction that inhibits TREM2 processing in heterologous cells. Recombinant BRI2 and TREM2 proteins demonstrate a direct, cell-free BRI2-TREM2 ectodomain interaction. Constitutive and microglial-specific Itm2b-Knock-out mice, and Itm2b-Knock-out primary microglia provide evidence that Bri2 reduces Trem2 processing, boosts Trem2 mRNA expression, and influences Trem2 protein levels through α-secretase-independent pathways, revealing a multifaceted BRI2-TREM2 functional interaction. Moreover, a mutant Itm2b dementia mouse model exhibits elevated Trem2-CTF and sTrem2, mirroring sTREM2 increases in AD patients. Lastly, Bri2 deletion reduces phagocytosis similarly to a pathogenic TREM2 variant that enhances processing. Given BRI2's role in regulating Aβ-Precursor-Protein and TREM2 functions, it holds promise as a therapeutic target for AD and related dementias.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| | - Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Olesen MA, Quintanilla RA. Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease. Mol Neurobiol 2023; 60:5691-5707. [PMID: 37332018 DOI: 10.1007/s12035-023-03434-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile.
| |
Collapse
|
4
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Dhage PA, Sharbidre AA, Magdum SM. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer's disease. Brain Res Bull 2023; 192:83-92. [PMID: 36372374 DOI: 10.1016/j.brainresbull.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Caspases, a family of cysteine proteases is a renowned regulator of apoptosis. Members of this family are responsible for the proteolytic dismantling of numerous cellular structures. Apart from apoptosis, caspases remarkably contribute to a diverse range of molecular processes. Being the imperative members of several cellular cascades their abnormal activation/deactivation has severe implications and also leads to various diseased conditions. Similar aberrant activation of caspases is one of the several causes of neuropathologies associated with Alzheimer's disease (AD), a form of dementia severely affecting neuropsychiatric and cognitive functions. Emerging studies are providing deeper insights into the mechanisms of caspase action in the progression of AD. Current article is an attempt to review these studies and present the action mechanisms of different mammalian caspases in the advancement of AD associated neuropathologies.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sujata M Magdum
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| |
Collapse
|
6
|
Pham H, Yin T, D’Adamio L. Initial assessment of the spatial learning, reversal, and sequencing task capabilities of knock-in rats with humanizing mutations in the Aβ-coding region of App. PLoS One 2022; 17:e0263546. [PMID: 35507596 PMCID: PMC9067689 DOI: 10.1371/journal.pone.0263546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Model organisms mimicking the pathogenesis of human diseases are useful for identifying pathogenic mechanisms and testing therapeutic efficacy of compounds targeting them. Models of Alzheimer's disease (AD) and related dementias (ADRD) aim to reproduce the brain pathology associated with these neurodegenerative disorders. Transgenic models, which involve random insertion of disease-causing genes under the control of artificial promoters, are efficient means of doing so. There are confounding factors associated with transgenic approaches, however, including target gene overexpression, dysregulation of endogenous gene expression at transgenes' integration sites, and limitations in mimicking loss-of-function mechanisms. Furthermore, the choice of species is important, and there are anatomical, physiological, and cognitive reasons for favoring the rat over the mouse, which has been the standard for models of neurodegeneration and dementia. We report an initial assessment of the spatial learning, reversal, and sequencing task capabilities of knock-in (KI) Long-Evans rats with humanizing mutations in the Aβ-coding region of App, which encodes amyloid precursor protein (Apph/h rats), using the IntelliCage, an automated operant social home cage system, at 6-8 weeks of age, then again at 4-5 months of age. These rats were previously generated as control organisms for studies on neurodegeneration involving other knock-in rat models from our lab. Apph/h rats of either sex can acquire place learning and reversal tasks. They can also acquire a diagonal sequencing task by 6-8 weeks of age, but not a more advanced serial reversal task involving alternating diagonals, even by 4-5 months of age. Thus, longitudinal behavioral analysis with the IntelliCage system can be useful to determine, in follow-up studies, whether KI rat models of Familial AD (FAD), sporadic late onset AD (LOAD), and of ADRD develop aging-dependent learning and memory deficits.
Collapse
Affiliation(s)
- Hoa Pham
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
7
|
Applying deductive reasoning and the principles of particle physics to aging research. Aging (Albany NY) 2021; 13:22611-22622. [PMID: 34543232 PMCID: PMC8507302 DOI: 10.18632/aging.203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022]
Abstract
Aging is debatably one of the biggest mysteries for humanity, a process consisting of myriads of genetic, molecular, environmental, and stochastic deleterious events, leading to a progressive loss of organism functionality. Aging research currently lacks a common conceptual framework, and one challenge in establishing it is the fact that aging is a highly complex process. To help develop a framework of standard aging rules, we suggest the use of deductive reasoning based on particle physics' principles. Specifically, the principles that we suggest applying to study aging are discreteness of processes, transformation as a result of interaction, and understanding of threshold. Using this framework, biological aging may be described as a sequence of highly discrete molecular transformations caused by a combination of various specific internal and external factors. Internal organismal function and interaction of an organism with the environment result in chronic accumulation of molecular damage and other deleterious consequences of metabolism and the consequent loss of system's functionality. The loss of functionality occurs as a series of thresholds the organism reaches before it turns into an utterly non-functional state. We discuss how having a common ground may benefit aging research, introduce the logic of new principles and analyze specific examples of how this framework could be used to study aging and design longevity interventions.
Collapse
|
8
|
Zhao S, Fan Z, Hu J, Zhu Y, Lin C, Shen T, Li Z, Li K, Liu Z, Chen Y, Zhang B. The differential effects of isoflurane and sevoflurane on neonatal mice. Sci Rep 2020; 10:19345. [PMID: 33168900 PMCID: PMC7652873 DOI: 10.1038/s41598-020-76147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Previous research has shown that exposure to volatile anesthetics can induce acute neuroinflammation and neuroapoptopsis in neonatal rodents and that these events can lead to cognitive dysfunction at later stages. Isoflurane and sevoflurane are two of the most popular anesthetics used in the field of pediatrics. However, the relative impact of these two anesthetics on the developing brain at distinct time points after the induction of anesthesia has not been compared. In the present study, we exposed 7-day-old mice to clinically equivalent doses of isoflurane (1.5%) and sevoflurane (2.5%) for 4 h and then investigated consequential changes in the brains of these mice at six different time points. We analyzed the levels of proteins that are directly related to neuroapoptosis, neuroinflammation, synaptic function, and memory, in the brains of neonatal mice. Exposure of neonatal mice to isoflurane and sevoflurane resulted in acute neuronal apoptosis. Our analysis observed significant levels of neuroinflammation and changes in the expression levels of proteins associated with both synaptic transmission and memory in mice from the isoflurane group but not the sevoflurane group. Our results therefore indicate that isoflurane and sevoflurane induce differential effects in the brains of neonatal mice.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Hu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaicheng Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Li Z, Gan L, Yan S, Yan Y, Huang W. Effect of C-phycocyanin on HDAC3 and miRNA-335 in Alzheimer's disease. Transl Neurosci 2020; 11:161-172. [PMID: 33312721 PMCID: PMC7705988 DOI: 10.1515/tnsci-2020-0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyloid-beta (Aβ) plaque deposits and neurofibrillary tangles containing tau proteins are the key pathognomonic manifestations of Alzheimer's disease (AD). Lack of holistic drugs for AD has reinvigorated enthusiasm in the natural product-based therapies. In this study, our idea to decipher the beneficial effects of C-phycocyanin (CPC) in the management of AD is buoyed by its multifaceted and holistic therapeutic effects. METHODS We evaluated the effect of CPC treatment on epigenetic factors and inflammatory mediators in a mouse with oligomeric Aβ1-42-induced AD. Besides, the cognitive function was evaluated by the spatial memory performance on a radial arm maze. RESULTS The results showed cognitive deficit in the mice with AD along with upregulated HDAC3 expression and diminished miRNA-335 and brain-derived neurotrophic factor (BDNF) expressions. In addition, inflammation was provoked (manifested by increased interleukins (IL)-6 and IL-1β) and neuronal apoptosis was accelerated (indicated by increased Bax, caspase-3, and caspase-9 along with decreased Bcl2) in the hippocampus of the mice with AD. Interestingly, CPC treatment in the mice with AD improved spatial memory performance and decreased the perturbations in the epigenetic and inflammatory biofactors. CONCLUSION These results underscore that mitigation of inflammation via regulation of epigenetic factors might be the key pathway underlying the ameliorative effect of CPC against the aberrations in AD. Our findings provide the rationale for considering CPC as a viable therapeutic option in the management of AD.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Li Gan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Si Yan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yufang Yan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Huang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
10
|
Tambini MD, D'Adamio L. Trem2 Splicing and Expression are Preserved in a Human Aβ-producing, Rat Knock-in Model of Trem2-R47H Alzheimer's Risk Variant. Sci Rep 2020; 10:4122. [PMID: 32139718 PMCID: PMC7058057 DOI: 10.1038/s41598-020-60800-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
The R47H variant of the Triggering-Receptor-Expressed on Myeloid cells 2 (TREM2) increases the risk of Alzheimer's disease (AD). Mutagenesis of exon 2 in Knock-in (KI) mouse models of the R47H variant introduced a cryptic splice site, leading to nonsense mediated decay. Since haploinsufficiency does not model Trem2-R47H function, a new rat KI model, the Trem2R47H KI rat was created. Human Aβ has higher propensity to form toxic Aβ species, which are considered the main pathogenic entity in AD, as compared to rodent Aβ, the rat Amyloid Precursor Protein (App) gene was mutated to produce human Aβ. Trem2 splicing and expression was measured in Trem2R47H KI rat brains and microglia by qualitative and quantitative RT-PCR. Trem2 levels and Trem2 processing was assessed by Western analysis. APP metabolite levels were determined by enzyme-linked immunosorbent assay (ELISA), for Human Aβ and soluble APP, and Western analysis, for full length APP, βCTF and αCTF. Trem2 expression and Trem2 levels are unchanged in Trem2R47H KI rats. The artifactual splicing seen in KI mouse models is not present; additionally, two novel isoforms of rat Trem2 are described. Trem2R47H rat brains have lower human Aβ38, sAPPα and sAPPβ levels. Thus, Trem2R47H KI rats may prove valuable to define pathogenic mechanisms triggered by the Trem2 R47H variant, including those mediated by toxic species of human Aβ peptides.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
11
|
Tuning of Glutamate, But Not GABA, Release by an Intrasynaptic Vesicle APP Domain Whose Function Can Be Modulated by β- or α-Secretase Cleavage. J Neurosci 2019; 39:6992-7005. [PMID: 31235642 DOI: 10.1523/jneurosci.0207-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
APP, whose mutations cause familial Alzheimer's disease (FAD), modulates neurotransmission via interaction of its cytoplasmic tail with the synaptic release machinery. Here we identified an intravesicular domain of APP, called intraluminal SV-APP interacting domain (ISVAID), which interacts with glutamatergic, but not GABAergic, synaptic vesicle proteins. ISVAID contains the β- and α-secretase cleavage sites of APP: proteomic analysis of the interactome of ISVAID suggests that β- and α-secretase cleavage of APP cuts inside the interaction domain of ISVAID and destabilizes protein-protein interactions. We have tested the functional significance of the ISVAID and of β-/α-secretase-processing of APP using various ISVAID-derived peptides in competition experiments on both female and male mouse and rats hippocampal slices. A peptide encompassing the entire ISVAID facilitated glutamate, but not GABA, release acting as dominant negative inhibitor of the functions of this APP domain in acute hippocampal slices. In contrast, peptides representing the product of β-/α-secretase-processing of ISVAID did not alter excitatory neurotransmitter release. These findings suggest that cleavage of APP by either β- or α-secretase may inactivate the ISVAID, thereby enhancing glutamate release. Our present data support the notion that APP tunes glutamate release, likely through intravesicular and extravesicular interactions with synaptic vesicle proteins and the neurotransmitter release machinery, and that β-/α cleavage of APP facilitates the release of excitatory neurotransmitter.SIGNIFICANCE STATEMENT Alzheimer's disease has been linked to mutations in APP. However, the biological function of APP is poorly understood. Here we show that an intravesicular APP domain interacts with the proteins that control the release of glutamate, but not GABA. Interfering with the function of this domain promotes glutamate release. This APP domain contains the sites cleaved by β- and α-secretases: our data suggest that β-/α cleavage of APP inactivates this functional APP domain promoting excitatory neurotransmitter release.
Collapse
|
12
|
Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia. Oncotarget 2017; 7:11923-44. [PMID: 26942869 PMCID: PMC4914259 DOI: 10.18632/oncotarget.7389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.
Collapse
|
13
|
Components of Goutengsan in Rat Plasma by Microdialysis Sampling and Its Protection on A β1-42-Induced PC12 Cells Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7593027. [PMID: 28348625 PMCID: PMC5352969 DOI: 10.1155/2017/7593027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/20/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Goutengsan, a Chinese herbal formula, potential protection on Alzheimer's disease (AD) has been less reported. In current study, we investigated the protection of Goutengsan on Aβ1–42-induced pheochromocytoma-derived cells (PC12). Furthermore, the components from Goutengsan in rat plasma were identified by microdialysis (MD) for in vivo sampling. Meanwhile, the protection of components identified was also verified. At last, we found that Goutengsan has a potential protective effect on Aβ1–42-induced PC12 cells via reducing cells damage and increasing cells vitality as well as six components (pachymic acid, liquiritin, rhynchophylline, isorhynchophylline, corynoxeine, and isocorynoxeine) which may be effective components. This study helps to understand the treatment of Goutengsan for AD and would facilitate the clinical and further studies for this formula.
Collapse
|
14
|
Tsuboi C, Kawasaki Y, Yoshitome K, Yagi K, Miura T, Esumi S, Miyazaki I, Asanuma M, Kitamura Y, Sendo T. In vitro quantitative determination of the concentration of the polymerization agent methyl 2-benzoylbenzoate in intravenous injection solution and the cytotoxic effects of the chemical on normal human peripheral blood mononuclear cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10262-10269. [PMID: 27044286 DOI: 10.1007/s11356-016-6332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
In previous studies, we detected the photoinitiators 1-hydroxycyclohexyl phenyl ketone (1-HCHPK) and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP) in an intravenous injection solution. Importantly, 1-HCHPK and MTMP have been demonstrated to be cytotoxic to normal human peripheral blood (PB) mononuclear cells (MNC). Cell death (apoptosis) pathways can be classified into two modes, caspase-dependent and -independent pathways. However, it is unclear whether methyl 2-benzoylbenzoate (MBB) induces the caspase-dependent and/or -independent pathway in normal human PBMNC. In the present in vitro study, we examined the levels of MBB in a solution from an intravenous fluid bag and the cytotoxicity of MBB towards normal human PBMNC via the caspase-8-, caspase-9-, or apoptosis-inducing factor (AIF)-mediated apoptosis pathways. We found that extracts from the injection solution had been contaminated with approximately 80 μM of the photoinitiator MBB. In addition, MBB induced apoptosis in the high concentration range in normal human PBMNC in vitro. Moreover, we found that MBB-induced apoptosis occurs via the caspase-9 pathway, but not the AIF pathway. In conclusion, we suggest that MBB has cytotoxic effects on normal human PBMNC in vitro, which are mediated via the caspase-dependent pathway.
Collapse
Affiliation(s)
- Chiaki Tsuboi
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoichi Kawasaki
- Department of Pharmacy, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kei Yoshitome
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Taro Miura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Esumi
- Department of Pharmacy, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
- Department of Pharmacy, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pharmacy, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Unsain N, Barker PA. New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles. Neuron 2016; 88:461-74. [PMID: 26539888 DOI: 10.1016/j.neuron.2015.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Instituto Nacional de Investigación Médica Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Friuli 2434, Córdoba (5016), Argentina
| | - Philip A Barker
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
16
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
17
|
Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, Kosaka K, Itoh K, Takahashi I, Kawaguchi S, Imaizumi T. Carnosic acid attenuates apoptosis induced by amyloid-β 1–42 or 1–43 in SH-SY5Y human neuroblastoma cells. Neurosci Res 2015; 94:1-9. [DOI: 10.1016/j.neures.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023]
|
18
|
Schiefer IT, Tapadar S, Litosh V, Siklos M, Scism R, Wijewickrama GT, Chandrasena EP, Sinha V, Tavassoli E, Brunsteiner M, Fa' M, Arancio O, Petukhov P, Thatcher GRJ. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J Med Chem 2013; 56:6054-68. [PMID: 23834438 DOI: 10.1021/jm4006719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperactivation of the calcium-dependent cysteine protease calpain 1 (Cal1) is implicated as a primary or secondary pathological event in a wide range of illnesses and in neurodegenerative states, including Alzheimer's disease (AD). E-64 is an epoxide-containing natural product identified as a potent nonselective, calpain inhibitor, with demonstrated efficacy in animal models of AD. By use of E-64 as a lead, three successive generations of calpain inhibitors were developed using computationally assisted design to increase selectivity for Cal1. First generation analogues were potent inhibitors, effecting covalent modification of recombinant Cal1 catalytic domain (Cal1cat), demonstrated using LC-MS/MS. Refinement yielded second generation inhibitors with improved selectivity. Further library expansion and ligand refinement gave three Cal1 inhibitors, one of which was designed as an activity-based protein profiling probe. These were determined to be irreversible and selective inhibitors by kinetics studies comparing full length Cal1 with the general cysteine protease papain.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lombino F, Biundo F, Tamayev R, Arancio O, D’Adamio L. An intracellular threonine of amyloid-β precursor protein mediates synaptic plasticity deficits and memory loss. PLoS One 2013; 8:e57120. [PMID: 23451158 PMCID: PMC3579798 DOI: 10.1371/journal.pone.0057120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/17/2013] [Indexed: 11/22/2022] Open
Abstract
Mutations in Amyloid-ß Precursor Protein (APP) and BRI2/ITM2b genes cause Familial Alzheimer and Danish Dementias (FAD/FDD), respectively. APP processing by BACE1, which is inhibited by BRI2, yields sAPPß and ß-CTF. ß-CTF is cleaved by gamma-secretase to produce Aß. A knock-in mouse model of FDD, called FDDKI, shows deficits in memory and synaptic plasticity, which can be attributed to sAPPß/ß-CTF but not Aß. We have investigated further the pathogenic function of ß-CTF focusing on Thr(668) of ß-CTF because phosphorylation of Thr(668) is increased in AD cases. We created a knock-in mouse bearing a Thr(668)Ala mutation (APP(TA) mice) that prevents phosphorylation at this site. This mutation prevents the development of memory and synaptic plasticity deficits in FDDKI mice. These data are consistent with a role for the carboxyl-terminal APP domain in the pathogenesis of dementia and suggest that averting the noxious role of Thr(668) is a viable therapeutic strategy for human dementias.
Collapse
Affiliation(s)
- Franco Lombino
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fabrizio Biundo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert Tamayev
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Luciano D’Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|