1
|
Chacón RD, Ramírez M, Rodríguez-Cueva CL, Sánchez C, Quispe-Rojas WU, Astolfi-Ferreira CS, Piantino Ferreira AJ. Genomic Characterization and Genetic Profiles of Salmonella Gallinarum Strains Isolated from Layers with Fowl Typhoid in Colombia. Genes (Basel) 2023; 14:genes14040823. [PMID: 37107581 PMCID: PMC10138188 DOI: 10.3390/genes14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
- Inter-Units Program in Biotechnology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Manuel Ramírez
- Unidad de Bioinformática, Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista 07006, Peru
| | - Carmen L Rodríguez-Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Christian Sánchez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Wilma Ursula Quispe-Rojas
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
2
|
Basit A, Tahir H, Haider Z, Tariq H, Ullah A, Rehman SU. CRISPR/Cas9-Based Deletion of SpvB Gene From Salmonella gallinarum Leads to Loss of Virulence in Chicken. Front Bioeng Biotechnol 2022; 10:885227. [PMID: 35769104 PMCID: PMC9234527 DOI: 10.3389/fbioe.2022.885227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella Gallinarum causes fowl typhoid in poultry leading to a huge economic loss to the poultry industry. The large virulence plasmid of S. gallinarum has been associated with various systemic infections in poultry. A five-gene spanning region (spvRABCD) of 7.8 kb on the large plasmid mainly confers virulence to the bacteria. However, the exact role of these genes in virulence has not been elucidated yet. SpvB exhibits delayed cell death by preventing actin polymerization followed by apoptosis during intracellular infection. The specific role of SpvB in causing the disease is not known yet. In the current study, the SpvB gene was deleted through CRISPR/Cas9 method from a large virulent plasmid of locally isolated S. gallinarum strain (SG18). The homology-directed repair method was used for complete deletion of SpvB gene using the modified pCas9 plasmid. The SpvB-deleted S. gallinarum strain (ΔSpvB_SG18), when tested for its virulence in broiler chicken showed no diseases signs and mortality. In addition, the avirulent strain does not affect the bird’s weight and was rapidly cleared from the liver after infection. However, it cleared from the intestine only after 4–5 days, which suggests that the ΔSpvB_SG18 strain is unable to invade from the intestine to the liver. This is the first study to report a complete gene deletion from the S. gallinarum virulent plasmid and its effect. This method will be useful for the deletion of virulent genes from S. gallinarum, to study their role in pathogenesis, and to prepare an effective vaccine strain for controlling fowl typhoid in poultry.
Collapse
Affiliation(s)
- Abdul Basit
- *Correspondence: Abdul Basit, ; Shafiq Ur Rehman ,
| | | | | | | | | | | |
Collapse
|
3
|
Zhang JF, Shang K, Wei B, Lee YJ, Park JY, Jang HK, Cha SY, Kang M. Evaluation of Safety and Protective Efficacy of a waaJ and spiC Double Deletion Korean Epidemic Strain of Salmonella enterica Serovar Gallinarum. Front Vet Sci 2021; 8:756123. [PMID: 34869728 PMCID: PMC8635151 DOI: 10.3389/fvets.2021.756123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
With an aim to develop a highly attenuated and strongly immunogenic distinguishable vaccine candidate, a waaJ (a gene involved in the synthesis of lipopolysaccharide) and spiC (a virulence gene) double deletion Korean epidemic strain of S. enterica ser. Gallinarum (SG005) was constructed. Our results showed that the growth and biochemical characteristics were not altered by this double deletion. The double deletion strain contained dual markers. One was a bacteriological marker (rough phenotype) and the other was a serological marker helping distinguish infected chickens from vaccinated chickens. The double deletion strain showed good genetic stability and reduced resistance to environmental stresses in vitro; furthermore, it was extremely safe and highly avirulent in broilers. Single intramuscular or oral immunization of 7-day-old broilers with the double deletion strain could stimulate the body to produce antibody levels similar to the conventional vaccine strain SG9R. In addition, against a lethal wild-type challenge, it conferred effective protection that was comparable to that seen in the group vaccinated with SG9R. In conclusion, this double deletion strain may be an effective vaccine candidate for controlling S. enterica ser. Gallinarum infection in broilers.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Yea-Jin Lee
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Jong-Yeol Park
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
4
|
Shchebentovska O, Kostynuk A, Zaika S, Kovalova L, Yevtukh L, Holubtsova M. Pathomorphological changes in the organs of chickens infected spontaneously by the species Salmonella pullorum on private farms in Chernivtsi region. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Commercial poultry production growth and the increase in the number of small farms specializing in raising broiler chickens, laying hens, quails, and other poultry contribute to the spread of infectious diseases. Non-compliance with the principles of biosafety during incubation and breeding results in mass deaths of poultry and, consequently, significant economic losses for farmers. Salmonellosis is one of the most dangerous anthropozoonotic diseases of poultry, which is most often registered in private farms. Age analysis of the poultry salmonellosis in the EU countries indicates the infection of adult laying hens most often, young poultry to a lesser extent, and chickens aged up to 10 days less frequently. Although the program for the prevention and elimination of poultry salmonellosis has been approved at the legislative level in Ukraine, monitoring studies are not carefully conducted. This is especially true for private homesteads and small farms, which greatly complicates the epizootiological situation in some regions of the country. The article describes the pathological and histological changes in the liver, heart, lungs, kidneys, and spleen. The changes were detected in chickens aged 10 and 14 days infected with microorganisms of the species Salmonella pullorum. Eggs for incubation were obtained from different family flocks, and incubation was performed in a single incubator. The initial clinical signs of the disease appeared in chickens aged 7 days and included diarrhea, increased water consumption, lameness, mass concentration of chickens near heat sources, nervous phenomena in the form of circle walking, and partial blindness in some cases. The pathological autopsy revealed hepatomegaly with sharp change in the organ colour, diapedetic hemorrhage under Glisson’s capsule, and diffuse miliary necrosis. Greyish-white nodular lesions of the lungs and heart, dystrophic changes in the kidneys, and deposition of uric acid salts in the ureters were also characteristic features. Diffuse coagulation necrosis, massive perivascular infiltration by heterophilic lymphocytes and stasis were observed in the liver. Changes in the heart were characterized by significant infiltration by mononuclear cells and heterophiles, which led to atrophy, necrosis, and replacement of cardiomyocytes by connective tissue cellular elements. Delymphatization and necrosis of the lymph nodes were pronounced in the spleen.
Collapse
|
5
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
6
|
Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host. Microorganisms 2020; 8:microorganisms8040517. [PMID: 32260465 PMCID: PMC7232391 DOI: 10.3390/microorganisms8040517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine.
Collapse
|
7
|
Revolledo L. Vaccines and vaccination against fowl typhoid and pullorum disease: An overview and approaches in developing countries. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfx066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Penha Filho RAC, Zancan FT, Almeida AMD, Berchieri Junior A. Protection of chickens against fowl typhoid using field vaccine programs formulated with the live attenuated strain Salmonella Gallinarum ΔcobSΔcbiA. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000272015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) is a host-specific bacteria that causes the fowl typhoid (FT). This disease is highly pathogenic to commercial chickens, specially brown layers and breeders, causing acute septicemia followed by high morbidity and mortality. Vaccination is extensively adopted in the fields as a biosafety tool for prevention of isolated infections and outbreaks in commercial poultry flocks. The present study evaluated the use of an attenuated SG with deletions on genes cobS and cbiA (SGΔcobSΔcbiA) as a live vaccine, using vaccination schemes adjusted for field conditions. To this end, brown layers were used in two different experiments, to evaluate the long-term protection, necessary in the fields. The vaccination scheme on the first experiment consisted of two doses, the first at 4 th week-of-age and the booster dose at 8 th week-of-age with challenge at 16 th week-of-age with wild SG strain. On the second experiment, the vaccination was carried out by different routes using three doses of the live vaccine, at 4 th , 8 th and 12 th weeks-of-age, and the challenge was done at 20 th weeks-of-age. After the challenge, the mortality was recorded during 28 days, and the egg production (experiment 2) was evaluated and compared with the group of unvaccinated layers. In both experiments, the mortality was significantly reduced, and the egg production was not affected in vaccinated layer-hens. In summary, this study shows the efficacy and the protection of different vaccination schemes against FT that can be applied under field conditions in commercial poultry farms.
Collapse
|
9
|
Valderrama K, Saravia M, Santander J. Phenotype of Aeromonas salmonicida sp. salmonicida cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants and its virulence in rainbow trout (Oncorhynchus mykiss). JOURNAL OF FISH DISEASES 2017; 40:1849-1856. [PMID: 28548689 DOI: 10.1111/jfd.12658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Precise deletion of genes related to virulence can be used as a strategy to produce attenuated bacterial vaccines. Here, we study the deletion of the cyclic-3',5'-adenosine monophosphate (cAMP) receptor protein (Crp) in Aeromonas salmonicida, the aetiologic agent of furunculosis in marine and freshwater fish. The Crp protein is a conserved global regulator, controlling physiology processes, like sugar utilization. Deletion of the crp gene has been utilized in live attenuated vaccines for mammals, birds and warm water fish. Here, we characterized the crp gene and reported the effect of a crp deletion in A. salmonicida virulent and non-virulent isolates. We found that A. salmonicida Δcrp was not able to utilize maltose and other sugars, and its generation time was similar to the wild type. A. salmonicida ∆crp showed a higher ability of cell invasion compared to the wild type. Fish challenges showed that A. salmonicida ∆crp is ~6 times attenuated in Oncorhynchus mykiss and conferred protective immunity against the intraperitoneal challenge with A. salmonicida wild type. We concluded that deletion of A. salmonicida crp influences sugar utilization, cell invasion and virulence. Deletion of crp in A. salmonicida could be considered as part of an effective strategy to develop immersion live attenuated vaccines against furunculosis.
Collapse
Affiliation(s)
- K Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- PhD Program in Aquaculture, Universidad Católica del Norte, Coquimbo, Chile
| | - M Saravia
- Faculty of Sciences, Universidad Mayor, Huechuraba, Chile
| | - J Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- Faculty of Sciences, Universidad Mayor, Huechuraba, Chile
| |
Collapse
|
10
|
Won G, Chaudhari AA, Lee JH. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate. Clin Exp Vaccine Res 2016; 5:148-58. [PMID: 27489805 PMCID: PMC4969279 DOI: 10.7774/cevr.2016.5.2.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/22/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| |
Collapse
|
11
|
Evaluation of protective immune response against fowl typhoid in chickens vaccinated with the attenuated strain Salmonella Gallinarum ΔcobSΔcbiA. Res Vet Sci 2016; 107:220-227. [PMID: 27473999 DOI: 10.1016/j.rvsc.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid in chickens, a septicemic infection which results in high mortality rates. This disease causes high economic impact to the poultry industry worldwide because of the mortality or elimination of positive flocks to control bacterial dissemination. Live vaccines are used in the fields, however the characterization of immune mechanisms important for protection are being studied to improve the efficacy of vaccination schemes. In this study, we evaluated the immune response in brown layer-hens, vaccinated or not, during the most critical period of infection. Cellular and humoral immunity were extensively evaluated until 7 days post-infection (DPI), by flow cytometry and ELISA, respectively. Furthermore, we evaluated the expression of important pro-inflammatory cytokines after infection of bone marrow derived macrophages (BMDMs) with the live attenuated SG vaccine and with the wild SG strain. The results showed an increasing production of IgG and IgM during the first week post-infection, in vaccinated layer-hens, which was absent in unvaccinated birds. The population of CD8(+)CD44(+) and CD4(+)CD44(+) T cells in spleen and cecal tonsils constantly decreased in unvaccinated birds in comparison with vaccinated layers. The expression of IFN-γ and TNF-α in BMDMs was induced by both SG strains (attenuated and wild) at similar levels (p>0.05). Vaccination with live SG vaccine reduced systemic infection by challenge strain of SG and prevented the mortality rate of 85% that occurred in unvaccinated layer-hens during 30 dpi. Furthermore, the immunization enhanced the proliferation of effector CD4(+) and CD8(+) T cells after challenge.
Collapse
|
12
|
Cheng Z, Yin J, Kang X, Geng S, Hu M, Pan Z, Jiao X. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid. Res Vet Sci 2016; 107:50-54. [PMID: 27473974 DOI: 10.1016/j.rvsc.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 04/07/2016] [Accepted: 05/22/2016] [Indexed: 01/11/2023]
Abstract
With an aim to develop a safe, immunogenic fowl typhoid (FT) vaccine, the safety and efficacy of 1009ΔspiCΔcrp, a spiC and crp deletion mutant of Salmonella gallinarum, were evaluated in chickens. Three-day-old chickens were intramuscularly immunized with 1009ΔspiCΔcrp (1×10(7)CFU) and boosted 7days later (at 10-days old) with the same dose and via the same route (vaccinated group). The vaccinated group showed no clinical symptoms and no differences in body weight compared to the unvaccinated control group. 1009ΔspiCΔcrp bacteria colonized and persisted in the liver and spleen of vaccinated chickens for >14days, and significant specific humoral and cellular immune responses were induced. Vaccinated chickens were challenged with S. gallinarum strain SG9 at 21days post-immunization (24-day-old chickens), and efficient protection was observed based on the mortality and clinical symptoms, as compared to those in the control group. These results demonstrate that 1009ΔspiCΔcrp can be used as a live attenuated vaccine.
Collapse
Affiliation(s)
- Zhao Cheng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Junlei Yin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Maozhi Hu
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Jawale CV, Pawar PS, Eo SK, Park SY, Lee JH. Utilization of a Modified Phage E Protein Lysis System Accounts for Increased Biomass in Salmonella Gallinarum Ghosts. Avian Dis 2015; 59:269-76. [PMID: 26473678 DOI: 10.1637/10977-111114-regr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A major limiting issue of bacterial ghost technology involves the stable maintenance of Phix174 lysis gene E expression. Unwanted leaky expression of gene E in the absence of induction temperature results in reduced biomass production of host bacterium, consequently leading to the lower yield of bacterial ghost. To mitigate the leaky expression status of lysis gene E, we utilized a novel E-lysis system in which gene E is located between sense λpR promoter with a CI857 regulator and antisense ParaBAD promoter with the AraC regulator. In the presence of L-arabinose at 28 C, unwanted transcription of lysis gene E from λpR promoter is repressed by a simultaneous transcription event from ParaBAD promoter by means of anti-sense RNA-mediated inhibition. Tight repression of lysis gene E in the absence of induction temperature resulted in higher bacterial cell number in culture suspension and, consequently, higher production of Salmonella Gallinarum (SG) ghost biomass. The safety and protective efficacy of the SG ghost vaccine were further examined in chickens. All of the immunized chickens showed significantly higher mucosal and systemic antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response. Vaccination of chickens with SG ghost preparation offered efficient protection against wild-type SG challenge.
Collapse
Affiliation(s)
- Chetan V Jawale
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1267-76. [PMID: 24990908 DOI: 10.1128/cvi.00310-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid.
Collapse
|
15
|
Jofré MR, Rodríguez LM, Villagra NA, Hidalgo AA, Mora GC, Fuentes JA. RpoS integrates CRP, Fis, and PhoP signaling pathways to control Salmonella Typhi hlyE expression. BMC Microbiol 2014; 14:139. [PMID: 24885225 PMCID: PMC4105832 DOI: 10.1186/1471-2180-14-139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/21/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18 harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg2+. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in S. Typhi and the integration of different environmental signals through global regulators. RESULTS We found that Fis participates as a CRP-independent glucose-dependent down-regulator of hlyE. Also, Fis and CRP seem to exert the repression over hlyE through down-regulating rpoS. Moreover, PhoP up-regulates hlyE expression via rpoS under low pH and low Mg2+ conditions. CONCLUSIONS All these results together show that, at least under the tested conditions, RpoS is the central regulator in the hlyE regulatory network, integrating multiple environmental signals and global regulators.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan A Fuentes
- Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
16
|
Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 2014; 32:1093-9. [PMID: 24406393 DOI: 10.1016/j.vaccine.2013.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be environmentally safe yet efficient to prevent FT in chickens.
Collapse
|
17
|
Mitra A, Loh A, Gonzales A, Laniewski P, Willingham C, Curtiss Iii R, Roland KL. Safety and protective efficacy of live attenuated Salmonella Gallinarum mutants in Rhode Island Red chickens. Vaccine 2012; 31:1094-9. [PMID: 23261043 DOI: 10.1016/j.vaccine.2012.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/01/2012] [Accepted: 12/10/2012] [Indexed: 01/17/2023]
Abstract
Salmonella enterica serovar Gallinarum is the causative agent of fowl typhoid, an important systemic disease of poultry with economic consequences in developing nations. A live attenuated orally applied S. Gallinarum vaccine could provide a low cost method for controlling this disease. We constructed S. Gallinarum strains in which the expression of the crp, rfc and rfaH genes, important for virulence of Salmonella Typhimurium in mice, were under the control of an arabinose-regulated promoter. We evaluated the virulence of these strains compared to wild-type S. Gallinarum and to mutants carrying deletions in these genes. We found that rfc mutants were fully virulent, indicating that, unlike the S. Typhimurium mouse model, the rfc gene is dispensable in S. Gallinarum for virulence in birds. In the case of rfaH, the deletion mutant was attenuated and protective, while the strain with arabinose-regulated rfaH expression retained full virulence. The strain exhibiting arabinose-regulated crp expression was attenuated. Its virulence was not affected by the inclusion of 0.2% arabinose in the drinking water. Birds immunized with this strain were protected against a lethal S. Gallinarum challenge and against colonization with the human pathogen Salmonella Enteritidis. This work shows that an arabinose-regulated crp strain provides a basis for further development of a fowl typhoid vaccine.
Collapse
Affiliation(s)
- Arindam Mitra
- The Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Revolledo L, Ferreira A. Current perspectives in avian salmonellosis: Vaccines and immune mechanisms of protection. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2011-00409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Chaudhari AA, Jawale CV, Kim SW, Lee JH. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens. Vet Res 2012; 43:44. [PMID: 22620989 PMCID: PMC3413521 DOI: 10.1186/1297-9716-43-44] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 05/11/2012] [Indexed: 11/13/2022] Open
Abstract
In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT.
Collapse
Affiliation(s)
- Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | | | | | | |
Collapse
|
20
|
Santander J, Mitra A, Curtiss R. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1142-1153. [PMID: 22015784 DOI: 10.1016/j.fsi.2011.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/11/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.
Collapse
Affiliation(s)
- Javier Santander
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
21
|
Matsuda K, Chaudhari AA, Lee JH. Comparison of the Safety and Efficacy of a New Live Salmonella Gallinarum Vaccine Candidate, JOL916, with the SG9R Vaccine in Chickens. Avian Dis 2011; 55:407-12. [DOI: 10.1637/9680-020611-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Chaudhari AA, Kim SW, Matsuda K, Lee JH. Safety Evaluation and Immunogenicity of Arabinose-Based Conditional Lethal Salmonella Gallinarum Mutant Unable to SurviveEx Vivoas a Vaccine Candidate for Protection Against Fowl Typhoid. Avian Dis 2011; 55:165-71. [DOI: 10.1637/9512-083010-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Barrow PA, Neto OCF. Pullorum disease and fowl typhoid—new thoughts on old diseases: a review. Avian Pathol 2011; 40:1-13. [DOI: 10.1080/03079457.2010.542575] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Villarreal JM, Hernández-Lucas I, Gil F, Calderón IL, Calva E, Saavedra CP. cAMP receptor protein (CRP) positively regulates the yihU-yshA operon in Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2010; 157:636-647. [PMID: 21148209 DOI: 10.1099/mic.0.046045-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the aetiological agent of typhoid fever in humans. This bacterium is also able to persist in its host, causing a chronic disease by colonizing the spleen, liver and gallbladder, in the last of which the pathogen forms biofilms in order to survive the bile. Several genetic components, including the yihU-yshA genes, have been suggested to be involved in the survival of Salmonella in the gallbladder. In this work we describe how the yihU-yshA gene cluster forms a transcriptional unit regulated positively by the cAMP receptor global regulator CRP (cAMP receptor protein). The results obtained show that two CRP-binding sites on the regulatory region of the yihU-yshA operon are required to promote transcriptional activation. In this work we also demonstrate that the yihU-yshA transcriptional unit is carbon catabolite-repressed in Salmonella, indicating that it forms part of the CRP regulon in enteric bacteria.
Collapse
Affiliation(s)
- J M Villarreal
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
25
|
Matsuda K, Chaudhari AA, Lee JH. Evaluation of safety and protection efficacy on cpxR and lon deleted mutant of Salmonella Gallinarum as a live vaccine candidate for fowl typhoid. Vaccine 2010; 29:668-74. [PMID: 21115058 DOI: 10.1016/j.vaccine.2010.11.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/02/2010] [Accepted: 11/14/2010] [Indexed: 12/12/2022]
Abstract
We evaluated a recently developed live fowl typhoid (FT) vaccine candidate, JOL916, the cpxR/lon mutant of Salmonella Gallinarum (SG), for safety and protection efficacy in 5-week-old layer chickens. Intramuscular vaccination with JOL916 revealed no or very few lesions in livers and spleens of the animals until the fourth week post-vaccination (wpv). This candidate clearly induced cellular immune responses in 5 of 5 chickens on the first and second wpv based on the peripheral lymphocyte proliferation assay. Systemic IgG responses were observed in 5 of 5 chickens from the first wpv and dramatic elevations were observed on the second and third wpv. Vaccination of chickens offered efficient protection against challenge by a wild-type SG; only slight anorexia and depression were temporarily observed after challenge in the vaccinated group while 100% mortality was observed in the positive control group. Body weight increases per day were slightly reduced between the 3rd and 6th day post challenge (dpc) compared to the negative control group; it was recovered from the 6th dpc. Collectively, these results demonstrate the safety and protective efficacy of JOL916 as a live vaccine for systemic FT.
Collapse
Affiliation(s)
- Kiku Matsuda
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | |
Collapse
|
26
|
Penha Filho RAC, de Paiva JB, Arguello YMS, da Silva MD, Gardin Y, Resende F, Berchieri Junior AB, Sesti L. Efficacy of several vaccination programmes in commercial layer and broiler breeder hens against experimental challenge with Salmonella enterica serovar Enteritidis. Avian Pathol 2010; 38:367-75. [PMID: 19937524 DOI: 10.1080/03079450903183645] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two experiments were performed to evaluate the protective effect of various vaccination combinations given at 5 and 9 weeks of age against experimental challenge with Salmonella enterica serovar Enteritidis (SE) phage type 4 at 12 weeks of age. In Experiment 1, groups of commercial layers were vaccinated by one of the following programmes: Group 1, two doses of a SE bacterin (Layermune SE); Group 2, one dose of a live Salmonella enterica serovar Gallinarum vaccine (Cevac SG9R) followed by one dose of the SE bacterin; Group 3, one dose of each of two different multivalent inactivated vaccines containing SE cells (Corymune 4K and Corymune 7K; and Group 4, unvaccinated, challenged controls. In Experiment 2, groups of broiler breeders were vaccinated by the same programmes as Groups 1 and 2 above while Group 3 was an unvaccinated, challenged control group. All vaccination programmes and the challenge induced significant (P < 0.05) seroconversion as measured by enzyme-linked immunosorbent assay. Overall, in both experiments, all vaccination schemes were significantly effective in reducing organ (spleen, liver and caeca) colonization by the challenge strain as well as reducing faecal excretion for at least 3 weeks. Vaccinated layers in Groups 1 and 2 and broiler breeders in Group 2 showed the greatest reduction in organ colonization and the least faecal excretion. In Experiment 1, layers vaccinated with multivalent inactivated vaccines containing a SE component (Group 3) were only moderately protected, indicating that such a vaccination programme may be useful in farms with good husbandry and housing conditions and low environmental infectious pressure by Salmonella.
Collapse
|
27
|
Matsuda K, Chaudhari AA, Kim SW, Lee KM, Lee JH. Physiology, pathogenicity and immunogenicity of lon and/or cpxR deleted mutants of Salmonella Gallinarum as vaccine candidates for fowl typhoid. Vet Res 2010; 41:59. [PMID: 20487719 PMCID: PMC2887653 DOI: 10.1051/vetres/2010031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022] Open
Abstract
To construct a novel live vaccine candidate for fowl typhoid (FT) caused by Salmonella Gallinarum (SG), the lon and cpxR genes that are related to host-pathogen interaction were deleted from a wild type SG using the allelic exchange method. The mutants were grown normally, as was the wild type. The biochemical properties of the mutants remained very similar to those of the wild-type, while JOL914 (Δlon) and JOL916 (ΔlonΔcpxR) were mucoid. Extracellular polysaccharide increased 30.6-, 1.3-, and 46.2-fold in JOL914, JOL915 (ΔcpxR), and JOL916, respectively. Dot-blot analysis demonstrated significant increases of FimA expression at 6.77-, 2.33-, and 3.90-fold for JOL914, JOL915, and JOL916, respectively. Internalizations of JOL914, JOL915, and JOL916, in chicken abdominal macrophages, were increased at 4.65-, 0.50-, and 2.72-fold, respectively. Virulences of JOL914, JOL915 and JOL916, analyzed by LD50 using 1-week-old chickens, were attenuated approximately at 101-, 101-, and > 103-fold, respectively. The oral inoculations of 2 × 107 cfu of the wild type, JOL914, JOL915 and JOL916 caused 55.6, 16.7, 22.2, and 0.0% mortality, respectively. Significantly moderate gross lesions of the liver and spleen were observed in the JOL916 group compared to the other groups. An induced immune response and significant peripheral mononuclear proliferation reaction were observed in the JOL916 group. At the protection against the wild type challenge, JOL916 offered 100% protection. Thus, the results of this study suggest that JOL916 among the mutants studied represented the safest and most effective live vaccine candidate against FT.
Collapse
Affiliation(s)
- Kiku Matsuda
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|