1
|
Morrison JJ, Madden EK, Banas DA, DiBiasio EC, Hansen M, Krogfelt KA, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0016224. [PMID: 38814092 PMCID: PMC11332148 DOI: 10.1128/jb.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Ellen K. Madden
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Daniel A. Banas
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Eric C. DiBiasio
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Mads Hansen
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - Karen A. Krogfelt
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
2
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
3
|
Yan J, Yang B, Xue X, Li J, Li Y, Li A, Ding P, Cao B. Transcriptome Analysis Reveals the Effect of PdhR in Plesiomonas shigelloides. Int J Mol Sci 2023; 24:14473. [PMID: 37833920 PMCID: PMC10572922 DOI: 10.3390/ijms241914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinghao Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- College of Pharmacy Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|
4
|
Morrison JJ, Banas DA, Madden EK, DiBiasio EC, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540013. [PMID: 37215002 PMCID: PMC10197701 DOI: 10.1101/2023.05.09.540013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Daniel A. Banas
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Ellen K. Madden
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Eric C. DiBiasio
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - David C. Rowley
- Department of Biomedical & Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, 02881
| | - Paul S. Cohen
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Jodi L. Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| |
Collapse
|
5
|
Moxley WC, Brown RE, Eiteman MA. Escherichia coli aceE variants coding pyruvate dehydrogenase improve the generation of pyruvate-derived acetoin. Eng Life Sci 2023; 23:e2200054. [PMID: 36874610 PMCID: PMC9978916 DOI: 10.1002/elsc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023] Open
Abstract
Several chromosomally expressed AceE variants were constructed in Escherichia coli ΔldhA ΔpoxB ΔppsA and compared using glucose as the sole carbon source. These variants were examined in shake flask cultures for growth rate, pyruvate accumulation, and acetoin production via heterologous expression of the budA and budB genes from Enterobacter cloacae ssp. dissolvens. The best acetoin-producing strains were subsequently studied in controlled batch culture at the one-liter scale. PDH variant strains attained up to four-fold greater acetoin than the strain expressing the wild-type PDH. In a repeated batch process, the H106V PDH variant strain attained over 43 g/L of pyruvate-derived products, acetoin (38.5 g/L) and 2R,3R-butanediol (5.0 g/L), corresponding to an effective concentration of 59 g/L considering the dilution. The acetoin yield from glucose was 0.29 g/g with a volumetric productivity of 0.9 g/L·h (0.34 g/g and 1.0 g/L·h total products). The results demonstrate a new tool in pathway engineering, the modification of a key metabolic enzyme to improve the formation of a product via a kinetically slow, introduced pathway. Direct modification of the pathway enzyme offers an alternative to promoter engineering in cases where the promoter is involved in a complex regulatory network.
Collapse
Affiliation(s)
- W. Chris Moxley
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Rachel E. Brown
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark A. Eiteman
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
6
|
Saito S, Imai R, Miyahara Y, Nakagawa M, Orita I, Tsuge T, Fukui T. Biosynthesis of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) From Glucose by Escherichia coli Through Butyryl-CoA Formation Driven by Ccr-Emd Combination. Front Bioeng Biotechnol 2022; 10:888973. [PMID: 35646875 PMCID: PMC9134075 DOI: 10.3389/fbioe.2022.888973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is a practical kind of bacterial polyhydroxyalkanoates (PHAs). A previous study has established an artificial pathway for the biosynthesis of P(3HB-co-3HHx) from structurally unrelated sugars in Ralstonia eutropha, in which crotonyl-CoA carboxylase/reductase (Ccr) and ethylmalonyl-CoA decarboxylase (Emd) are a key combination for generation of butyryl-CoA and the following chain elongation. This study focused on the installation of the artificial pathway into Escherichia coli. The recombinant strain of E. coli JM109 harboring 11 heterologous genes including Ccr and Emd produced P(3HB-co-3HHx) composed of 14 mol% 3HHx with 41 wt% of dry cellular weight from glucose. Further investigations revealed that the C6 monomer (R)-3HHx-CoA was not supplied by (R)-specific reduction of 3-oxohexanoyl-CoA but by (R)-specific hydration of 2-hexenoyl-CoA formed through reverse β-oxidation after the elongation from C4 to C6. While contribution of the reverse β-oxidation to the conversion of the C4 intermediates was very limited, crotonyl-CoA, a precursor of butyryl-CoA, was generated by dehydration of (R)-3HB-CoA. Several modifications previously reported for enhancement of bioproduction in E. coli were examined for the copolyester synthesis. Elimination of the global regulator Cra or PdhR as well as the block of acetate formation resulted in poor PHA synthesis. The strain lacking RNase G accumulated more PHA but with almost no 3HHx unit. Introduction of the phosphite oxidation system for regeneration of NADPH led to copolyester synthesis with the higher cellular content and higher 3HHx composition by two-stage cultivation with phosphite than those in the absence of phosphite.
Collapse
Affiliation(s)
- Shu Saito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryu Imai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Miyahara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mari Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeharu Tsuge
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Anand A, Olson CA, Sastry AV, Patel A, Szubin R, Yang L, Feist AM, Palsson BO. Restoration of fitness lost due to dysregulation of the pyruvate dehydrogenase complex is triggered by ribosomal binding site modifications. Cell Rep 2021; 35:108961. [PMID: 33826886 PMCID: PMC8489512 DOI: 10.1016/j.celrep.2021.108961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDC) functions as the main determinant of the respiro-fermentative balance because it converts pyruvate to acetyl-coenzyme A (CoA), which then enters the TCA (tricarboxylic acid cycle). PDC is repressed by the pyruvate dehydrogenase complex regulator (PdhR) in Escherichia coli. The deletion of the pdhR gene compromises fitness in aerobic environments. We evolve the E. coli pdhR deletion strain to examine its achievable growth rate and the underlying adaptive strategies. We find that (1) optimal proteome allocation to PDC is critical in achieving optimal growth rate; (2) expression of PDC in evolved strains is reduced through mutations in the Shine-Dalgarno sequence; (3) rewiring of the TCA flux and increased reactive oxygen species (ROS) defense occur in the evolved strains; and (4) the evolved strains adapt to an efficient biomass yield. Together, these results show how adaptation can find alternative regulatory mechanisms for a key cellular process if the primary regulatory mode fails.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
8
|
Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6. [PMID: 32975502 PMCID: PMC7660256 DOI: 10.1099/mgen.0.000442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The transcription factor PdhR has been recognized as the master regulator of the pyruvate catabolism pathway in Escherichia coli, including both NAD-linked oxidative decarboxylation of pyruvate to acetyl-CoA by PDHc (pyruvate dehydrogenase complex) and respiratory electron transport of NADH to oxygen by Ndh-CyoABCD enzymes. To identify the whole set of regulatory targets under the control of pyruvate-sensing PdhR, we performed genomic SELEX (gSELEX) screening in vitro. A total of 35 PdhR-binding sites were identified along the E. coli K-12 genome, including previously identified targets. Possible involvement of PdhR in regulation of the newly identified target genes was analysed in detail by gel shift assay, RT-qPCR and Northern blot analysis. The results indicated the participation of PdhR in positive regulation of fatty acid degradation genes and negative regulation of cell mobility genes. In fact, GC analysis indicated an increase in free fatty acids in the mutant lacking PdhR. We propose that PdhR is a bifunctional global regulator for control of a total of 16–23 targets, including not only the genes involved in central carbon metabolism but also some genes for the surrounding pyruvate-sensing cellular pathways such as fatty acid degradation and flagella formation. The activity of PdhR is controlled by pyruvate, the key node between a wide variety of metabolic pathways, including generation of metabolic energy and cell building blocks.
Collapse
Affiliation(s)
- Takumi Anzai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
9
|
Ledezma-Tejeida D, Altamirano-Pacheco L, Fajardo V, Collado-Vides J. Limits to a classic paradigm: most transcription factors in E. coli regulate genes involved in multiple biological processes. Nucleic Acids Res 2020; 47:6656-6667. [PMID: 31194874 PMCID: PMC6649764 DOI: 10.1093/nar/gkz525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/12/2023] Open
Abstract
Transcription factors (TFs) are important drivers of cellular decision-making. When bacteria encounter a change in the environment, TFs alter the expression of a defined set of genes in order to adequately respond. It is commonly assumed that genes regulated by the same TF are involved in the same biological process. Examples of this are methods that rely on coregulation to infer function of not-yet-annotated genes. We have previously shown that only 21% of TFs involved in metabolism regulate functionally homogeneous genes, based on the proximity of the gene products’ catalyzed reactions in the metabolic network. Here, we provide more evidence to support the claim that a 1-TF/1-process relationship is not a general property. We show that the observed functional heterogeneity of regulons is not a result of the quality of the annotation of regulatory interactions, nor the absence of protein–metabolite interactions, and that it is also present when function is defined by Gene Ontology terms. Furthermore, the observed functional heterogeneity is different from the one expected by chance, supporting the notion that it is a biological property. To further explore the relationship between transcriptional regulation and metabolism, we analyzed five other types of regulatory groups and identified complex regulons (i.e. genes regulated by the same combination of TFs) as the most functionally homogeneous, and this is supported by coexpression data. Whether higher levels of related functions exist beyond metabolism and current functional annotations remains an open question.
Collapse
Affiliation(s)
- Daniela Ledezma-Tejeida
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Luis Altamirano-Pacheco
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Vicente Fajardo
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by
Pseudomonas putida
KT2440. Environ Microbiol 2019; 21:3669-3682. [DOI: 10.1111/1462-2920.14703] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wing‐Jin Li
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Lahiru N. Jayakody
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Matthias Wehrmann
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Tristan Daun
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Bernhard Hauer
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Gregg T. Beckham
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Janosch Klebensberger
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Nick Wierckx
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich, 52425 Jülich Germany
| |
Collapse
|
11
|
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. J Bacteriol 2019; 201:JB.00697-18. [PMID: 30642990 DOI: 10.1128/jb.00697-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lag is a temporary period of nonreplication seen in bacteria that are introduced to new media. Despite latency being described by Müller in 1895, only recently have we gained insights into the cellular processes characterizing lag phase. This review covers literature to date on the transcriptomic, proteomic, metabolomic, physiological, biochemical, and evolutionary features of prokaryotic lag. Though lag is commonly described as a preparative phase that allows bacteria to harvest nutrients and adapt to new environments, the implications of recent studies indicate that a refinement of this view is well deserved. As shown, lag is a dynamic, organized, adaptive, and evolvable process that protects bacteria from threats, promotes reproductive fitness, and is broadly relevant to the study of bacterial evolution, host-pathogen interactions, antibiotic tolerance, environmental biology, molecular microbiology, and food safety.
Collapse
|
12
|
Sekar K, Rusconi R, Sauls JT, Fuhrer T, Noor E, Nguyen J, Fernandez VI, Buffing MF, Berney M, Jun S, Stocker R, Sauer U. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol Syst Biol 2018; 14:e8623. [PMID: 30397005 PMCID: PMC6217170 DOI: 10.15252/msb.20188623] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
Collapse
Affiliation(s)
- Karthik Sekar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Roberto Rusconi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - John T Sauls
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tobias Fuhrer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Elad Noor
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jen Nguyen
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Marieke F Buffing
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suckjoon Jun
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, USA
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Mediati DG, Burke CM, Ansari S, Harry EJ, Duggin IG. High-throughput sequencing of sorted expression libraries reveals inhibitors of bacterial cell division. BMC Genomics 2018; 19:781. [PMID: 30373517 PMCID: PMC6206680 DOI: 10.1186/s12864-018-5187-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Bacterial filamentation occurs when rod-shaped bacteria grow without dividing. To identify genetically encoded inhibitors of division that promote filamentation, we used cell sorting flow cytometry to enrich filamentous clones from an inducible expression library, and then identified the cloned DNA with high-throughput DNA sequencing. We applied the method to an expression library made from fragmented genomic DNA of uropathogenic E. coli UTI89, which undergoes extensive reversible filamentation in urinary tract infections and might encode additional regulators of division. Results We identified 55 genomic regions that reproducibly caused filamentation when expressed from the plasmid vector, and then further localized the cause of filamentation in several of these to specific genes or sub-fragments. Many of the identified genomic fragments encode genes that are known to participate in cell division or its regulation, and others may play previously-unknown roles. Some of the prophage genes identified were previously implicated in cell division arrest. A number of the other fragments encoded potential short transcripts or peptides. Conclusions The results provided evidence of potential new links between cell division and distinct cellular processes including central carbon metabolism and gene regulation. Candidate regulators of the UTI-associated filamentation response or others were identified amongst the results. In addition, some genomic fragments that caused filamentation may not have evolved to control cell division, but may have applications as artificial inhibitors. Our approach offers the opportunity to carry out in depth surveys of diverse DNA libraries to identify new genes or sequences encoding the capacity to inhibit division and cause filamentation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5187-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel G Mediati
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Burke
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shirin Ansari
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
14
|
Kim D, Seo SW, Gao Y, Nam H, Guzman GI, Cho BK, Palsson BO. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP. Nucleic Acids Res 2018; 46:2901-2917. [PMID: 29394395 PMCID: PMC5888115 DOI: 10.1093/nar/gky069] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin 446–701, Republic of Korea
| | - Sang Woo Seo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- School of Chemical and Biological Engineering, Institute of Chemical Prcocess, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ye Gao
- Division of Biological Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hojung Nam
- School of Information and Communication, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, Republic of Korea
| | - Gabriela I Guzman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainabiliy, Danish Technical University, 6 Kogle Alle, Hørsholm, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- The Novo Nordisk Foundation Center for Biosustainabiliy, Danish Technical University, 6 Kogle Alle, Hørsholm, Denmark
| |
Collapse
|
15
|
Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria. PLoS One 2017; 12:e0182993. [PMID: 28796832 PMCID: PMC5552118 DOI: 10.1371/journal.pone.0182993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022] Open
Abstract
Bacterial histidine kinase/response regulator systems operate at the interface between environmental cues and physiological states. Escherichia coli contains two LytS/LytTR-type histidine kinase/response regulator systems, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which have been identified as pyruvate-responsive two-component systems. Since they exhibit remarkable similarity, we analyzed their phylogenetic distribution within the γ-proteobacteria, and experimentally characterized them in a set of representative species. We found that BtsS/BtsR is the predominant LytS/LytTR-type two-component system among γ-proteobacteria, whereas YpdA/YpdB primarily appears in a supplementary role. Based on our observations in E. coli, we used the highly conserved DNA-binding motifs to test the in vivo functionality of both systems in various genera, including Salmonella, Enterobacter, Citrobacter, Xenorhabdus, Yersinia, Aeromonas and Vibrio. The results suggest that, in all cases tested, BtsS/BtsR and YpdA/YpdB respond to different levels of pyruvate in the environment.
Collapse
|
16
|
Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Sci Rep 2017; 7:1388. [PMID: 28469239 PMCID: PMC5431176 DOI: 10.1038/s41598-017-01410-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Two-component systems are crucial for signal perception and modulation of bacterial behavior. Nevertheless, to date, very few ligands have been identified that directly interact with histidine kinases. The histidine kinase/response regulator system YehU/YehT of Escherichia coli is part of a nutrient-sensing network. Here we demonstrate that this system senses the onset of nutrient limitation in amino acid rich media and responds to extracellular pyruvate. Binding of radiolabeled pyruvate was found for full-length YehU in right-side-out membrane vesicles as well as for a truncated, membrane-integrated variant, confirming that YehU is a high-affinity receptor for extracellular pyruvate. Therefore we propose to rename YehU/YehT as BtsS/BtsR, after "Brenztraubensäure", the name given to pyruvic acid when it was first synthesized. The function of BtsS/BtsR was also assessed in a clinically relevant uropathogenic E. coli strain. Quantitative transcriptional analysis revealed BtsS/BtsR importance during acute and chronic urinary-tract infections.
Collapse
Affiliation(s)
- Stefan Behr
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Ivica Kristoficova
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Michael Witting
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Erin J Breland
- Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Allison R Eberly
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Corinna Sachs
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Maria Hadjifrangiskou
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Departments of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany.
| |
Collapse
|
17
|
Kadoya R, Kodama Y, Matsumoto K, Ooi T, Taguchi S. Genome-wide screening of transcription factor deletion targets in Escherichia coli for enhanced production of lactate-based polyesters. J Biosci Bioeng 2017; 123:535-539. [DOI: 10.1016/j.jbiosc.2016.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023]
|
18
|
Maeda S, Shimizu K, Kihira C, Iwabu Y, Kato R, Sugimoto M, Fukiya S, Wada M, Yokota A. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions. J Biosci Bioeng 2016; 123:437-443. [PMID: 28007420 DOI: 10.1016/j.jbiosc.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Pyruvate dehydrogenase complex regulator (PdhR) is a transcriptional regulator that negatively regulates formation of pyruvate dehydrogenase complex (PDHc), NADH dehydrogenase (NDH)-2, and cytochrome bo3 oxidase in Escherichia coli. To investigate the effects of a PdhR defect on glucose metabolism, a pdhR deletion mutant was derived from the wild-type E. coli W1485 strain by λ Red-mediated recombination. While no difference in the fermentation profiles was observed between the two strains under oxygen-sufficient conditions, under oxygen-limited conditions, the growth level of the wild-type strain was significantly decreased with retarded glucose consumption accompanied by by-production of substantial amounts of pyruvic acid and acetic acid. In contrast, the mutant grew and consumed glucose more efficiently than did the wild-type strain with enhanced respiration, little by-production of pyruvic acid, less production yield and rates of acetic acid, thus displaying robust metabolic activity. As expected, increased activities of PDHc and NDH-2 were observed in the mutant. The increased activity of PDHc may explain the loss of pyruvic acid by-production, probably leading to decreased acetic acid formation, and the increased activity of NDH-2 may explain the enhanced respiration. Measurement of the intracellular NAD+/NADH ratio in the mutant revealed more oxidative or more reductive intracellular environments than those in the wild-type strain under oxygen-sufficient and -limited conditions, respectively, suggesting another role of PdhR: maintaining redox balance in E. coli. The overall results demonstrate the biotechnological advantages of pdhR deletion in boosting glucose metabolism and also improve our understanding of the role of PdhR in bacterial physiology.
Collapse
Affiliation(s)
- Soya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Kumiko Shimizu
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Chie Kihira
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Yuki Iwabu
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Ryuichi Kato
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Makoto Sugimoto
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Masaru Wada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
19
|
Arun PVPS, Miryala SK, Chattopadhyay S, Thiyyagura K, Bawa P, Bhattacharjee M, Yellaboina S. Identification and functional analysis of essential, conserved, housekeeping and duplicated genes. FEBS Lett 2016; 590:1428-37. [PMID: 27129600 DOI: 10.1002/1873-3468.12192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
Gene conservation, duplication and constitutive expression are intricately linked and strong predictors of essentiality. Here, we introduce metrics based on diversity indices to measure gene conservation, duplication and constitutive expression and validate them by measuring their performance in prediction of essential genes. Conservation and duplication were measured using the diversity indices on the bit score profile of Escherichia coli K12 orthologues, across the genomes, and paralogues, within the genome respectively. Constitutive expression was measured using expression diversity of E. coli K12 genes across different conditions. In addition, we developed a systematic method for enrichment analysis of gene-sets in a given ranked list of genes. The method was used to identify genome-wide functions of essential, conserved, constitutively expressed and duplicated genes. Furthermore, we also ranked various operons, complexes and pathways according to their essentiality, conservation, constitutive expression and duplication.
Collapse
Affiliation(s)
- P V Parvati Sai Arun
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Sravan Kumar Miryala
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India.,National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Subhayan Chattopadhyay
- School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telangana, India
| | - Kranthi Thiyyagura
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Payal Bawa
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | | | - Sailu Yellaboina
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
20
|
The functional landscape bound to the transcription factors of Escherichia coli K-12. Comput Biol Chem 2015; 58:93-103. [PMID: 26094112 DOI: 10.1016/j.compbiolchem.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
Abstract
Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.
Collapse
|
21
|
Linde J, Schulze S, Henkel SG, Guthke R. Data- and knowledge-based modeling of gene regulatory networks: an update. EXCLI JOURNAL 2015; 14:346-78. [PMID: 27047314 PMCID: PMC4817425 DOI: 10.17179/excli2015-168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 02/01/2023]
Abstract
Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sylvie Schulze
- Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | | - Reinhard Guthke
- Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
22
|
Zhang H, Luo Q, Gao H, Feng Y. A new regulatory mechanism for bacterial lipoic acid synthesis. Microbiologyopen 2015; 4:282-300. [PMID: 25611823 PMCID: PMC4398509 DOI: 10.1002/mbo3.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 01/15/2023] Open
Abstract
Lipoic acid, an essential enzyme cofactor, is required in three domains of life. In the past 60 years since its discovery, most of the pathway for lipoic acid synthesis and metabolism has been elucidated. However, genetic control of lipoic acid synthesis remains unclear. Here, we report integrative evidence that bacterial cAMP-dependent signaling is linked to lipoic acid synthesis in Shewanella species, the certain of unique marine-borne bacteria with special ability of metal reduction. Physiological requirement of protein lipoylation in γ-proteobacteria including Shewanella oneidensis was detected using Western blotting with rabbit anti-lipoyl protein primary antibody. The two genes (lipB and lipA) encoding lipoic acid synthesis pathway were proved to be organized into an operon lipBA in Shewanella, and the promoter was mapped. Electrophoretic mobility shift assays confirmed that the putative CRP-recognizable site (AAGTGTGATCTATCTTACATTT) binds to cAMP-CRP protein with origins of both Escherichia coli and Shewanella. The native lipBA promoter of Shewanella was fused to a LacZ reporter gene to create a chromosome lipBA-lacZ transcriptional fusion in E. coli and S. oneidensis, allowing us to directly assay its expression level by β-galactosidase activity. As anticipated, the removal of E. coli crp gene gave above fourfold increment of lipBA promoter-driven β-gal expression. The similar scenario was confirmed by both the real-time quantitative PCR and the LacZ transcriptional fusion in the crp mutant of Shewanella. Furthermore, the glucose effect on the lipBA expression of Shewanella was evaluated in the alternative microorganism E. coli. As anticipated, an addition of glucose into media effectively induces the transcriptional level of Shewanella lipBA in that the lowered cAMP level relieves the repression of lipBA by cAMP-CRP complex. Therefore, our finding might represent a first paradigm mechanism for genetic control of bacterial lipoic acid synthesis.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Infection and Immunity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qixia Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youjun Feng
- Center for Infection and Immunity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Bücker R, Heroven AK, Becker J, Dersch P, Wittmann C. The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis. J Biol Chem 2014; 289:30114-32. [PMID: 25164818 DOI: 10.1074/jbc.m114.581348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [(13)C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia.
Collapse
Affiliation(s)
- René Bücker
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken, the Institute of Biochemical Engineering, Technische Universität, Braunschweig and
| | - Ann Kathrin Heroven
- the Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Judith Becker
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken
| | - Petra Dersch
- the Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christoph Wittmann
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken,
| |
Collapse
|
24
|
Feng Y, Cronan JE. PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis. Res Microbiol 2014; 165:429-38. [PMID: 24816490 PMCID: PMC4134263 DOI: 10.1016/j.resmic.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022]
Abstract
Lipoic acid is a covalently-bound enzyme cofactor required for central metabolism all three domains of life. In the last 20 years the pathway of lipoic acid synthesis and metabolism has been established in Escherichia coli. Expression of the genes of the lipoic acid biosynthesis pathway was believed to be constitutive. However, in 2010 Kaleta and coworkers (BMC Syst. Biol. 4:116) predicted a binding site for the pyruvate dehydrogenase operon repressor, PdhR (referred to lipA site 1) upstream of lipA, the gene encoding lipoic acid synthase and concluded that PdhR regulates lipA transcription. We report in vivo and in vitro evidence that lipA is not controlled by PdhR and that the putative regulatory site deduced by the prior workers is nonfunctional and physiologically irrelevant. E. coli PdhR was purified to homogeneity and used for electrophoretic mobility shift assays. The lipA site 1 of Kaleta and coworkers failed to bind PdhR. The binding detected by these workers is due to another site (lipA site 3) located far upstream of the lipA promoter. Relative to the canonical PdhR binding site lipA site 3 is a half-palindrome and as expected had only weak PdhR binding ability. Manipulation of lipA site 3 to construct a palindrome gave significantly enhanced PdhR binding affinity. The native lipA promoter and the version carrying the artificial lipA3 palindrome were transcriptionally fused to a LacZ reporter gene to directly assay lipA expression. Deletion of pdhR gave no significant change in lipA promoter-driven β-galactosidase activity with either the native or constructed palindrome upstream sequences, indicating that PdhR plays no physiological role in regulation of lipA expression.
Collapse
Affiliation(s)
- Youjun Feng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases & State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
25
|
Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc Natl Acad Sci U S A 2014; 111:9929-34. [PMID: 24958876 DOI: 10.1073/pnas.1406694111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.
Collapse
|
26
|
Carraro L, Fasolato L, Montemurro F, Martino ME, Balzan S, Servili M, Novelli E, Cardazzo B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb Biotechnol 2014; 7:265-75. [PMID: 24628798 PMCID: PMC3992022 DOI: 10.1111/1751-7915.12119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 11/28/2022] Open
Abstract
Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E. coli K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product.
Collapse
Affiliation(s)
- Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Filomena Montemurro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maurizio Servili
- Department of Economical and Food Science, University of PerugiaPerugia, 06123, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| |
Collapse
|
27
|
Abstract
Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.
Collapse
|
28
|
Li Z, Nimtz M, Rinas U. The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 2014; 13:45. [PMID: 24656150 PMCID: PMC4021462 DOI: 10.1186/1475-2859-13-45] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proteome reflects the available cellular machinery to deal with nutrients and environmental challenges. The most common E. coli strain BL21 growing in different, commonly employed media was evaluated using a detailed quantitative proteome analysis. RESULTS The presence of preformed biomass precursor molecules in rich media such as Luria Bertani supported rapid growth concomitant to acetate formation and apparently unbalanced abundances of central metabolic pathway enzymes, e.g. high levels of lower glycolytic pathway enzymes as well as pyruvate dehydrogenase, and low levels of TCA cycle and high levels of the acetate forming enzymes Pta and AckA. The proteome of cells growing exponentially in glucose-supplemented mineral salt medium was dominated by enzymes of amino acid synthesis pathways, contained more balanced abundances of central metabolic pathway enzymes, and a lower portion of ribosomal and other translational proteins. Entry into stationary phase led to a reconstruction of the bacterial proteome by increasing e.g. the portion of proteins required for scavenging rare nutrients and general cell protection. This proteomic reconstruction during entry into stationary phase was more noticeable in cells growing in rich medium as they have a greater reservoir of recyclable proteins from the translational machinery. CONCLUSIONS The proteomic comparison of cells growing exponentially in different media reflected the antagonistic and competitive regulation of central metabolic pathways through the global transcriptional regulators Cra, Crp, and ArcA. For example, the proteome of cells growing exponentially in rich medium was consistent with a dominating role of phosphorylated ArcA most likely a result from limitations in reoxidizing reduced quinones in the respiratory chain under these growth conditions. The proteomic alterations of exponentially growing cells into stationary phase cells were consistent with stringent-like and stationary phase responses and a dominating control through DksA-ppGpp and RpoS.
Collapse
Affiliation(s)
| | | | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany.
| |
Collapse
|
29
|
The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J Bacteriol 2014; 196:2053-66. [PMID: 24659771 DOI: 10.1128/jb.01370-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq.
Collapse
|
30
|
Puranik S, Shaligram S, Paliwal V, Raje DV, Kapley A, Purohit HJ. Demonstration of sequential adaptation strategy for developing salt tolerance in bacteria for wastewater treatment: a study using Escherichia coli as model. BIORESOURCE TECHNOLOGY 2012; 121:282-289. [PMID: 22858497 DOI: 10.1016/j.biortech.2012.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
A wastewater isolate identified as Escherichia coli HPC781 was adapted for high salt concentration through sequential transfers in Luria Broth (LB). The cells were grown in LB with 5% sodium chloride (NaCl) and were analyzed for the acquired salt resistance network through gene expression profiles. Microarray studies revealed TCA, glyoxylate shunt and acetyl Co-A metabolism as key nodes for stress combat to arrive at compromised physiology. It also proposed that the cells were receiving signals from salt environment via OmpR-EnvZ two component systems and stress dependent general regulatory protein rpoH and rpoE. The salt adapted culture, when challenged with wastewater having additional 5% salt showed growth. The work represents a tactic to adjust biochemical network towards stress and reveals its applicability via real-time PCR measurement of genes in wastewater. The study proposes that the recycled biomass with an adaptation strategy could be applied for treatment of wastewater with high salt levels.
Collapse
Affiliation(s)
- Sampada Puranik
- Environmental Genomics Division, National Environmental Engineering Research Institute (NEERI), CSIR Nagpur, India
| | | | | | | | | | | |
Collapse
|