1
|
Miller PN, Baskaran S, Nijagal A. Immunology of Biliary Atresia. Semin Pediatr Surg 2025; 33:151474. [PMID: 39862687 DOI: 10.1016/j.sempedsurg.2025.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Biliary atresia is a progressive neonatal cholangiopathy that leads to liver failure. Characterized by inflammation-mediated liver injury, the immune system plays a critical role in the pathogenesis of this disease. Though several types of immune cells and mediators have been implicated in animal models of biliary atresia, emerging literature reflects the complex interplay of components of the immune response that contributes to disease progression in humans. Novel therapies targeting the immune system are needed to mitigate the devastating effects of biliary atresia. This review highlights the current literature on the components of the immune system that have been in implicated in biliary atresia and the rich interplay between the major arms of the immune system- innate and adaptive immunity- to cause the highly morbid consequences of this disease.
Collapse
Affiliation(s)
- Phoebe N Miller
- Department of Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Suruthi Baskaran
- Department of Surgery, University of Texas Health Science Center, 7703 Floyd Curl Drive San Antonio, TX 78229, USA
| | - Amar Nijagal
- Department of Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; The Liver Center, University of California San Francisco, San Francisco, CA 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Lin SH, Wu KT, Wang CC, Huang KT, Chen KD, Hsu LW, Eng HL, Chiu KW. Liver Graft MicroRNAs Expression in Different Etiology of Acute Jaundice after Living Donor Liver Transplantation. BIOLOGY 2022; 11:biology11081228. [PMID: 36009855 PMCID: PMC9404977 DOI: 10.3390/biology11081228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Background: Acute jaundice remains a critical problem following liver transplantation. MicroRNAs (miRNAs) are involved in regulating gene expression related to various disease phenotypes and statuses. Aims: To differentiate acute jaundice etiology after living donor liver transplantation (LDLT), we examined the hepatic miRNA expression patterns in several liver graft pathologies. Methods: Eighty liver transplant recipients undergoing post-LDLT graft biopsy for the evaluation of acute jaundice were enrolled in this 1-year prospective study. Using a real-time quantitative reverse transcription-polymerase chain reaction profiling assay, we identified hepatic miRNA (miRNA-122, miRNA-301, miRNA-133a, and miRNA-21) signatures in various allografts pathologies. Results: Pathologic findings of the 80 recipients were as follows: acute cholangitis (AC), 37 (46%); acute rejection (AR), 20 (25%); recurrent hepatitis (RH), 12 (15%); non-specific pathological change, 6 (8%); and fatty change (FC), 5 (6%). None of these identified hepatic miRNAs expression pattern was significantly correlated with serum parameters, including neutrophil-lymphocyte ratio. In AC, hepatic miRNA-122, miRNA-301, miRNA-133a, and miRNA-21 expression was significantly downregulated (p < 0.05). MicroRNA-122 expression was elevated in cases of AR and RH (p < 0.05); miRNA-301 and miRNA-21 expression was higher in RH than in AC (p < 0.05); and miRNA-133a expression was higher in FC than in AR (p < 0.05). Conclusions: Our study suggests that specific hepatic miRNA expression patterns as a checklist may be useful for differential diagnosis of acute jaundice following liver transplantation.
Collapse
Affiliation(s)
- Shu-Hsien Lin
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kun-Ta Wu
- Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung 83301, Taiwan
| | - Chih-Chi Wang
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuang-Den Chen
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hock-Liew Eng
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - King-Wah Chiu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8190); Fax: +886-7-733-6856
| |
Collapse
|
3
|
Quelhas P, Cerski C, Dos Santos JL. Update on Etiology and Pathogenesis of Biliary Atresia. Curr Pediatr Rev 2022; 19:48-67. [PMID: 35538816 DOI: 10.2174/1573396318666220510130259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Biliary atresia is a rare inflammatory sclerosing obstructive cholangiopathy that initiates in infancy as complete choledochal blockage and progresses to the involvement of intrahepatic biliary epithelium. Growing evidence shows that biliary atresia is not a single entity with a single etiology but a phenotype resulting from multifactorial events whose common path is obliterative cholangiopathy. The etiology of biliary atresia has been explained as resulting from genetic variants, toxins, viral infection, chronic inflammation or bile duct lesions mediated by autoimmunity, abnormalities in the development of the bile ducts, and defects in embryogenesis, abnormal fetal or prenatal circulation and susceptibility factors. It is increasingly evident that the genetic and epigenetic predisposition combined with the environmental factors to which the mother is exposed are potential triggers for biliary atresia. There is also an indication that a progressive thickening of the arterial middle layer occurs in this disease, suggestive of vascular remodeling and disappearance of the interlobular bile ducts. It is suggested that the hypoxia/ischemia process can affect portal structures in biliary atresia and is associated with both the extent of biliary proliferation and the thickening of the medial layer.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Carlos Cerski
- Department of Pathology, University Federal Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Jorge Luiz Dos Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, Benavides-Aguilar JA, Torres-Copado A, Morales-Rodríguez JI, De Donato M, Srivastava A. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch Biochem Biophys 2021; 699:108763. [PMID: 33460581 DOI: 10.1016/j.abb.2021.108763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 02/09/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding highly conserved RNA molecules that can act as master regulators of gene expression in a sequence-specific manner either by translation repression or mRNA degradation, influencing a wide range of biologic processes that are essential for the maintenance of cellular homeostasis. Chronic pediatric diseases are the leading cause of death worldwide among children and the recent evidence indicates that aberrant miRNA expression significantly contributes to the development of chronic pediatric diseases. This review focuses on the role of miRNAs in five major chronic pediatric diseases including bronchial asthma, congenital heart diseases, cystic fibrosis, type 1 diabetes mellitus, and epilepsy, and their potential use as novel biomarkers for the diagnosis and prognosis of these disorders.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Javier A Benavides-Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Jonathan I Morales-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, 5021, Norway; Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| |
Collapse
|
5
|
Abstract
Biliary atresia is a progressive fibrosing obstructive cholangiopathy of the intrahepatic and extrahepatic biliary system, resulting in obstruction of bile flow and neonatal jaundice. Histopathological findings in liver biopsies include the expansion of the portal tracts, with edematous fibroplasia and bile ductular proliferation, with bile plugs in duct lumen. Lobular morphological features may include variable multinucleate giant cells, bilirubinostasis and hemopoiesis. The etiopathogenesis of biliary atresia is multifactorial and multiple pathomechanisms have been proposed. Experimental and clinical studies have suggested that viral infection initiates biliary epithelium destruction and release of antigens that trigger a Th1 immune response, which leads to further injury of the bile duct, resulting in inflammation and obstructive scarring of the biliary tree. It has also been postulated that biliary atresia is caused by a defect in the normal remodelling process. Genetic predisposition has also been proposed as a factor for the development of biliary atresia.
Collapse
|
6
|
Luo Z, Shivakumar P, Mourya R, Gutta S, Bezerra JA. Gene Expression Signatures Associated With Survival Times of Pediatric Patients With Biliary Atresia Identify Potential Therapeutic Agents. Gastroenterology 2019; 157:1138-1152.e14. [PMID: 31228442 PMCID: PMC6756963 DOI: 10.1053/j.gastro.2019.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/15/2019] [Accepted: 06/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the factors that affect outcomes of patients with biliary atresia and there are no medical therapies that increase biliary drainage. METHODS Liver biopsies and clinical data were obtained from infants with cholestasis and from children without liver disease (controls); messenger RNA (mRNA) was isolated, randomly assigned to discovery (n = 121) and validation sets (n = 50), and analyzed by RNA sequencing. Using the Superpc R package followed by Cox regression analysis, we sought to identify gene expression profiles that correlated with survival without liver transplantation at 24 months of age. We also searched for combinations of gene expression patterns, clinical factors, and laboratory results obtained at diagnosis and at 1 and 3 months after surgery that associated with transplant-free survival for 24 months of age. We induced biliary atresia in BALB/c mice by intraperitoneal administration of Rhesus rotavirus type A. Mice were given injections of the antioxidants N-acetyl-cysteine (NAC) or manganese (III) tetrakis-(4-benzoic acid)porphyrin. Blood and liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS We identified a gene expression pattern of 14 mRNAs associated with shorter vs longer survival times in the discovery and validation sets (P < .001). This gene expression signature, combined with level of bilirubin 3 months after hepatoportoenterostomy, identified children who survived for 24 months with an area under the curve value of 0.948 in the discovery set and 0.813 in the validation set (P < .001). Computer models correlated a cirrhosis-associated transcriptome with decreased times of transplant-free survival; this transcriptome included activation of genes that regulate the extracellular matrix and numbers of activated stellate cells and portal fibroblasts. Many mRNAs expressed at high levels in liver tissues from patients with 2-year transplant-free survival had enriched scores for glutathione metabolism. Among mice with biliary atresia given injections of antioxidants, only NAC reduced histologic features of liver damage and serum levels of aminotransferase, gamma-glutamyl transferase, and bilirubin. NAC also reduced bile duct obstruction and liver fibrosis and increased survival times. CONCLUSIONS In studies of liver tissues from infants with cholestasis, we identified a 14-gene expression pattern that associated with transplant-free survival for 2 years. mRNAs encoding proteins that regulate fibrosis genes were increased in liver tissues from infants who did not survive for 2 years, whereas mRNAs that encoded proteins that regulate glutathione metabolism were increased in infants who survived for 2 years. NAC reduced liver injury and fibrosis in mice with biliary atresia, and increased survival times. Agents such as NAC that promote glutathione metabolism might be developed for treatment of biliary atresia.
Collapse
Affiliation(s)
- Zhenhua Luo
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sridevi Gutta
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
7
|
Gong Y, Niu Y, Zhang W, Li X. A network embedding-based multiple information integration method for the MiRNA-disease association prediction. BMC Bioinformatics 2019; 20:468. [PMID: 31510919 PMCID: PMC6740005 DOI: 10.1186/s12859-019-3063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MiRNAs play significant roles in many fundamental and important biological processes, and predicting potential miRNA-disease associations makes contributions to understanding the molecular mechanism of human diseases. Existing state-of-the-art methods make use of miRNA-target associations, miRNA-family associations, miRNA functional similarity, disease semantic similarity and known miRNA-disease associations, but the known miRNA-disease associations are not well exploited. RESULTS In this paper, a network embedding-based multiple information integration method (NEMII) is proposed for the miRNA-disease association prediction. First, known miRNA-disease associations are formulated as a bipartite network, and the network embedding method Structural Deep Network Embedding (SDNE) is adopted to learn embeddings of nodes in the bipartite network. Second, the embedding representations of miRNAs and diseases are combined with biological features about miRNAs and diseases (miRNA-family associations and disease semantic similarities) to represent miRNA-disease pairs. Third, the prediction models are constructed based on the miRNA-disease pairs by using the random forest. In computational experiments, NEMII achieves high-accuracy performances and outperforms other state-of-the-art methods: GRNMF, NTSMDA and PBMDA. The usefulness of NEMII is further validated by case studies. The studies demonstrate the great potential of network embedding method for the miRNA-disease association prediction, and SDNE outperforms other popular network embedding methods: DeepWalk, High-Order Proximity preserved Embedding (HOPE) and Laplacian Eigenmaps (LE). CONCLUSION We propose a new method, named NEMII, for predicting miRNA-disease associations, which has great potential to benefit the field of miRNA-disease association prediction.
Collapse
Affiliation(s)
- Yuchong Gong
- School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Yanqing Niu
- School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074 China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohong Li
- School of Computer Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
8
|
Calvopina DA, Chatfield MD, Weis A, Coleman MA, Fernandez-Rojo MA, Noble C, Ramm LE, Leung DH, Lewindon PJ, Ramm GA. MicroRNA Sequencing Identifies a Serum MicroRNA Panel, Which Combined With Aspartate Aminotransferase to Platelet Ratio Index Can Detect and Monitor Liver Disease in Pediatric Cystic Fibrosis. Hepatology 2018; 68:2301-2316. [PMID: 30014495 DOI: 10.1002/hep.30156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF)-associated liver disease (CFLD) is a hepatobiliary complication of CF. Current diagnostic modalities rely on nonspecific assessments, whereas liver biopsy is the gold standard to assess severity of fibrosis. MicroRNAs (miRNAs) regulate liver disease pathogenesis and are proposed as diagnostic biomarkers. We investigated the combined use of serum miRNAs and aspartate aminotransferase (AST) to platelet ratio (APRI) to diagnose and assess CFLD severity. This was a cross-sectional cohort study of the circulatory miRNA signature of 124 children grouped by clinical, biochemical, and imaging assessments as follows: CFLD (n = 44), CF patients with no evidence of liver disease (CFnoLD; n = 40), and healthy controls (n = 40). Serum miRNAs were analyzed using miRNA sequencing (miRNA-Seq). Selected differentially expressed serum miRNA candidates were further validated by qRT-PCR and statistical analysis performed to evaluate utility to predict CFLD and fibrosis severity validated by liver biopsy, alone or in combination with APRI. Serum miR-122-5p, miR-365a-3p, and miR-34a-5p levels were elevated in CFLD compared to CFnoLD, whereas miR-142-3p and let-7g-5p were down-regulated in CFLD compared to CFnoLD. Logistic regression analysis combining miR-365a-3p, miR-142-3p, and let-7g-5p with APRI showed 21 times greater odds of accurately predicting liver disease in CF with an area under the receiver operating characteristics curve (AUROC) = 0.91 (sensitivity = 83%, specificity = 92%; P < 0.0001). Expression levels of serum miR-18a-5p were correlated with increasing hepatic fibrosis (HF) stage in CFLD (rs = 0.56; P < 0.0001), showing good diagnostic accuracy for distinguishing severe (F3-F4) from mild/moderate fibrosis (F0-F2). A unit increase of miR-18a-5p showed a 7-fold increased odds of having severe fibrosis with an AUROC = 0.82 (sensitivity = 93%, specificity = 73%; P = 0.004), indicating its potential to predict fibrosis severity. Conclusion: We identified a distinct circulatory miRNA profile in pediatric CFLD with potential to accurately discriminate liver disease and fibrosis severity in children with CF.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mark D Chatfield
- QIMR Berghofer Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Charlton Noble
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, South Brisbane, QLD, Australia
| | - Louise E Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Division of Pediatric Gastroenterology, Hepatology, Nutrition, Texas Children's Liver Center, Houston, TX
| | - Peter J Lewindon
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, South Brisbane, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Luo Z, Jegga AG, Bezerra JA. Gene-disease associations identify a connectome with shared molecular pathways in human cholangiopathies. Hepatology 2018; 67:676-689. [PMID: 28865156 PMCID: PMC5834359 DOI: 10.1002/hep.29504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022]
Abstract
Cholangiopathies are a diverse group of progressive diseases whose primary cell targets are cholangiocytes. To identify shared pathogenesis and molecular connectivity among the three main human cholangiopathies (biliary atresia [BA], primary biliary cholangitis [PBC], and primary sclerosing cholangitis [PSC]), we built a comprehensive platform of published data on gene variants, gene expression, and functional studies and applied network-based analytics in the search for shared molecular circuits. Mining the data platform with largest connected component and interactome analyses, we validated previously reported associations and identified essential and hub genes. In addition to disease-specific modules, we found a substantial overlap of disease neighborhoods and uncovered a group of 34 core genes that are enriched for immune processes and abnormal intestine/hepatobiliary mouse phenotypes. Within this core, we identified a gene subcore containing signal transduction and activator of transcription 3, interleukin-6, tumor necrosis factor, and forkhead box P3 prominently placed in a regulatory connectome of genes related to cellular immunity and fibrosis. We also found substantial gene enrichment in the advanced glycation endproduct/receptor for advanced glycation endproducts (RAGE) pathway and showed that RAGE activation induced cholangiocyte proliferation. Conclusion: Human cholangiopathies share pathways enriched by immunity genes and a molecular connectome that links different pathogenic features of BA, PBC, and PSC. (Hepatology 2018;67:676-689).
Collapse
Affiliation(s)
- Zhenhua Luo
- The Liver Care Center and Divisions of Gastroenterology, Hepatology and Nutrition
| | - Anil G Jegga
- Biomedical Informatics of Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jorge A Bezerra
- The Liver Care Center and Divisions of Gastroenterology, Hepatology and Nutrition
| |
Collapse
|
10
|
Abstract
OBJECTIVES Biliary atresia (BA) is an idiopathic neonatal liver disease, characterized by inflammatory and fibrotic obliteration of extrahepatic bile ducts. Therefore, reliable methods for noninvasive diagnosis are needed. The present study aimed to analyze circulating microRNAs (miRNAs) in patients with BA using next-generation sequencing for identifying novel diagnostic biomarkers. METHODS An initial screening of miRNAs in plasma from patients with BA and healthy controls (HCs) was performed on an Illumina next-generation sequencing platform. Differential miRNAs were validated by quantitative real-time polymerase chain reaction (qPCR). Target genes and related signal transduction pathways of differential miRNAs were predicted by online software. RESULTS In total, 146 differential miRNAs were identified by deep sequencing. Fifteen miRNAs with read counts >1000, that included 7 upregulated and 8 downregulated miRNAs, were predicted to be associated with liver fibrosis, biliary differentiation, and bile duct development. Of these, 6 miRNAs with read counts >5000 were analyzed by qPCR on an independent sample set comprising 44 patients with BA, 20 cholestatic disease controls, and 20 HCs. Two upregulated miRNAs (miR-122-5p, miR-100-5p) and 2 downregulated miRNAs (miR-140-3p, miR-126-3p) were confirmed by individual qPCR. Only miR-140-3p was significantly different from controls (P < 0.05), yielding an area under receiver operating characteristic curve of 0.75 with sensitivity of 66.7% and specificity of 79.1% at optimal threshold. CONCLUSIONS Our findings indicate that patients with BA exhibit a distinct profile of circulating miRNAs and that plasma miR-140-3p may be a promising diagnostic biomarker for this disease.
Collapse
|
11
|
Calvopina DA, Coleman MA, Lewindon PJ, Ramm GA. Function and Regulation of MicroRNAs and Their Potential as Biomarkers in Paediatric Liver Disease. Int J Mol Sci 2016; 17:ijms17111795. [PMID: 27801781 PMCID: PMC5133796 DOI: 10.3390/ijms17111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in biological and pathological processes of every cell type, including liver cells. Transcribed from specific genes, miRNA precursors are processed in the cytoplasm into mature miRNAs and as part of the RNA-induced silencing complex (RISC) complex binds to messenger RNA (mRNA) by imperfect complementarity. This leads to the regulation of gene expression at a post-transcriptional level. The function of a number of different miRNAs in fibrogenesis associated with the progression of chronic liver disease has recently been elucidated. Furthermore, miRNAs have been shown to be both disease-and tissue-specific and are stable in the circulation, which has led to increasing investigation on their utility as biomarkers for the diagnosis of chronic liver diseases, including those in children. Here, we review the current knowledge on the biogenesis of microRNA, the mechanisms of translational repression and the use of miRNA as circulatory biomarkers in chronic paediatric liver diseases including cystic fibrosis associated liver disease, biliary atresia and viral hepatitis B.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Peter J Lewindon
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
12
|
Li L, Piontek KB, Kumbhari V, Ishida M, Selaru FM. Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile. J Vis Exp 2016. [PMID: 27341293 DOI: 10.3791/54036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Exosome research in the last three years has greatly extended the scope towards identification and characterization of biomarkers and their therapeutic uses. Exosomes have recently been shown to contain microRNAs (miRs). MiRs themselves have arisen as valuable biomarkers for diagnostic purposes. As specimen collection in clinics and hospitals is quite variable, miRNA isolation from whole bile varies substantially. To achieve robust, accurate and reproducible miRNA profiles from collected bile samples in a simple manner required the development of a high-quality protocol to isolate and characterize exosomes from bile. The method requires several centrifugations and a filtration step with a final ultracentrifugation step to pellet the isolated exosomes. Electron microscopy, Western blots, flow cytometry and multi-parameter nanoparticle optical analysis, where available, are crucial characterization steps to validate the quality of the exosomes. For the isolation of miRNA from these exosomes, spiking the lysate with a non-specific, synthetic miRNA from a species like Caenorhabditis elegans, i.e., Cel-miR-39, is important for normalization of RNA extraction efficiency. The isolation of exosome from bile fluid following this method allows the successful miRNA profiling from bile samples stored for several years at -80 °C.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine
| | - Klaus B Piontek
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine
| | - Vivek Kumbhari
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine
| | | | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine;
| |
Collapse
|
13
|
Dong R, Shen Z, Zheng C, Chen G, Zheng S. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia. Sci Rep 2016; 6:21084. [PMID: 26879603 PMCID: PMC4754688 DOI: 10.1038/srep21084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate pathogenesis and novel diagnostic biomarkers of biliary atresia (BA). Serum samples from infants with BA and non-BA neonatal cholestasis (NC) were collected for miRNA microarray analysis, and then differentially expressed miRNAs were screened. Differentially expressed miRNAs were validated by qRT-PCR using an independent serum samples from infants with BA and NC. Diagnostic utility of validated miRNAs was further analyzed using serum samples by receiver-operating characteristic curve analysis. Totally, 13 differentially expressed miRNAs were identified including 11 down-regulated and 2 up-regulated ones. Target genes of hsa-miR-4429 and hsa-miR-4689 were significantly involved in FoxO signaling pathway. Eight differentially expressed miRNAs were chosen for validation by qRT-PCR analysis, and four miRNAs (hsa-miR-150-3p, hsa-miR-4429, hsa-miR-4689 and hsa-miR-92a-3p) were differentially expressed. The area under the curve of hsa-miR-4429 and hsa-miR-4689 was 0.789 (sensitivity = 83.33%, specificity = 80.00%) and 0.722 (sensitivity = 66.67%, specificity = 80.00%), respectively. Differentially expressed miRNAs including hsa-miR-4429 and hsa-miR-4689 might play critical roles in BA by regulating their target genes, and these two miRNAs may have the potential to become diagnostic biomarkers.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Zhen Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Chao Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| |
Collapse
|
14
|
Esparza-Baquer A, Labiano I, Bujanda L, Perugorria MJ, Banales JM. MicroRNAs in cholangiopathies: Potential diagnostic and therapeutic tools. Clin Res Hepatol Gastroenterol 2016; 40:15-27. [PMID: 26774196 DOI: 10.1016/j.clinre.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Cholangiopathies are the group of diseases targeting the bile duct epithelial cells (i.e. cholangiocytes). These disorders arise from different etiologies and represent a current diagnostic, prognostic and therapeutic challenge. Different molecular mechanisms participate in the development and progression of each type of biliary disease. However, microRNA deregulation is a common central event occurring in all of them that plays a key role in their pathogenesis. MicroRNAs are highly stable small non-coding RNAs present in cells, extracellular microvesicles and biofluids, representing valuable diagnostic tools and potential targets for therapy. In the following sections, the most novel and significant discoveries in this field are summarized and their potential clinical value is highlighted.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. J Clin Med 2015; 4:1688-712. [PMID: 26343736 PMCID: PMC4600153 DOI: 10.3390/jcm4091688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022] Open
Abstract
The cholangiopathies are a group of liver diseases resulting from different etiologies but with the cholangiocyte as the primary target. As a group, the cholangiopathies result in significant morbidity and mortality and represent one of the main indications for liver transplant in both children and adults. Contributing to this situation is the absence of a thorough understanding of their pathogenesis and a lack of adequate diagnostic and prognostic biomarkers. MicroRNAs are small non-coding RNAs that modify gene expression post-transcriptionally. They have been implicated in the pathogenesis of many diseases, including the cholangiopathies. Thus, in this review we provide an overview of the literature on miRNAs in the cholangiopathies and discuss future research directions.
Collapse
|
16
|
Affiliation(s)
- Dong Zhao
- Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|
18
|
Gradilone SA, O’Hara SP, Masyuk TV, Pisarello MJL, LaRusso NF. MicroRNAs and benign biliary tract diseases. Semin Liver Dis 2015; 35:26-35. [PMID: 25632932 PMCID: PMC4413449 DOI: 10.1055/s-0034-1397346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholangiocytes, the epithelial cells lining the biliary tree, represent only a small portion of the total liver cell population (3-5%), but they are responsible for the secretion of up to 40% of total daily bile volume. In addition, cholangiocytes are the target of a diverse group of liver diseases affecting the biliary tract, the cholangiopathies; for most of these conditions, the pathological mechanisms are unclear. MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression. Thus, it is not surprising that altered miRNA profiles underlie the dysregulation of several proteins involved in the pathobiology of the cholangiopathies, as well as showing promise as diagnostic and prognostic tools. Here the authors review recent work relevant to the role of miRNAs in the etiopathogenesis of several of the cholangiopathies (i.e., fibroinflammatory cholangiopathies and polycystic liver diseases), discuss their value as prognostic and diagnostic tools, and provide suggestions for further research.
Collapse
Affiliation(s)
- Sergio A. Gradilone
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota,The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Tetyana V. Masyuk
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Maria Jose Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Ananthanarayanan M, Banales JM, Guerra MT, Spirli C, Munoz-Garrido P, Mitchell-Richards K, Tafur D, Saez E, Nathanson MH. Post-translational regulation of the type III inositol 1,4,5-trisphosphate receptor by miRNA-506. J Biol Chem 2014; 290:184-96. [PMID: 25378392 DOI: 10.1074/jbc.m114.587030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca(2+) waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca(2+) signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3'-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3-3'UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca(2+) signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca(2+) signaling and secretion.
Collapse
Affiliation(s)
| | - Jesus M Banales
- the Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, IKERBASQUE, AECC, 20014 San Sebastian, Spain, and the Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Ciberehd, 31009 Pamplona, Spain
| | | | | | - Patricia Munoz-Garrido
- the Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, IKERBASQUE, AECC, 20014 San Sebastian, Spain, and
| | - Kisha Mitchell-Richards
- Pathology, Section of Digestive Diseases and the Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Elena Saez
- the Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Ciberehd, 31009 Pamplona, Spain
| | | |
Collapse
|
20
|
O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. MicroRNAs in Cholangiopathies. CURRENT PATHOBIOLOGY REPORTS 2014; 2:133-142. [PMID: 25097819 PMCID: PMC4119442 DOI: 10.1007/s40139-014-0048-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholangiocytes, the cells lining bile ducts, comprise a small fraction of the total cellular component of the liver, yet perform the essential role of bile modification and transport of biliary and blood constituents. Cholangiopathies are a diverse group of biliary disorders with the cholangiocyte as the target cell; the etiopathogenesis of most cholangiopathies remains obscure. MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. These small RNAs may not only be involved in the etiopathogenesis of disease, but are showing promise as diagnostic and prognostic tools. In this brief review, we summarize recent work regarding the role of microRNAs in the etiopathogenesis of several cholangiopathies, and discuss their utility as prognostic and diagnostic tools.
Collapse
Affiliation(s)
- Steven P. O’Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sergio A. Gradilone
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tetyana V. Masyuk
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James H. Tabibian
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
21
|
Lankisch TO, Voigtländer T, Manns MP, Holzmann A, Dangwal S, Thum T. MicroRNAs in the bile of patients with biliary strictures after liver transplantation. Liver Transpl 2014; 20:673-8. [PMID: 24648209 DOI: 10.1002/lt.23872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022]
Abstract
Biliary complications after liver transplantation remain a major cause of morbidity and reduced graft survival. Ischemic-type biliary lesions (ITBLs) are common and difficult to treat. The pathophysiology of ITBLs remains unclear, and diagnostic markers are still missing. The analysis of microRNA (miRNA) profiles is an evolving field in hepatology. Our aim was to identify specific miRNA patterns in the bile of patients with ITBLs after liver transplantation. Liver transplant patients with biliary complications were included in a cross-sectional study. Patients with ITBLs (n = 37), anastomotic strictures (ASs; n = 39), and bile duct stones (BDSs; n = 12) were compared. Patients with ITBLs were categorized by disease severity. The miRNA concentrations in bile were determined with global miRNA profiling and subsequent miRNA-specific polymerase chain reaction-mediated validation. The concentrations of microRNA 517a (miR-517a), miR-892a, and miR-106a* in bile were increased for patients with ITBLs versus patients with ASs or BDSs (P < 0.05). Categorization by ITBL severity showed higher median concentrations in patients with intrahepatic and extrahepatic strictures (P > 0.05). miR-210, miR-337-5p, miR-577, and miR-329 displayed no statistical differences. In conclusion, miR-517a, miR-892a, and miR-106a* are increased in the bile fluid of patients with ITBLs versus patients with ASs or BDSs. An analysis of miRNA profiles may be useful in the diagnosis and management of patients with ITBLs. Future studies are needed to prove the potential prognostic value of these miRNAs.
Collapse
Affiliation(s)
- Tim O Lankisch
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center-Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|