1
|
Kuo CH, Nargotra P, Lin TH, Shieh CJ, Liu YC. Ultrasonication-assisted lipase-catalyzed esterification of chlorogenic acid: A comparative study using fatty alcohol and acids in solvent and solvent-free conditions. ULTRASONICS SONOCHEMISTRY 2025; 113:107218. [PMID: 39754845 PMCID: PMC11755015 DOI: 10.1016/j.ultsonch.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Chlorogenic acid, a well-known antioxidant, has potential applications in health care, food, and cosmetic sectors. However, its low solubility hinders its application at the industrial scale. The primary goal of the present study was to increase the lipophilic property of chlorogenic acid through esterification using an ultrasonication approach and Novozym® 435 as the catalyst. The esterification was executed in two ways. In the first method, chlorogenic acid was converted to chlorogenic acid ester using octanol in a solvent-free reaction. Catalytic factors such as reaction time (12 h ∼ 36 h), enzyme dosage (10 ∼ 50 mg), and ultrasonication power (90 ∼ 150 W) were optimized using Box-Behnken design (BBD) while temperature (60 ℃) and molar ration (chlorogenic acid/octanol, 1:500) were kept constant. A maximum conversion rate of 95.3 % was achieved when the esterification was performed for 12 h at 120 W ultrasonication power and 50 mg enzyme dosage. Contrary to the first method, when esterification was done using caprylic acid in the presence of 2-methyl-2-butanol as a solvent, the conversion rate was relatively low. Despite optimization of factors including molar ratio, enzyme dosage, and reaction time, the highest conversion rate achieved was of only 36.8 %. Moreover, molecular docking results revealed that the lowest binding energy was between lipase and octanol. The finding of the study clearly stated that the esterification of chlorogenic acid was more effective in a solvent-free condition as compared to in the presence of solvent.
Collapse
Affiliation(s)
- Chia-Hung Kuo
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Tsung-Han Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Park JY, Yu H, Charalampopoulos D, Park KM, Chang PS. Recent advances on erythorbyl fatty acid esters as multi-functional food emulsifiers. Food Chem 2024; 432:137242. [PMID: 37647709 DOI: 10.1016/j.foodchem.2023.137242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Over the past few decades, food scientists have investigated a wide range of emulsifiers to manufacture stable and safe emulsion-based food products. More recently, the development of emulsifiers with multi-functionality, which is the ability to have more than two functions, has been considered as a promising strategy for resolving rancidification and microbial contamination in emulsions. Erythorbyl fatty acid esters (EFEs) synthesized by enzymatic esterification of hydrophilic erythorbic acid and hydrophobic fatty acid have been proposed as multi-functional emulsifiers since they simultaneously exhibit amphiphilic, antioxidative, and antibacterial properties in both aqueous and emulsion systems. This review provides current knowledge about EFEs in terms of enzymatic synthesis and multi-functionality. All processes for synthesizing and identifying EFEs are discussed. Each functionality of EFEs and the proposed mechanism are described with analytical methodologies and experimental details. It would provide valuable insights into the development and application of a multi-functional emulsifier in food emulsion chemistry.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjong Yu
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Tsai MF, Huang SM, Huang HY, Tsai SW, Kuo CH, Shieh CJ. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022; 27:molecules27217148. [PMID: 36363974 PMCID: PMC9657652 DOI: 10.3390/molecules27217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other natural plants, and has a wide range of physiological activities. However, the application of cinnamic acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken design (BBD) was employed to evaluate the effects of the operation parameters, including reaction temperature (55–75 °C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system was superior to the conventional method. According to the RSM model for the actual experiments, a reaction temperature of 74.6 °C, a reaction time of 11.1 h, and an ultrasound power of 150 W were determined to be the best conditions for the maximum molar conversion of octyl cinnamate (93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with an ultrasound plus vacuum system was achieved via RSM optimization.
Collapse
Affiliation(s)
- Ming-Fang Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Hsin-Yi Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| |
Collapse
|
4
|
Jaiswal KS, Rathod VK. Process Intensification of Enzymatic Synthesis of Flavor Esters: A Review. CHEM REC 2021; 22:e202100213. [PMID: 34859555 DOI: 10.1002/tcr.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
The conventional flavor synthesis method suffers from low yields, time inefficiency, and extreme reaction conditions. Therefore, there is a necessity for the green and novel synthesis approach to overcome these limitations. The current review presents a holistic insight into different aspects associated with the synthesis of flavor esters using the immobilized enzyme. The application of process intensification tools such as ultrasound and microwave irradiation can enhance the reaction efficiency because of higher product recovery, less formation of by-products, and decreased energy consumption. This review presents the process intensification of value-added flavor esters synthesis and the mechanism of ultrasound and microwave action on the enzyme to enhance the enzyme activity and increase the reaction rate. It also summarizes the role of process intensification in enzymatic flavor ester synthesis, followed by specific examples as reported in the literature.
Collapse
Affiliation(s)
- Kajal S Jaiswal
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| |
Collapse
|
5
|
Zhang C, Liang X, Abdo AAA, Kaddour B, Li X, Teng C, Wan C. Ultrasound-assisted lipase-catalyzed synthesis of ethyl acetate: process optimization and kinetic study. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1868331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xin Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Abdullah Abdulaziz Abbod Abdo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Department of Food Science and Technology, IBB University, Ibb, Yemen
| | - Benariba Kaddour
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, PR China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chengyin Wan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
6
|
New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (dl-lactic acid). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xu C, Zhang H, Shi J, Zheng M, Xiang X, Huang F, Xiao J. Ultrasound irradiation promoted enzymatic alcoholysis for synthesis of monoglyceryl phenolic acids in a solvent-free system. ULTRASONICS SONOCHEMISTRY 2018; 41:120-126. [PMID: 29137734 DOI: 10.1016/j.ultsonch.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Monoglyceryl phenolic acids (MPAs) were known as the natural hydrophilic antioxidants which could be used in different fields such as food, pharmaceutical, cosmetic etc. A novel enzymatic route of MPAs synthesis by the alcoholysis of phenolic acid ethyl esters with glycerol under ultrasound irradiation in solvent free system was developed. Optimization of reaction parameters shows that a high conversion of above 97.4% can be obtained under the following conditions: phenolic acid ethyl esters to glycerol molar ratio of 1:10, with 6% catalyst (Novozym 435), at 60°C and 200rpm, with ultrasound input of 250W, at 20kHz frequency. Compared to the conventional stirring method, the activation energy for phenolic acid ethyl esters conversion was decreased from 65.0kJ/mol to 32.1kJ/mol under ultrasound promotion; the apparent kinetic constant (Vm/Km) increased above 1.2-folds; the lipase amount decreased to 50%; the time required for the maximum conversion reduced up to 3-folds without damaging the lipase activity, which is the fastest report for enzymatic synthesis of MPAs.
Collapse
Affiliation(s)
- Chunfang Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Haiping Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jie Shi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China.
| | - Xia Xiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Junyong Xiao
- Functional Oil Laboratory Associated By Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co. LTD, Guangzhou 51000, China
| |
Collapse
|
8
|
Jaiswal KS, Rathod VK. Acoustic cavitation promoted lipase catalysed synthesis of isobutyl propionate in solvent free system: Optimization and kinetic studies. ULTRASONICS SONOCHEMISTRY 2018; 40:727-735. [PMID: 28946479 DOI: 10.1016/j.ultsonch.2017.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 05/11/2023]
Abstract
The present work highlights the effect of ultrasound on enzymatic synthesis of isobutyl propionate, a rum flavor by esterification of isobutanol and propionic acid in non-aqueous, solvent free system (SFS) using Fermase CALB™10000. The optimization study for different variables in presence of ultrasound showed a maximum conversion of 95.14% at 60°C temperature, 4% w/w enzyme dose, 1:3 acid:alcohol ratio, 40W power, 25kHz frequency, 50% duty cycle and 150rpm speed in 3h as compared to 10h of conventional method. The optimal enzyme loading was reduced to 4% w/w using ultrasound irradiation compared to 5% w/w of conventional. The efficiency of enzyme improved notably and can be reused up to seven cycles preserving its former activity. The application of ultrasound greatly enhanced esterification reactions by maintaining enzyme stability and improving the production yield. Moreover, owing towards a green approach, the synthesis is carried out in SFS for development of lucrative flavor ester. Bisubstrate kinetic models like random bi-bi, ping pong bi-bi and ordered bi-bi were applied to the experimental data using non-linear regression analysis. The experimental data and kinetic study revealed that reaction obeyed Ping-Pong bi-bi model with kinetic parameters, Vmax=50.0M/min/gcatalyst, KA=4.87×10-2M, KB=9.06×10-4M, KiA=9.8×10-1M, KiB=1.05×10-3M &SSE=2.74×10-4 for lipase catalysed synthesis of isobutyl propionate under ultrasound with inhibition by both acid and alcohol.
Collapse
Affiliation(s)
- Kajal S Jaiswal
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
9
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
10
|
An Efficient Approach for Lipase-Catalyzed Synthesis of Retinyl Laurate Nutraceutical by Combining Ultrasound Assistance and Artificial Neural Network Optimization. Molecules 2017; 22:molecules22111972. [PMID: 29140274 PMCID: PMC6150370 DOI: 10.3390/molecules22111972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/04/2022] Open
Abstract
Although retinol is an important nutrient, retinol is highly sensitive to oxidation. At present, some ester forms of retinol are generally used in nutritional supplements because of its stability and bioavailability. However, such esters are commonly synthesized by chemical procedures which are harmful to the environment. Thus, this study utilized a green method using lipase as a catalyst with sonication assistance to produce a retinol derivative named retinyl laurate. Moreover, the process was optimized by an artificial neural network (ANN). First, a three-level-four-factor central composite design (CCD) was employed to design 27 experiments, which the highest relative conversion was 82.64%. Further, the optimal architecture of the CCD-employing ANN was developed, including the learning Levenberg-Marquardt algorithm, the transfer function (hyperbolic tangent), iterations (10,000), and the nodes of the hidden layer (6). The best performance of the ANN was evaluated by the root mean squared error (RMSE) and the coefficient of determination (R2) from predicting and observed data, which displayed a good data-fitting property. Finally, the process performed with optimal parameters actually obtained a relative conversion of 88.31% without long-term reactions, and the lipase showed great reusability for biosynthesis. Thus, this study utilizes green technology to efficiently produce retinyl laurate, and the bioprocess is well established by ANN-mediated modeling and optimization.
Collapse
|
11
|
Bansode SR, Rathod VK. An investigation of lipase catalysed sonochemical synthesis: A review. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633854 DOI: 10.1016/j.ultsonch.2017.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrasonic irradiation has recently gained attention of researchers for its process intensification in numerous reactions. Earlier ultrasound was known for its application either to deactivate enzyme activity or to disrupt the cell. However, in recent years, practice of ultrasonic irradiation began to emerge as a tool for the activation of the enzymes under mild frequency conditions. The incorporation of ultrasound in any of enzymatic reactions not only increases yield but also accelerates the rate of reaction in the presence of mild conditions with better yield and less side-products. To attain maximum yield, it is crucial to understand the mechanism and effect of sonication on reaction especially for the lipase enzyme. Thus, the influence of ultrasound irradiation on reaction yield for different parameters including temperature, enzyme concentration, mole ratio of substrates, solvents ultrasonic frequency and power was reviewed and discussed. The physical effect of cavitation determined by bubble dynamics and rate of reaction through kinetic modelling also needs to be assessed for complete investigation and scale up of synthesis. Thus, prudish utilisation of ultrasound for enzymatic synthesis can serve better future for sustainable and green chemistry.
Collapse
Affiliation(s)
- Sneha R Bansode
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Virendra K Rathod
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
12
|
Vescovi V, Giordano RLC, Mendes AA, Tardioli PW. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent/Water System. Molecules 2017; 22:molecules22020212. [PMID: 28146090 PMCID: PMC6155854 DOI: 10.3390/molecules22020212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
Lipases from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) wereimmobilized on functionalized silica particles aiming their use in the synthesis of fructose oleate in a tert-butyl alcohol/water system. Silica particles were chemically modified with octyl (OS), octyl plus glutaraldehyde (OSGlu), octyl plus glyoxyl(OSGlx), and octyl plus epoxy groups(OSEpx). PFL was hyperactivated on all functionalized supports (more than 100% recovered activity) using low protein loading (1 mg/g), however, for TLL, this phenomenon was observed only using octyl-silica (OS). All prepared biocatalysts exhibited high stability by incubating in tert-butyl alcohol (half-lives around 50 h at 65 °C). The biocatalysts prepared using OS and OSGlu as supports showed excellent performance in the synthesis of fructose oleate. High estersynthesis was observed when a small amount of water (1%, v/v) was added to the organic phase, allowing an ester productivity until five times (0.88-0.96 g/L.h) higher than in the absence of water (0.18-0.34 g/L.h) under fixed enzyme concentration (0.51 IU/g of solvent). Maximum ester productivity (16.1-18.1 g/L.h) was achieved for 30 min of reaction catalyzed by immobilized lipases on OS and OSGlu at 8.4 IU/mL of solvent. Operational stability tests showed satisfactory stability after four consecutive cycles of reaction.
Collapse
Affiliation(s)
- Vinicius Vescovi
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Raquel L C Giordano
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| | - Paulo W Tardioli
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 2016; 100:6519-6543. [PMID: 27276911 PMCID: PMC4939304 DOI: 10.1007/s00253-016-7647-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.
Collapse
Affiliation(s)
- Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Simona Varriale
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15700, Athens, Greece
| | - Ulrika Rova
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Paul Christakopoulos
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
14
|
Khan NR, Jadhav SV, Rathod VK. Lipase catalysed synthesis of cetyl oleate using ultrasound: Optimisation and kinetic studies. ULTRASONICS SONOCHEMISTRY 2015; 27:522-529. [PMID: 25913878 DOI: 10.1016/j.ultsonch.2015.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
The current paper exemplifies the application of ultrasound technology to enzymatic synthesis of a cosmetic emollient ester, cetyl oleate. Fermase CALB™10000, a commercial Candida antarctica lipase B was used as a catalyst to accomplish the ultrasound supported synthesis. Multiple process parameters like reaction time, temperature, enzyme dose, alcohol to acid molar ratio, ultrasound power, frequency and speed of agitation were optimised. Maximum conversion of ∼95.96% was discerned at optimum conditions, i.e., 60°C temperature, 5% enzyme dose, 2:1 alcohol:acid ratio, 60 W ultrasound power, 25 kHz ultrasound frequency, 80% duty cycle and 80 rpm speed of agitation after purification steps. It was observed that the reaction reached equilibrium in a short duration of 30 min under the optimised conditions. This was considerably lesser than the time required for attaining equilibrium in conventional mechanical stirring method which was over 2h. Bisubstrate kinetic models like random bi-bi, ping pong bi-bi and ordered bi-bi were applied to the experimental data to determine initial rates and other kinetic parameters. Ordered bi-bi model showed the best fit with kinetic parameters, Vmax=0.029 M/min/gcatalyst, KA=0.00001 M, KB=4.8002 M, KiA=0.00014 M, KiB=3.7914 M & SSE=0.00022 for enzymatic cetyl oleate synthesis under ultrasound irradiation with inhibition by both acid and alcohol at high concentrations.
Collapse
Affiliation(s)
- Nishat R Khan
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Sachin V Jadhav
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
15
|
|
16
|
Alves JS, Garcia-Galan C, Danelli D, Paludo N, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Alves JS, Garcia-Galan C, Schein MF, Silva AM, Barbosa O, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC. Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules 2014; 19:9562-76. [PMID: 25004067 PMCID: PMC6271129 DOI: 10.3390/molecules19079562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022] Open
Abstract
It is well established that the performance of lipase B from Candidaantarctica (CALB) as catalyst for esterification reactions may be improved by the use of ultrasound technology or by its immobilization on styrene-divinylbenzene beads (MCI-CALB). The present research evaluated the synthesis of butyl acetate using MCI-CALB under ultrasonic energy, comparing the results against those obtained using the commercial preparation, Novozym 435. The optimal conditions were determined using response surface methodology (RSM) evaluating the following parameters: reaction temperature, substrate molar ratio, amount of biocatalyst, and added water. The optimal conditions for butyl acetate synthesis catalyzed by MCI-CALB were: temperature, 48.8 °C; substrate molar ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both as substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h. In terms of operational stability, MCI-CALB was reused in seven cycles while keeping 70% of its initial activity under ultrasonic energy. The support pore size and resistance are key points for the enzyme activity and stability under mechanical stirring. The use of ultrasound improved both activity and stability because of better homogeneity and reduced mechanical stress to the immobilized system.
Collapse
Affiliation(s)
- Joana S Alves
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Cristina Garcia-Galan
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Mirela F Schein
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Alexandre M Silva
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Oveimar Barbosa
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Marco A Z Ayub
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | | | - Rafael C Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| |
Collapse
|