1
|
van Blooijs D, Blok S, Huiskamp GJM, van Eijsden P, Meijer HGE, Leijten FSS. The effect of propofol on effective brain networks. Clin Neurophysiol 2024; 161:222-230. [PMID: 38522268 DOI: 10.1016/j.clinph.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE We compared the effective networks derived from Single Pulse Electrical Stimulation (SPES) in intracranial electrocorticography (ECoG) of awake epilepsy patients and while under general propofol-anesthesia to investigate the effect of propofol on these brain networks. METHODS We included nine patients who underwent ECoG for epilepsy surgery evaluation. We performed SPES when the patient was awake (SPES-clinical) and repeated this under propofol-anesthesia during the surgery in which the ECoG grids were removed (SPES-propofol). We detected the cortico-cortical evoked potentials (CCEPs) with an automatic detector. We constructed two effective networks derived from SPES-clinical and SPES-propofol. We compared three network measures (indegree, outdegree and betweenness centrality), the N1-peak-latency and amplitude of CCEPs between the two effective networks. RESULTS Fewer CCEPs were observed during SPES-propofol (median: 6.0, range: 0-29) compared to SPES-clinical (median: 10.0, range: 0-36). We found a significant correlation for the indegree, outdegree and betweenness centrality between SPES-clinical and SPES-propofol (respectively rs = 0.77, rs = 0.70, rs = 0.55, p < 0.001). The median N1-peak-latency increased from 22.0 ms during SPES-clinical to 26.4 ms during SPES-propofol. CONCLUSIONS Our findings suggest that the number of effective network connections decreases, but network measures are only marginally affected. SIGNIFICANCE The primary network topology is preserved under propofol.
Collapse
Affiliation(s)
- D van Blooijs
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), P.O.box 540, 2130 AM Hoofddorp, The Netherlands.
| | - S Blok
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - G J M Huiskamp
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - P van Eijsden
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - H G E Meijer
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - F S S Leijten
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| |
Collapse
|
2
|
Zhang Y, Yan F, Wang L, Wang Y, Wang C, Wang Q, Huang L. Cortical Areas Associated With Mismatch Negativity: A Connectivity Study Using Propofol Anesthesia. Front Hum Neurosci 2018; 12:392. [PMID: 30333738 PMCID: PMC6176496 DOI: 10.3389/fnhum.2018.00392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023] Open
Abstract
Auditory mismatch negativity (MMN) is an event-related potential (ERP) waveform induced by rare deviant stimuli that occur in a stream of regular auditory stimuli. The generators of MMN are believed to include several different cortical regions like the bilateral temporal and the right inferior frontal gyrus (IFG). However, exact cortical regions associated with MMN remain controversial. In this study, we compared the number of long-distance connections induced by the standard and deviant stimuli during awake state and propofol anesthesia state to identify the cortical areas associated with the generation of MMN. In awake state, we find that deviant stimuli synchronize more information between the right frontal and temporal than standard stimuli. Moreover, we find that the deviant stimuli in awake state activate the bilateral frontal, central areas, the left temporal and parietal areas as compared to the anesthesia state, whereas the standard stimuli do not. These results suggest that, in addition to the bilateral temporal and the right IFG, the bilateral frontal and centro-parietal regions also contribute to the generation of MMN.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Fei Yan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liu Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chunshu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
3
|
Holečková I, Kletečka J, Štěpánek D, Žídek S, Bludovský D, Pouska J, Mautner P, Přibáň V. Cognitive impairment measured by event-related potentials during early and late postoperative period following intravenous or inhalation anaesthesia. Clin Neurophysiol 2018; 129:246-253. [DOI: 10.1016/j.clinph.2017.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
|
4
|
Raiesdana S. Quantifying the dynamic of OSA brain using multifractal formalism: A novel measure for sleep fragmentation. Technol Health Care 2017; 25:265-284. [PMID: 27886023 DOI: 10.3233/thc-161278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is thought that the critical brain dynamics in sleep is modulated during frequent periods of wakefulness. This paper utilizes the capacity of EEG based scaling analysis to quantify sleep fragmentation in patients with obstructive sleep apnea. The scale-free (fractal) behavior refers to a state where no characteristic scale dominates the dynamics of the underlying process which is evident as long range correlations in a time series. Here, Multiscaling (multifractal) spectrum is utilized to quantify the disturbed dynamic of an OSA brain with fragmented sleep. The whole night multichannel sleep EEG recordings of 18 subjects were employed to compute and quantify variable power-law long-range correlations and singularity spectra. Based on this characteristic, a new marker for sleep fragmentation named ``scaling based sleep fragmentation'' was introduced. This measure takes into account the sleep run length and stage transition quality within a fuzzy inference system to improve decisions made on sleep fragmentation. The proposed index was implemented, validated with sleepiness parameters and compared to some common indexes including sleep fragmentation index, arousal index, sleep diversity index, and sleep efficiency index. Correlations were almost significant suggesting that the sleep characterizing measure, based on singularity spectra range, could properly detect fragmentations and quantify their rate. This method can be an alternative for quantifying the sleep fragmentation in clinical practice after being approved experimentally. Control of sleep fragmentation and, subsequently, suppression of excessive daytime sleepiness will be a promising outlook of this kind of researches.
Collapse
|
5
|
Karan SB, Rackovsky E, Voter WA, Kanel JA, Farris N, Jensen J, Liu L, Ward DS. A Randomized, Prospective, Double-Blinded Study of Physostigmine to Prevent Sedation-Induced Ventilatory Arrhythmias. Anesth Analg 2015. [DOI: 10.1213/ane.0000000000000834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Shulman RG, Hyder F, Rothman DL. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J Cereb Blood Flow Metab 2014; 34:1721-35. [PMID: 25160670 PMCID: PMC4269754 DOI: 10.1038/jcbfm.2014.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/12/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023]
Abstract
Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), (13)C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Hyder F, Fulbright RK, Shulman RG, Rothman DL. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J Cereb Blood Flow Metab 2013; 33:339-47. [PMID: 23299240 PMCID: PMC3587823 DOI: 10.1038/jcbfm.2012.207] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rodent (13)C magnetic resonance spectroscopy studies show that glutamatergic signaling requires high oxidative energy in the awake resting state and allowed calibration of functional magnetic resonance imaging (fMRI) signal in terms of energy relative to the resting energy. Here, we derived energy used for glutamatergic signaling in the awake resting human. We analyzed human data of electroencephalography (EEG), positron emission tomography (PET) maps of oxygen (CMR(O2)) and glucose (CMR(glc)) utilization, and calibrated fMRI from a variety of experimental conditions. CMR(glc) and EEG in the visual cortex were tightly coupled over several conditions, showing that the oxidative demand for signaling was four times greater than the demand for nonsignaling events in the awake state. Variations of CMR(O2) and CMR(glc) from gray-matter regions and networks were within ±10% of means, suggesting that most areas required similar energy for ubiquitously high resting activity. Human calibrated fMRI results suggest that changes of fMRI signal in cognitive studies contribute at most ±10% CMR(O2) changes from rest. The PET data of sleep, vegetative state, and anesthesia show metabolic reductions from rest, uniformly >20% across, indicating no region is selectively reduced when consciousness is lost. Future clinical investigations will benefit from using quantitative metabolic measures.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
8
|
Strain differences in cortical electroencephalogram associated with isoflurane-induced loss of consciousness. Anesthesiology 2013; 118:350-60. [PMID: 23287707 DOI: 10.1097/aln.0b013e31827ddfed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Previously observed increased sensitivity to noxious stimulation in the Dahl salt-sensitive rat strain (SS/JrHsdMcwi, abbreviated as SS) compared to Brown Norway rats (BN/NhsdMcwi abbreviated as BN) is mediated by genes on a single chromosome. The current study used behavioral and electrocortical data to determine if differences also exist between SS and BN rats in loss of consciousness. METHODS Behavioral responses, including loss of righting, (a putative index of consciousness) and concurrent electroencephalogram recordings, in 12 SS and BN rats were measured during isoflurane at inhaled concentrations of 0, 0.3, 0.6, 0.8, 1.0 and 1.2%. RESULTS In SS compared to BN rats, the mean ± SEM EC50 for righting was significantly less (0.65 ± 0.01% vs. 0.74 ± 0.02% inhaled isoflurane) and delta fraction in parietal electroencephalogram was enhanced 50-100% at all isoflurane levels during emergence. The frequency decay constant of an exponential fit of the parietal electroencephalogram spectrum graphed as a function of isoflurane level was three times less steep (mean ± SEM slope -57 ± 13 vs. -191 ± 38) and lower at each level of isoflurane in SS versus BN rats (i.e., shifted toward low frequency activity). Electroencephalogram differences between strains were larger during emergence than induction. CONCLUSIONS Sensitivity is higher in SS compared to BN rats leading to unconsciousness at lower levels of isoflurane. This supports using additional strains in this animal model to study the genetic basis for differences in anesthetic action on mechanisms of consciousness. Moreover, induction and emergence appear to involve distinct pathways.
Collapse
|