1
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Yuan X, Zhao J, Wu X, Yao W, Guo H, Ji D, Yu Q, Luo L, Li X, Zhang L. Extraction of Corn Bract Cellulose by the Ammonia-Coordinated Bio-Enzymatic Method. Polymers (Basel) 2022; 15:polym15010206. [PMID: 36616555 PMCID: PMC9824136 DOI: 10.3390/polym15010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
This study explored a green and efficient method for cellulose extraction from corn bract. The cellulose extraction by the CHB (CH3COOH/H2O2/Bio-enzyme) method and the N-CHB (NH3·H2O-CH3COOH/H2O2/Bio-enzyme) method were compared and analyzed. The effect of ammonia pretreatment on cellulose extraction by bio-enzymatic methods was discussed. The results showed that ammonia promoted the subsequent bio-enzymatic reaction and had a positive effect on the extraction of cellulose. Sample microstructure images (SEM) showed that the cellulose extracted by this method was in the form of fibrous bundles with smooth surfaces. The effect of different pretreatment times of ammonia on cellulose was further explored, and cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric (TG) analysis. The results showed that the N3h-CHB (NH3·H2O 50 °C 3 h, CH3COOH/H2O2 70 °C 11 h, Bio-enzyme 50 °C 4 h) method was the best way to extract cellulose in this study. FTIR showed that most of the lignin and hemicellulose were removed. XRD showed that all the cellulose extracted in this study was type I cellulose. TG analysis showed that the cellulose was significantly more thermally stable, with a maximum degradation temperature of 338.9 °C, close to that of microcrystalline cellulose (MCC). This study provides a reference for the utilization of corn bract and offers a new technical route for cellulose extraction.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Jiaxin Zhao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxiao Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Wentao Yao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Correspondence: (H.G.); (X.L.); (L.Z.)
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Qingkai Yu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Liwen Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaoping Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Correspondence: (H.G.); (X.L.); (L.Z.)
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Correspondence: (H.G.); (X.L.); (L.Z.)
| |
Collapse
|
3
|
Chen C, Qi K, Chi F, Song X, Feng Y, Cui Q, Liu YJ. Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum. Int J Biol Macromol 2022; 207:784-790. [PMID: 35351552 DOI: 10.1016/j.ijbiomac.2022.03.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Polysaccharides derived from lignocellulose are promising sustainable carbon sources. Cellulosome is a supramolecular machine integrating multi-function enzymes for effective lignocellulose bio-saccharification. However, how various non-cellulose components of lignocellulose affect the cellulosomal saccharification is hitherto unclear. This study first investigated the stability and oxygen sensitivity of the cellulosome from Clostridium thermocellum during long-term saccharification process. Then, the differential inhibitory effects of non-cellulose components, including lignin, xylan, and arabinoxylan, on the cellulosome-based saccharification were determined. The results showed that lignin played inhibitory roles by non-productively adsorbing extracellular proteins of C. thermocellum. Differently, arabinoxylan preferred to bind with the cellulosomal components. Almost no adsorption of cellulosomal proteins on solid xylan was detected. Instead, xylan in water-dissolved form interacted with the cellulosomal proteins, especially the key exoglucanase Cel48S, leading to the xylan inhibitory effect. Compared to xylan, xylooligosaccharides influenced the cellulosome activity slightly. Hence, this work demonstrates that the timely hydrolysis or removal of dissolved xylan is important for cellulosome-based lignocellulose saccharification.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kuan Qi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Lee DS, Lee YG, Cho EJ, Song Y, Bae HJ. Hydrolysis pattern analysis of xylem tissues of woody plants pretreated with hydrogen peroxide and acetic acid: rapid saccharification of softwood for economical bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:37. [PMID: 33549141 PMCID: PMC7866737 DOI: 10.1186/s13068-021-01889-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Woody plants with high glucose content are alternative bioresources for the production of biofuels and biochemicals. Various pretreatment methods may be used to reduce the effects of retardation factors such as lignin interference and cellulose structural recalcitrance on the degradation of the lignocellulose material of woody plants. RESULTS A hydrogen peroxide-acetic acid (HPAC) pretreatment was used to reduce the lignin content of several types of woody plants, and the effect of the cellulose structural recalcitrance on the enzymatic hydrolysis was analyzed. The cellulose structural recalcitrance and the degradation patterns of the wood fibers in the xylem tissues of Quercus acutissima (hardwood) resulted in greater retardation in the enzymatic saccharification than those in the tracheids of Pinus densiflora (softwood). In addition to the HPAC pretreatment, the application of supplementary enzymes (7.5 FPU cellulase for 24 h) further increased the hydrolysis rate of P. densiflora from 61.42 to 91.94% whereas the same effect was not observed for Q. acutissima. It was also observed that endoxylanase synergism significantly affected the hydrolysis of P. densiflora. However, this synergistic effect was lower for other supplementary enzymes. The maximum concentration of the reducing sugars produced from 10% softwood was 89.17 g L-1 after 36 h of hydrolysis with 15 FPU cellulase and other supplementary enzymes. Approximately 80 mg mL-1 of reducing sugars was produced with the addition of 7.5 FPU cellulase and other supplementary enzymes after 36 h, achieving rapid saccharification. CONCLUSION HPAC pretreatment removed the interference of lignin, reduced structural recalcitrance of cellulose in the P. densiflora, and enabled rapid saccharification of the woody plants including a high concentration of insoluble substrates with only low amounts of cellulase. HPAC pretreatment may be a viable alternative for the cost-efficient production of biofuels or biochemicals from softwood plant tissues.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea.
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
5
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
7
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
8
|
Xin D, Chen X, Wen P, Zhang J. Insight into the role of α-arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:64. [PMID: 30949240 PMCID: PMC6429694 DOI: 10.1186/s13068-019-1412-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/15/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND α-l-Arabinofuranosidase (ARA), a debranching enzyme that can remove arabinose substituents from arabinoxylan and arabinoxylooligomers (AXOS), promotes the hydrolysis of the arabinoxylan fraction of biomass; however, the impact of ARA on the overall digestibility of cellulose is controversial. In this study, we investigated the effects of the addition of ARA on cellulase hydrolytic action. RESULTS We found that approximately 15% of the xylan was converted into AXOS during the hydrolysis of aqueous ammonia-pretreated corn stover and that this AXOS fraction was approximately 12% substituted with arabinose. The addition of ARA removes a portion of the arabinose decoration, but the resulting less-substituted AXOS inhibited cellulase action much more effectively; showing an increase of 45.7%. Kinetic experiments revealed that AXOS with a lower degree of arabinose substitution showed stronger affinity for the active site of cellobiohydrolase, which could be the mechanism of increased inhibition. CONCLUSIONS Our findings strongly suggest that the ratio of ARA and other xylanases should be carefully selected to avoid the strong inhibition caused by the less-substituted AXOS during the hydrolysis of arabinoxylan-containing biomass. This study advances our understanding of the inhibitory mechanism of xylooligomers and provides critical new insights into the relationship of ARA addition and cellulose digestibility.
Collapse
Affiliation(s)
- Donglin Xin
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Xiang Chen
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Peiyao Wen
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| |
Collapse
|
9
|
Silveira MHL, Chandel AK, Vanelli BA, Sacilotto KS, Cardoso EB. Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: Pilot scale study. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Zhou L, da Costa Sousa L, Dale BE, Feng JX, Balan V. The effect of alkali-soluble lignin on purified core cellulase and hemicellulase activities during hydrolysis of extractive ammonia-pretreated lignocellulosic biomass. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171529. [PMID: 30110471 PMCID: PMC6030313 DOI: 10.1098/rsos.171529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 05/31/2023]
Abstract
Removing alkali-soluble lignin using extractive ammonia (EA) pretreatment of corn stover (CS) is known to improve biomass conversion efficiency during enzymatic hydrolysis. In this study, we investigated the effect of alkali-soluble lignin on six purified core glycosyl hydrolases and their enzyme synergies, adopting 31 enzyme combinations derived by a five-component simplex centroid model, during EA-CS hydrolysis. Hydrolysis experiment was carried out using EA-CS(-) (approx. 40% lignin removed during EA pretreatment) and EA-CS(+) (where no lignin was extracted). Enzymatic hydrolysis experiments were done at three different enzyme mass loadings (7.5, 15 and 30 mg protein g-1 glucan), using a previously developed high-throughput microplate-based protocol, and the sugar yields of glucose and xylose were detected. The optimal enzyme combinations (based on % protein mass loading) of six core glycosyl hydrolases for EA-CS(-) and EA-CS(+) were determined that gave high sugar conversion. The inhibition of lignin on optimal enzyme ratios was studied, by adding fixed amount of alkali-soluble lignin fractions to EA-CS(-), and pure Avicel, beechwood xylan and evaluating their sugar conversion. The optimal enzyme ratios that gave higher sugar conversion for EA-CS(-) were CBH I: 27.2-28.2%, CBH II: 18.2-22.2%, EG I: 29.2-34.3%, EX: 9.0-14.1%, βX: 7.2-10.2%, βG: 1.0-5.0% (at 7.5-30 mg g-1 protein mass loading). Endoglucanase was inhibited to a greater extent than other core cellulases and xylanases by lignin during enzyme hydrolysis. We also found that alkali-soluble lignin inhibits cellulase more strongly than hemicellulase during the course of enzyme hydrolysis.
Collapse
Affiliation(s)
- Linchao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Leonardo da Costa Sousa
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
| | - Bruce E. Dale
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Venkatesh Balan
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
- Department of Engineering Technology, Biotechnology Division, School of Technology, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
11
|
Karnaouri A, Topakas E, Matsakas L, Rova U, Christakopoulos P. Fine-Tuned Enzymatic Hydrolysis of Organosolv Pretreated Forest Materials for the Efficient Production of Cellobiose. Front Chem 2018; 6:128. [PMID: 29725590 PMCID: PMC5917092 DOI: 10.3389/fchem.2018.00128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) are likely prebiotic candidates that have been related to the prevention of intestinal infections and other disorders for both humans and animals. Lignocellulosic biomass is the largest carbon source in the biosphere, therefore cello-oligosacharides (COS), especially cellobiose, are potentially the most widely available choice of NDOs. Production of COS and cellobiose with enzymes offers numerous benefits over acid-catalyzed processes, as it is milder, environmentally friendly and produces fewer by-products. Cellobiohydrolases (CBHs) and a class of endoglucanases (EGs), namely processive EGs, are key enzymes for the production of COS, as they have higher preference toward glycosidic bonds near the end of cellulose chains and are able to release soluble products. In this work, we describe the heterologous expression and characterization of two CBHs from the filamentous fungus Thermothelomyces thermophila, as well as their synergism with proccessive EGs for cellobiose release from organosolv pretreated spruce and birch. The properties, inhibition kinetics and substrate specific activities for each enzyme are described in detail. The results show that a combination of EGs belonging to Glycosyl hydrolase families 5, 6, and 9, with a CBHI and CBHII in appropriate proportions, can enhance the production of COS from forest materials, underpinning the potential of these biocatalysts in the production of NDOs.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Evangelos Topakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.,Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Leonidas Matsakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
12
|
Malgas S, Chandra R, Van Dyk JS, Saddler JN, Pletschke BI. Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods. BIORESOURCE TECHNOLOGY 2017; 245:52-65. [PMID: 28892706 DOI: 10.1016/j.biortech.2017.08.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
In this study, two selected hardwoods were subjected to sodium chlorite delignification and steam explosion, and the impact of pre-treatments on synergistic enzymatic saccharification evaluated. A cellulolytic core-set, CelMix, and a xylanolytic core-set, XynMix, optimised for glucose and xylose release, respectively, were used to formulate HoloMix cocktail for optimal saccharification of various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of 75%:25% protein dosage, CelMix: XynMix, while for untreated and steam exploded biomass the HoloMix consisted of 93.75%:6.25% protein dosage. Saccharification by HoloMix (27.5mgprotein/gbiomass) for 24h achieved 70-100% sugar yields. Pre-treatment of the hardwoods (especially those with a higher proportion of lignin) with a laccase, improved saccharification by HoloMix. This study provided insights into enzymatic hydrolysis of various pre-treated hardwood substrates and showed the same lignocellulolytic cocktail comparable to/if not better than commercial enzyme preparations can be used to efficiently hydrolyse different hardwood species.
Collapse
Affiliation(s)
- S Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa
| | - R Chandra
- Forest Products Biotechnology Group, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T1Z4, Canada
| | - J S Van Dyk
- Forest Products Biotechnology Group, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T1Z4, Canada
| | - J N Saddler
- Forest Products Biotechnology Group, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T1Z4, Canada
| | - B I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa.
| |
Collapse
|
13
|
Ferrari AR, Rozeboom HJ, Dobruchowska JM, van Leeuwen SS, Vugts ASC, Koetsier MJ, Visser J, Fraaije MW. Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1. J Biol Chem 2016; 291:23709-23718. [PMID: 27629413 PMCID: PMC5095424 DOI: 10.1074/jbc.m116.741173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
By inspection of the predicted proteome of the fungus Myceliophthora thermophila C1 for vanillyl-alcohol oxidase (VAO)-type flavoprotein oxidases, a putative oligosaccharide oxidase was identified. By homologous expression and subsequent purification, the respective protein could be obtained. The protein was found to contain a bicovalently bound FAD cofactor. By screening a large number of carbohydrates, several mono- and oligosaccharides could be identified as substrates. The enzyme exhibits a strong substrate preference toward xylooligosaccharides; hence it is named xylooligosaccharide oxidase (XylO). Chemical analyses of the product formed upon oxidation of xylobiose revealed that the oxidation occurs at C1, yielding xylobionate as product. By elucidation of several XylO crystal structures (in complex with a substrate mimic, xylose, and xylobiose), the residues that tune the unique substrate specificity and regioselectivity could be identified. The discovery of this novel oligosaccharide oxidase reveals that the VAO-type flavoprotein family harbors oxidases tuned for specific oligosaccharides. The unique substrate profile of XylO hints at a role in the degradation of xylan-derived oligosaccharides by the fungus M. thermophila C1.
Collapse
Affiliation(s)
| | | | - Justyna M Dobruchowska
- Microbial Physiology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen
| | - Sander S van Leeuwen
- Microbial Physiology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen
| | | | | | - Jaap Visser
- the Fungal Genetics and Technology Consultancy, 6700 AJ Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Baba Y, Sumitani JI, Tanaka K, Tani S, Kawaguchi T. Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse. Appl Microbiol Biotechnol 2016; 100:10495-10507. [DOI: 10.1007/s00253-016-7726-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023]
|
15
|
McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, Vilaplana F, Olsson L. A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:2. [PMID: 26734072 PMCID: PMC4700659 DOI: 10.1186/s13068-015-0417-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. RESULTS We report the characterisation of a recombinant α-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me)GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an α-l-arabinofuranosidase (AbfA), and a β-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. CONCLUSIONS Our GH115 α-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.
Collapse
Affiliation(s)
- Lauren S. McKee
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Hampus Sunner
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - George E. Anasontzis
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Guillermo Toriz
- />Wallenberg Wood Science Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- />Department of Wood, Cellulose and Paper Research, University of Guadalajara, Guadalajara, Mexico
| | - Paul Gatenholm
- />Wallenberg Wood Science Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Vincent Bulone
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- />ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Francisco Vilaplana
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Xin D, Yang M, Chen X, Zhang J. The access of Trichoderma reesei 6A to cellulose is blocked by isolated hemicelluloses and their derivatives in biomass hydrolysis. RSC Adv 2016. [DOI: 10.1039/c6ra14617a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mannan inhibited action of CBHII from Trichoderma reesei by retarding the adsorption of CBHII to cellulose.
Collapse
Affiliation(s)
- Donglin Xin
- College of Forestry
- Northwest A&F University
- Yangling 712100
- China
| | - Ming Yang
- College of Forestry
- Northwest A&F University
- Yangling 712100
- China
| | - Xiang Chen
- College of Forestry
- Northwest A&F University
- Yangling 712100
- China
| | - Junhua Zhang
- College of Forestry
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
17
|
Momeni MH, Ubhayasekera W, Sandgren M, Ståhlberg J, Hansson H. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides. FEBS J 2015; 282:2167-77. [PMID: 25765184 DOI: 10.1111/febs.13265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED The filamentous fungus Hypocrea jecorina (anamorph of Trichoderma reesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance of such enzymes is susceptible to inhibition by compounds liberated by physico-chemical pre-treatment if the biomass is kept unwashed. Xylan and xylo-oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind this inhibition at a molecular level, we used X-ray crystallography to determine structures of H. jecorina Cel7A in complex with XOS. Structures with xylotriose, xylotetraose and xylopentaose revealed a predominant binding mode at the entrance of the substrate-binding tunnel of the enzyme, in which each xylose residue is shifted ~ 2.4 Å towards the catalytic center compared with binding of cello-oligosaccharides. Furthermore, partial occupancy of two consecutive xylose residues at subsites -2 and -1 suggests an alternative binding mode for XOS in the vicinity of the catalytic center. Interestingly, the -1 xylosyl unit exhibits an open aldehyde conformation in one of the structures and a ring-closed pyranoside in another complex. Complementary inhibition studies with p-nitrophenyl lactoside as substrate indicate mixed inhibition rather than pure competitive inhibition. DATABASE The atomic coordinates and structure factors are available in the Protein Data Bank under accession number 4D5I (H. jecorina Cel7A E212Q variant, complex with xylotriose), 4D5J (H. jecorina Cel7A E217Q variant, complex with xylotriose), 4D5O (H. jecorina Cel7A E212Q variant, complex with xylopentaose), 4D5P (H. jecorina Cel7A E217Q variant, complex with xylopentaose), 4D5Q (wild-type H. jecorina Cel7A, complex with xylopentaose) and 4D5V (H. jecorina Cel7A E217Q variant, complex with xylotetraose).
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Wimal Ubhayasekera
- Institute of Medicinal Chemistry, University of Copenhagen, Denmark.,MAX-Lab, Lund University, Sweden
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Kuusk S, Sørlie M, Väljamäe P. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. J Biol Chem 2015; 290:11678-91. [PMID: 25767120 DOI: 10.1074/jbc.m114.635631] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.
Collapse
Affiliation(s)
- Silja Kuusk
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Priit Väljamäe
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia and
| |
Collapse
|
19
|
Xue S, Uppugundla N, Bowman MJ, Cavalier D, Da Costa Sousa L, E Dale B, Balan V. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:195. [PMID: 26617670 PMCID: PMC4662034 DOI: 10.1186/s13068-015-0378-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/09/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. RESULTS Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEX-corn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. CONCLUSION The carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.
Collapse
Affiliation(s)
- Saisi Xue
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Nirmal Uppugundla
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Michael J. Bowman
- />USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, Peoria, IL 61604 USA
| | - David Cavalier
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- />DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Leonardo Da Costa Sousa
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Bruce. E Dale
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| | - Venkatesh Balan
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
| |
Collapse
|
20
|
Tang X, da Costa Sousa L, Jin M, Chundawat SPS, Chambliss CK, Lau MW, Xiao Z, Dale BE, Balan V. Designer synthetic media for studying microbial-catalyzed biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:1. [PMID: 26339291 PMCID: PMC4311453 DOI: 10.1186/s13068-014-0179-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/04/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. RESULTS The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. CONCLUSIONS The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.
Collapse
Affiliation(s)
- Xiaoyu Tang
- />Biogas Institute of Ministry of Agriculture, Section 4-13 Remin South Road, Chengdu, 610041 P. R. China
| | - Leonardo da Costa Sousa
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Mingjie Jin
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Shishir PS Chundawat
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
- />Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Room C-150A, Piscataway, NJ 08854 USA
| | | | - Ming W Lau
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Zeyi Xiao
- />School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 P. R. China
| | - Bruce E Dale
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Venkatesh Balan
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| |
Collapse
|
21
|
Colussi F, Sørensen TH, Alasepp K, Kari J, Cruys-Bagger N, Windahl MS, Olsen JP, Borch K, Westh P. Probing substrate interactions in the active tunnel of a catalytically deficient cellobiohydrolase (Cel7). J Biol Chem 2014; 290:2444-54. [PMID: 25477511 DOI: 10.1074/jbc.m114.624163] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases break down cellulose sequentially by sliding along the crystal surface with a single cellulose strand threaded through the catalytic tunnel of the enzyme. This so-called processive mechanism relies on a complex pattern of enzyme-substrate interactions, which need to be addressed in molecular descriptions of processivity and its driving forces. Here, we have used titration calorimetry to study interactions of cellooligosaccharides (COS) and a catalytically deficient variant (E212Q) of the enzyme Cel7A from Trichoderma reesei. This enzyme has ∼10 glucopyranose subsites in the catalytic tunnel, and using COS ligands with a degree of polymerization (DP) from 2 to 8, different regions of the tunnel could be probed. For COS ligands with a DP of 2-3 the binding constants were around 10(5) m(-1), and for longer ligands (DP 5-8) this value was ∼10(7) m(-1). Within each of these groups we did not find increased affinity as the ligands got longer and potentially filled more subsites. On the contrary, we found a small but consistent affinity loss as DP rose from 6 to 8, particularly at the higher investigated temperatures. Other thermodynamic functions (ΔH, ΔS, and ΔCp) decreased monotonously with both temperature and DP. Combined interpretation of these thermodynamic results and previously published structural data allowed assessment of an affinity profile along the length axis of the active tunnel.
Collapse
Affiliation(s)
- Francieli Colussi
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Trine H Sørensen
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Kadri Alasepp
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Jeppe Kari
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Nicolaj Cruys-Bagger
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Michael S Windahl
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Johan P Olsen
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- From the Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Denmark and
| |
Collapse
|
22
|
Pellegrini VOA, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P. Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12602-12609. [PMID: 25322452 DOI: 10.1021/la5024423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adsorption of cellulases on the cellulose surface is an integral part of the catalytic mechanism, and a detailed description of the adsorption process is therefore required for a fundamental understanding of this industrially important class of enzymes. However, the mode of adsorption has proven intricate, and several key questions remain open. Perhaps most notably it is not clear whether the adsorbed enzyme is in dynamic equilibrium with the free population or irreversibly associated with no or slow dissociation. To address this, we have systematically investigated adsorption reversibility for two cellobiohydrolases (Cel7A and Cel6A) and one endoglucanase (Cel7B) on four types of pure cellulose substrates. Specifically, we monitored dilution-induced release of adsorbed enzyme in samples that had previously been brought to a steady state (constant concentration of free enzyme). In simple dilution experiments (without centrifugation), the results consistently showed full reversibility. In contrast to this, resuspension of enzyme-substrate pellets separated by centrifugation showed extensive irreversibility. We conclude that these enzymes are in a dynamic equilibrium between free and adsorbed states but suggest that changes in the physical properties of cellulose caused by compaction of the pellet hampers subsequent release of adsorbed enzyme. This latter effect may be pertinent to both previous controversies in the literature on adsorption reversibility and the development of enzyme recycling protocols in the biomass industry.
Collapse
Affiliation(s)
- Vanessa O A Pellegrini
- Research Unit for Functional Biomaterials, NSM, Roskilde University , 1 Universitetsvej, Build. 18.1, DK-4000 Roskilde, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose. Biotechnol Lett 2014; 37:633-41. [DOI: 10.1007/s10529-014-1705-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
24
|
Xin D, Ge X, Sun Z, Viikari L, Zhang J. Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides. Enzyme Microb Technol 2014; 68:62-8. [PMID: 25435507 DOI: 10.1016/j.enzmictec.2014.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/14/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
Abstract
In the hydrolysis of softwood, significant amounts of manno-oligosaccharides (MOS) are released from mannan, the major hemicelluloses in softwood. However, the impact of MOS on the performance of cellulases is not yet clear. In this work, the effect of mannan and MOS in cellulose hydrolysis by cellulases, especially cellobiohydrolase I (CBHI) from Thermoascus aurantiacus (Ta Cel7A), was studied. The glucose yield of Avicel decreased with an increasing amount of added mannan. Commercial cellulases contained mannan hydrolysing enzymes, and β-glucosidase played an important role in mannan hydrolysis. Addition of 10mg/ml mannan reduced the glucose yield of Avicel (at 20g/l) from 40.1 to 24.3%. No inhibition of β-glucosidase by mannan was observed. The negative effects of mannan and MOS on the hydrolytic action of cellulases indicated that the inhibitory effect was at least partly attributed to the inhibition of Ta Cel7A (CBHI), but not on β-glucosidase. Kinetic experiments showed that MOS were competitive inhibitors of the CBHI from T. aurantiacus, and mannobiose had a stronger inhibitory effect on CBHI than mannotriose or mannotetraose. For efficient hydrolysis of softwood, it was necessary to add supplementary enzymes to hydrolyze both mannan and MOS to less inhibitory product, mannose.
Collapse
Affiliation(s)
- Donglin Xin
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Xiaoyan Ge
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zongping Sun
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FIN 00014 Helsinki, Finland
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| |
Collapse
|
25
|
The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover. Appl Biochem Biotechnol 2014; 174:146-55. [DOI: 10.1007/s12010-014-1049-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
26
|
Alasepp K, Borch K, Cruys-Bagger N, Badino S, Jensen K, Sørensen TH, Windahl MS, Westh P. In situ stability of substrate-associated cellulases studied by DSC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7134-7142. [PMID: 24856176 DOI: 10.1021/la500161e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work shows that differential scanning calorimetry (DSC) can be used to monitor the stability of substrate-adsorbed cellulases during long-term hydrolysis of insoluble cellulose. Thermal transitions of adsorbed enzyme were measured regularly in subsets of a progressing hydrolysis, and the size of the transition peak was used as a gauge of the population of native enzyme. Analogous measurements were made for enzymes in pure buffer. Investigations of two cellobiohydrolases, Cel6A and Cel7A, from Trichoderma reesei, which is an anamorph of the fungus Hypocrea jerorina, showed that these enzymes were essentially stable at 25 °C. Thus, over a 53 h experiment, Cel6A lost less than 15% of the native population and Cel7A showed no detectable loss for either the free or substrate-adsorbed state. At higher temperatures we found significant losses in the native populations, and at the highest tested temperature (49 °C) about 80% Cel6A and 35% of Cel7A was lost after 53 h of hydrolysis. The data consistently showed that Cel7A was more long-term stable than Cel6A and that substrate-associated enzyme was less long-term stable than enzyme in pure buffer stored under otherwise equal conditions. There was no correlation between the intrinsic stability, specified by the transition temperature in the DSC, and the long-term stability derived from the peak area. The results are discussed with respect to the role of enzyme denaturation for the ubiquitous slowdown observed in the enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
- Kadri Alasepp
- Research Unit for Functional Biomaterials, NSM, Roskilde University. 1 Universitetsvej , Build. 18.1, DK-4000 Roskilde Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase. Anal Biochem 2014; 447:162-8. [DOI: 10.1016/j.ab.2013.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022]
|
28
|
Selig MJ, Thygesen LG, Felby C. Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:159. [PMID: 25426165 PMCID: PMC4243321 DOI: 10.1186/s13068-014-0159-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Studies in bioconversions have continuously sought the development of processing strategies to overcome the "close physical association" between plant cell wall polymers thought to significantly contribute to biomass recalcitrance [Adv Space Res 18:251-265, 1996],[ Science 315:804-807, 2007]. To a lesser extent, studies have sought to understand biophysical factors responsible for the resistance of lignocelluloses to enzymatic degradation. Provided here are data supporting our hypothesis that the inhibitory potential of different cell wall polymers towards enzymatic cellulose hydrolysis is related to how much these polymers constrain the water surrounding them. We believe the entropy-reducing constraint imparted to polymer associated water plays a negative role by increasing the probability of detrimental interactions such as junction zone formation and the non-productive binding of enzymes. RESULTS Selected commercial lignocellulose-derived polymers, including hemicelluloses, pectins, and lignin, showed varied potential to inhibit 24-h cellulose conversion by a mix of purified cellobiohydrolase I and β-glucosidase. At low dry matter loadings (0.5% w/w), insoluble hemicelluloses were most inhibitory (reducing conversion relative to cellulose-only controls by about 80%) followed by soluble xyloglucan and wheat arabinoxylan (reductions of about 70% and 55%, respectively), while the lignin and pectins tested were the least inhibitory (approximately 20% reduction). Low field nuclear magnetic resonance (LF-NMR) relaxometry used to observe water-related proton relaxation in saturated polymer suspensions (10% dry solids, w/w) showed spin-spin, T2, relaxation time curves generally approached zero faster for the most inhibitory polymer preparations. The manner of this decline varied between polymers, indicating different biophysical aspects may differentially contribute to overall water constraint in each case. To better compare the LF-NMR data to inhibitory potential, T2 values from monocomponent exponential fits of relaxation curves were used as a measure of overall water constraint. These values generally correlated faster relaxation times (greater water constraint) with greater inhibition of the model cellulase system by the polymers. CONCLUSIONS The presented correlation of cellulase inhibition and proton relaxation data provides support for our water constraint-biomass recalcitrance hypothesis. Deeper investigation into polymer-cellulose-cellulase interactions should help elucidate the types of interactions that may be propagating this correlation. If these observations can be verified to be more than correlative, the hypothesis and data presented suggest that a focus on water-polymer interactions and ways to alter them may help resolve key biological lignocellulose processing bottlenecks.
Collapse
Affiliation(s)
- Michael J Selig
- IGN, Faculty of Science, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| | - Lisbeth G Thygesen
- IGN, Faculty of Science, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| | - Claus Felby
- IGN, Faculty of Science, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| |
Collapse
|
29
|
Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry 2013; 52:8938-48. [PMID: 24228828 DOI: 10.1021/bi401210n] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellobiohydrolases are exoacting, processive enzymes that effectively hydrolyze crystalline cellulose. They have attracted considerable interest because of their role in both natural carbon cycling and industrial enzyme cocktails used for the deconstruction of cellulosic biomass, but many mechanistic and regulatory aspects of their heterogeneous catalysis remain poorly understood. Here, we address this by applying a deterministic model to real-time kinetic data with high temporal resolution. We used two variants of the cellobiohydrolase Cel7A from Hypocrea jecorina , and three types of cellulose as substrate. Analysis of the pre-steady-state regime allowed delineation rate constants for both fast and slow steps in the enzymatic cycle and assessment of how these constants influenced the rate of hydrolysis at quasi-steady state. Processive movement on the cellulose strand advanced with characteristic times of 0.15-0.7 s per step at 25 °C, and the rate was highest on amorphous substrate. The cellulose binding module was found to raise this rate on crystalline, but not on amorphous, substrate. The rapid processive movement signified high intrinsic reactivity, but this parameter had marginal influence on the steady-state rate. This was because dissociation and association were slower and, hence, rate limiting. Specifically, the dissociation from the strand was found to occur with characteristic times of 45-100 s. This meant that dissociation was the bottleneck, except at very low substrate loads (0.5-1 g/L), where association became slower.
Collapse
Affiliation(s)
- Nicolaj Cruys-Bagger
- Research Unit for Functional Biomaterials, NSM, Roskilde University , Universitetsvej 1, DK-4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
30
|
Kont R, Kurašin M, Teugjas H, Väljamäe P. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:135. [PMID: 24053778 PMCID: PMC3849272 DOI: 10.1186/1754-6834-6-135] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/13/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. RESULTS Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. CONCLUSIONS The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of hemicellulose. Identification of the inhibitory compounds helps to design better enzyme mixtures for their degradation and to optimize the pretreatment regimes to minimize their formation.
Collapse
Affiliation(s)
- Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Mihhail Kurašin
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Hele Teugjas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b - 202, 51010 Tartu, Estonia
| |
Collapse
|
31
|
Teugjas H, Väljamäe P. Product inhibition of cellulases studied with 14C-labeled cellulose substrates. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:104. [PMID: 23883520 PMCID: PMC3726336 DOI: 10.1186/1754-6834-6-104] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND As a green alternative for the production of transportation fuels, the enzymatic hydrolysis of lignocellulose and subsequent fermentation to ethanol are being intensively researched. To be economically feasible, the hydrolysis of lignocellulose must be conducted at a high concentration of solids, which results in high concentrations of hydrolysis end-products, cellobiose and glucose, making the relief of product inhibition of cellulases a major challenge in the process. However, little quantitative information on the product inhibition of individual cellulases acting on cellulose substrates is available because it is experimentally difficult to assess the hydrolysis of the heterogeneous polymeric substrate in the high background of added products. RESULTS The cellobiose and glucose inhibition of thermostable cellulases from Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum acting on uniformly 14C-labeled bacterial cellulose and its derivatives, 14C-bacterial microcrystalline cellulose and 14C-amorphous cellulose, was studied. Cellulases from Trichoderma reesei were used for comparison. The enzymes most sensitive to cellobiose inhibition were glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs), followed by family 6 CBHs and endoglucanases (EGs). The strength of glucose inhibition followed the same order. The product inhibition of all enzymes was relieved at higher temperatures. The inhibition strength measured for GH7 CBHs with low molecular-weight model substrates did not correlate with that measured with 14C-cellulose substrates. CONCLUSIONS GH7 CBHs are the primary targets for product inhibition of the synergistic hydrolysis of cellulose. The inhibition must be studied on cellulose substrates instead of on low molecular-weight model substrates when selecting enzymes for lignocellulose hydrolysis. The advantages of using higher temperatures are an increase in the catalytic efficiency of enzymes and the relief of product inhibition.
Collapse
Affiliation(s)
- Hele Teugjas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b – 202, Tartu 51010, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b – 202, Tartu 51010, Estonia
| |
Collapse
|
32
|
Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P. Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol 2013; 52:163-9. [DOI: 10.1016/j.enzmictec.2013.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
33
|
Zhang J, Viikari L. Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. BIORESOURCE TECHNOLOGY 2012; 117:286-91. [PMID: 22613900 DOI: 10.1016/j.biortech.2012.04.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 05/18/2023]
Abstract
The effects of xylo-oligosaccharides (XOS) and xylose on the hydrolytic activities of cellulases, endoglucanase II (EGII, originating from Thermoascus aurantiacus), cellobiohydrolase I (CBHI, from T. aurantiacus), and cellobiohydrolase II (CBHII, from Trichoderma reesei) on Avicel and nanocellulose were investigated. After the addition of XOS, the amounts of cellobiose, the main product released from Avicel and nanocellulose by CBHI, decreased from 0.78 and 1.37 mg/ml to 0.59 and 1.23 mg/ml, respectively. During hydrolysis by CBHII, the amounts of cellobiose released from the substrates were almost cut in half after the addition of XOS. Kinetic experiments showed that xylobiose and xylotriose were competitive inhibitors of CBHI. The results revealed that the strong inhibition of cellulase by XOS can be attributed to the inhibitory effect of XOS especially on cellobiohydrolase I. The results indicate the necessity to totally hydrolyze xylo-oligosaccharides into the less inhibitory product, xylose, to increasing hydrolytic efficiency.
Collapse
Affiliation(s)
- Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | | |
Collapse
|