1
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. Cell Chem Biol 2023; 30:1680-1691.e6. [PMID: 37898120 PMCID: PMC10842177 DOI: 10.1016/j.chembiol.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jenni J B Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
2
|
Vargas BDO, dos Santos JR, Pereira GAG, de Mello FDSB. An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae. PeerJ 2023; 11:e16340. [PMID: 38047029 PMCID: PMC10691383 DOI: 10.7717/peerj.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023] Open
Abstract
Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae-a microbial cell widely used industrially for ethanol production-is unable to assimilate this sugar. Hence, in a world with raising environmental awareness, the efficient fermentation of pentoses is a crucial bottleneck to producing biofuels from renewable biomass resources. In this context, advances in the genetic mapping of S. cerevisiae have contributed to noteworthy progress in the understanding of xylose metabolism in yeast, as well as the identification of gene targets that enable the development of tailored strains for cellulosic ethanol production. Accordingly, this review focuses on the main strategies employed to understand the network of genes that are directly or indirectly related to this phenotype, and their respective contributions to xylose consumption in S. cerevisiae, especially for ethanol production. Altogether, the information in this work summarizes the most recent and relevant results from scientific investigations that endowed S. cerevisiae with an outstanding capability for commercial ethanol production from xylose.
Collapse
Affiliation(s)
- Beatriz de Oliveira Vargas
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Jade Ribeiro dos Santos
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | | |
Collapse
|
3
|
Barreto MQ, Garbelotti CV, de Moura Soares J, Grandis A, Buckeridge MS, Leone FA, Ward RJ. Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity. Enzyme Microb Technol 2023; 166:110230. [PMID: 36966679 DOI: 10.1016/j.enzmictec.2023.110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Xylose isomerase catalyzes the isomerization of D-xylose to D-xylulose with promiscuous activity for other saccharides including D-glucose, D-allose, and L-arabinose. The xylose isomerase from the fungus Piromyces sp. E2 (PirE2_XI) is used to engineer xylose usage by the fermenting yeast Saccharomyces cerevisiae, but its biochemical characterization is poorly understood with divergent catalytic parameters reported. We have measured the kinetic parameters of the PirE2_XI and analyzed its thermostability and pH-dependence towards different substrates. The PirE2_XI shows promiscuous activity towards D-xylose, D-glucose, D-ribose and L-arabinose with variable effects depending on different divalent ions and epimerizes D-xylose at C3 to produce D-ribulose in a substrate/product dependent ratio. The enzyme follows Michaelis-Menten kinetics for the substrates used and although KM values for D-xylose are comparable at 30 and 60 °C, the kcat/KM is three-fold greater at 60 °C. The purified PirE2_XI shows maximal activity at 65 °C in the pH range of 6.5-7.5 and is a thermostable enzyme, maintaining full activity over 48 h at 30 °C or 12 h at 60 °C. This is the first report demonstrating epimerase activity of the PirE2_XI and its ability to isomerize D-ribose and L-arabinose, and provides a comprehensive in vitro study of substrate specificity, effect of metal ions and temperature on enzyme activity and these findings advance the knowledge of the mechanism of action of this enzyme.
Collapse
|
4
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534183. [PMID: 36993673 PMCID: PMC10055417 DOI: 10.1101/2023.03.24.534183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ~5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current addresses: Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada; Abcellera Biologics Inc, Vancouver BC V5Y 0A1, Canada
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jenni JB Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Wang LR, Zhang ZX, Nong FT, Li J, Huang PW, Ma W, Zhao QY, Sun XM. Engineering the xylose metabolism in Schizochytrium sp. to improve the utilization of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:114. [PMID: 36289497 PMCID: PMC9609267 DOI: 10.1186/s13068-022-02215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Schizochytrium sp. is a heterotrophic, oil-producing microorganism that can efficiently produce lipids. However, the industrial production of bulk chemicals using Schizochytrium sp. is still not economically viable due to high-cost culture medium. Replacing glucose with cheap and renewable lignocellulose is a highly promising approach to reduce production costs, but Schizochytrium sp. cannot efficiently metabolize xylose, a major pentose in lignocellulosic biomass. RESULTS In order to improve the utilization of lignocellulose by Schizochytrium sp., we cloned and functionally characterized the genes encoding enzymes involved in the xylose metabolism. The results showed that the endogenous xylose reductase and xylulose kinase genes possess corresponding functional activities. Additionally, attempts were made to construct a strain of Schizochytrium sp. that can effectively use xylose by using genetic engineering techniques to introduce exogenous xylitol dehydrogenase/xylose isomerase; however, the introduction of heterologous xylitol dehydrogenase did not produce a xylose-utilizing engineered strain, whereas the introduction of xylose isomerase did. The results showed that the engineered strain 308-XI with an exogenous xylose isomerase could consume 8.2 g/L xylose over 60 h of cultivation. Xylose consumption was further elevated to 11.1 g/L when heterologous xylose isomerase and xylulose kinase were overexpressed simultaneously. Furthermore, cultivation of 308-XI-XK(S) using lignocellulosic hydrolysates, which contained glucose and xylose, yielded a 22.4 g/L of dry cell weight and 5.3 g/L of total lipid titer, respectively, representing 42.7 and 30.4% increases compared to the wild type. CONCLUSION This study shows that engineering of Schizochytrium sp. to efficiently utilize xylose is conducive to improve its utilization of lignocellulose, which can reduce the costs of industrial lipid production.
Collapse
Affiliation(s)
- Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Quan-Yu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Sartaj K, Patel A, Matsakas L, Prasad R. Unravelling Metagenomics Approach for Microbial Biofuel Production. Genes (Basel) 2022; 13:1942. [PMID: 36360179 PMCID: PMC9689425 DOI: 10.3390/genes13111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Renewable biofuels, such as biodiesel, bioethanol, and biobutanol, serve as long-term solutions to fossil fuel depletion. A sustainable approach feedstock for their production is plant biomass, which is degraded to sugars with the aid of microbes-derived enzymes, followed by microbial conversion of those sugars to biofuels. Considering their global demand, additional efforts have been made for their large-scale production, which is ultimately leading breakthrough research in biomass energy. Metagenomics is a powerful tool allowing for functional gene analysis and new enzyme discovery. Thus, the present article summarizes the revolutionary advances of metagenomics in the biofuel industry and enlightens the importance of unexplored habitats for novel gene or enzyme mining. Moreover, it also accentuates metagenomics potentials to explore uncultivable microbiomes as well as enzymes associated with them.
Collapse
Affiliation(s)
- Km Sartaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
de Souza Colombo G, Mendes IV, de Morais Souto B, Barreto CC, Serra LA, Noronha EF, Parachin NS, de Almeida JRM, Quirino BF. Identification and functional expression of a new xylose isomerase from the goat rumen microbiome in Saccharomyces cerevisiae. Lett Appl Microbiol 2022; 74:941-948. [PMID: 35239207 DOI: 10.1111/lam.13689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
The current climate crisis demands replacement of fossil energy sources with sustainable alternatives. In this scenario, second-generation bioethanol, a product of lignocellulosic biomass fermentation, represents a more sustainable alternative. However, Saccharomyces cerevisiae cannot metabolize pentoses, such as xylose, present as a major component of lignocellulosic biomass. Xylose isomerase (XI) is an enzyme that allows xylose consumption by yeasts, since it converts xylose into xylulose, which is further converted to ethanol by the pentose-phosphate pathway. Only a few XI were successfully expressed in S. cerevisiae strains. This work presents a new bacterial xylose isomerase, named GR-XI 1, obtained from a Brazilian goat rumen metagenomic library. Phylogenetic analysis confirmed the bacterial origin of the gene, which is related to Firmicutes xylose isomerases. After codon optimization, this enzyme, renamed XySC1, was functionally expressed in S. cerevisiae, allowing growth in media with xylose as sole carbon source. Overexpression of XySC1 in S. cerevisiae allowed the recombinant strain to efficiently consume and metabolize xylose under aerobic conditions.
Collapse
Affiliation(s)
- Gabriel de Souza Colombo
- Genetics and Biotechnology Laboratory, Embrapa-Agroenergy, Brasília, DF, Brazil, 70770-901.,Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil, 70790-160
| | - Isis Viana Mendes
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil, 70790-160
| | | | - Cristine Chaves Barreto
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil, 70790-160
| | - Luana Assis Serra
- Genetics and Biotechnology Laboratory, Embrapa-Agroenergy, Brasília, DF, Brazil, 70770-901
| | | | - Nádia Skorupa Parachin
- Departmentof Cellular Biology, Universidade de Brasília, Brasília, DF, Brazil, 70910-900
| | | | - Betania Ferraz Quirino
- Genetics and Biotechnology Laboratory, Embrapa-Agroenergy, Brasília, DF, Brazil, 70770-901
| |
Collapse
|
8
|
Miyamoto RY, de Melo RR, de Mesquita Sampaio IL, de Sousa AS, Morais ER, Sargo CR, Zanphorlin LM. Paradigm shift in xylose isomerase usage: a novel scenario with distinct applications. Crit Rev Biotechnol 2021; 42:693-712. [PMID: 34641740 DOI: 10.1080/07388551.2021.1962241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.
Collapse
Affiliation(s)
- Renan Yuji Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences (FCF), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Edvaldo Rodrigo Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Cintia Regina Sargo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
9
|
A novel D-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae. Sci Rep 2021; 11:4766. [PMID: 33637780 PMCID: PMC7910561 DOI: 10.1038/s41598-021-83937-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Carbohydrate rich substrates such as lignocellulosic hydrolysates remain one of the primary sources of potentially renewable fuel and bulk chemicals. The pentose sugar d-xylose is often present in significant amounts along with hexoses. Saccharomyces cerevisiae can acquire the ability to metabolize d-xylose through expression of heterologous d-xylose isomerase (XI). This enzyme is notoriously difficult to express in S. cerevisiae and only fourteen XIs have been reported to be active so far. We cloned a new d-xylose isomerase derived from microorganisms in the gut of the wood-feeding beetle Odontotaenius disjunctus. Although somewhat homologous to the XI from Piromyces sp. E2, the new gene was identified as bacterial in origin and the host as a Parabacteroides sp. Expression of the new XI in S. cerevisiae resulted in faster aerobic growth than the XI from Piromyces on d-xylose media. The d-xylose isomerization rate conferred by the new XI was also 72% higher, while absolute xylitol production was identical in both strains. Interestingly, increasing concentrations of xylitol (up to 8 g L−1) appeared not to inhibit d-xylose consumption. The newly described XI displayed 2.6 times higher specific activity, 37% lower KM for d-xylose, and exhibited higher activity over a broader temperature range, retaining 51% of maximal activity at 30 °C compared with only 29% activity for the Piromyces XI.
Collapse
|
10
|
Tang R, Ye P, Alper HS, Liu Z, Zhao X, Bai F. Identification and characterization of novel xylose isomerases from a Bos taurus fecal metagenome. Appl Microbiol Biotechnol 2019; 103:9465-9477. [PMID: 31701197 DOI: 10.1007/s00253-019-10161-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Discovering sugar metabolism genes is of great interest for lignocellulosic biorefinery. Xylose isomerases (XIs) were commonly screened from metagenomes derived from bovine rumen, soil, and other sources. However, so far, XIs and other sugar-utilizing enzymes have not been discovered from fecal metagenomes. In this study, environmental DNA from the fecal samples collected from yellow cattle (Bos taurus) was sequenced and analyzed. In the whole 14.26 Gbp clean data, 92 putative XIs were annotated. After sequence analysis, seven putative XIs were heterologously expressed in Escherichia coli and characterized in vitro. The XIs 58444 and 58960 purified from E. coli exhibited 22% higher enzyme activity when compared with that of the native E. coli XI. The XI 58444, similar to the XI from Lachnospira multipara, exhibited a relatively stable activity profile across different pH conditions. Four XIs were further investigated in budding yeast Saccharomyces cerevisiae after codon optimization. Overexpression of the codon-optimized 58444 enabled S. cerevisiae to utilize 6.4 g/L xylose after 96 h without any other genetic manipulations, which is 56% higher than the control yeast strain overexpressing an optimized XI gene xylA*3 selected by three rounds of mutation. Our results provide evidence that a bovine fecal metagenome is a novel and valuable source of XIs and other industrial enzymes for biotechnology applications.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiliang Ye
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhanying Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China.,Center for Conservation and Emission Reductioin in Fermentation Industry, Inner Mongolia, Hohhot, 010051, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Gordeev AA, Chetverin AB. Methods for Screening Live Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:S81-S102. [DOI: 10.1134/s0006297918140080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Seppälä S, Wilken SE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng 2017; 44:45-59. [DOI: 10.1016/j.ymben.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
13
|
Temer B, dos Santos LV, Negri VA, Galhardo JP, Magalhães PHM, José J, Marschalk C, Corrêa TLR, Carazzolle MF, Pereira GAG. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnol 2017; 17:71. [PMID: 28888227 PMCID: PMC5591498 DOI: 10.1186/s12896-017-0389-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon. RESULTS This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae. CONCLUSIONS Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.
Collapse
Affiliation(s)
- Beatriz Temer
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Leandro Vieira dos Santos
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
- CTBE – Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP Brazil
| | - Victor Augusti Negri
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Juliana Pimentel Galhardo
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Pedro Henrique Mello Magalhães
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Juliana José
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Cidnei Marschalk
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970 Brazil
- CTBE – Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP Brazil
| |
Collapse
|
14
|
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 2017; 16:82. [PMID: 28494761 PMCID: PMC5425999 DOI: 10.1186/s12934-017-0694-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Efficient xylose utilization is one of the most important pre-requisites for developing an economic microbial conversion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxidoreductase pathway consisting of NAD(P)H-linked xylose reductase and NAD+-linked xylitol dehydrogenase, and one-step isomerase pathway using xylose isomerase have been employed to enable xylose assimilation in engineered S. cerevisiae. However, the resulting engineered yeast exhibited inefficient and slow xylose fermentation. In order to improve the yield and productivity of xylose fermentation, expression levels of xylose assimilation pathway enzymes and their kinetic properties have been optimized, and additional optimizations of endogenous or heterologous metabolisms have been achieved. These efforts have led to the development of engineered yeast strains ready for the commercialization of cellulosic bioethanol. Interestingly, xylose metabolism by engineered yeast was preferably respiratory rather than fermentative as in glucose metabolism, suggesting that xylose can serve as a desirable carbon source capable of bypassing metabolic barriers exerted by glucose repression. Accordingly, engineered yeasts showed superior production of valuable metabolites derived from cytosolic acetyl-CoA and pyruvate, such as 1-hexadecanol and lactic acid, when the xylose assimilation pathway and target synthetic pathways were optimized in an adequate manner. While xylose has been regarded as a sugar to be utilized because it is present in cellulosic hydrolysates, potential benefits of using xylose instead of glucose for yeast-based biotechnological processes need to be realized.
Collapse
Affiliation(s)
- Suryang Kwak
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Katahira S, Muramoto N, Moriya S, Nagura R, Tada N, Yasutani N, Ohkuma M, Onishi T, Tokuhiro K. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:203. [PMID: 28852424 PMCID: PMC5569483 DOI: 10.1186/s13068-017-0890-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/16/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae, a promising host for lignocellulosic bioethanol production, is unable to metabolize xylose. In attempts to confer xylose utilization ability in S. cerevisiae, a number of xylose isomerase (XI) genes have been expressed heterologously in this yeast. Although several of these XI encoding genes were functionally expressed in S. cerevisiae, the need still exists for a S. cerevisiae strain with improved xylose utilization ability for use in the commercial production of bioethanol. Although currently much effort has been devoted to achieve the objective, one of the solutions is to search for a new XI gene that would confer superior xylose utilization in S. cerevisiae. Here, we searched for novel XI genes from the protists residing in the hindgut of the termite Reticulitermes speratus. RESULTS Eight novel XI genes were obtained from a cDNA library, prepared from the protists of the R. speratus hindgut, by PCR amplification using degenerated primers based on highly conserved regions of amino acid sequences of different XIs. Phylogenetic analysis classified these cloned XIs into two groups, one showed relatively high similarities to Bacteroidetes and the other was comparatively similar to Firmicutes. The growth rate and the xylose consumption rate of the S. cerevisiae strain expressing the novel XI, which exhibited highest XI activity among the eight XIs, were superior to those exhibited by the strain expressing the XI gene from Piromyces sp. E2. Substitution of the asparagine residue at position 337 of the novel XI with a cysteine further improved the xylose utilization ability of the yeast strain. Interestingly, introducing point mutations in the corresponding asparagine residues in XIs originated from other organisms, such as Piromyces sp. E2 or Clostridium phytofermentans, similarly improved xylose utilization in S. cerevisiae. CONCLUSIONS A novel XI gene conferring superior xylose utilization in S. cerevisiae was successfully isolated from the protists in the termite hindgut. Isolation of this XI gene and identification of the point mutation described in this study might contribute to improving the productivity of industrial bioethanol.
Collapse
Affiliation(s)
- Satoshi Katahira
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuhiko Muramoto
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Risa Nagura
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuki Tada
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Noriko Yasutani
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Moriya Ohkuma
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Toru Onishi
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Kenro Tokuhiro
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| |
Collapse
|
16
|
Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure. Antonie van Leeuwenhoek 2016; 109:1217-33. [DOI: 10.1007/s10482-016-0723-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
17
|
Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:19512. [PMID: 26781725 PMCID: PMC4726032 DOI: 10.1038/srep19512] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains with improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. The mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min−1•mg−1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.
Collapse
|
18
|
Mert MJ, la Grange DC, Rose SH, van Zyl WH. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J Ind Microbiol Biotechnol 2016; 43:431-40. [PMID: 26749525 DOI: 10.1007/s10295-015-1727-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Abstract
Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source. Under oxygen limitation, the strain produced ethanol from xylose at a maximum theoretical yield of ~90 %. This study is one of only a few that demonstrates the construction of a S. cerevisiae strain capable of growth on xylan as sole carbohydrate source by means of recombinant enzymes.
Collapse
Affiliation(s)
- Marlin John Mert
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Daniël Coenrad la Grange
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Shaunita Hellouise Rose
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Willem Heber van Zyl
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
19
|
Montella S, Amore A, Faraco V. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development. Crit Rev Biotechnol 2015; 36:998-1009. [PMID: 26381035 DOI: 10.3109/07388551.2015.1083939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.
Collapse
Affiliation(s)
- Salvatore Montella
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| | - Antonella Amore
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| | - Vincenza Faraco
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| |
Collapse
|
20
|
Abstract
This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.
Collapse
Affiliation(s)
- Rimantas Kodzius
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
21
|
Peng B, Huang S, Liu T, Geng A. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb Cell Fact 2015; 14:70. [PMID: 25981595 PMCID: PMC4436767 DOI: 10.1186/s12934-015-0253-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. RESULTS Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. CONCLUSIONS This study demonstrated that XIs clustered in the mammal gut Bacteroidetes group were able to be expressed functionally in S. cerevisiae and background strain anaerobic adaptive evolution in xylose medium is essential for the screening of functional XIs. The methods outlined in this paper are instructive for the identification of novel XIs that are functional in S. cerevisiae.
Collapse
Affiliation(s)
- Bingyin Peng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore.
| | - Shuangcheng Huang
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore. .,School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, Peoples Republic of China.
| | - Tingting Liu
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore. .,School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, Peoples Republic of China.
| | - Anli Geng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore.
| |
Collapse
|
22
|
Leis B, Angelov A, Mientus M, Li H, Pham VTT, Lauinger B, Bongen P, Pietruszka J, Gonçalves LG, Santos H, Liebl W. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 2015; 6:275. [PMID: 25904908 PMCID: PMC4389547 DOI: 10.3389/fmicb.2015.00275] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/19/2015] [Indexed: 01/27/2023] Open
Abstract
Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and preliminarily characterized. Our work underscores the benefit of using additional screening hosts other than E. coli for the identification of novel biocatalysts with industrial relevance.
Collapse
Affiliation(s)
- Benedikt Leis
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Angel Angelov
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Markus Mientus
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Haijuan Li
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Vu T T Pham
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Benjamin Lauinger
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Patrick Bongen
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Jörg Pietruszka
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München Freising, Germany
| |
Collapse
|
23
|
Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics. J Biosci Bioeng 2015; 120:174-80. [PMID: 25656071 DOI: 10.1016/j.jbiosc.2014.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating <90% identity with known XIs in the database accounted for 89% of the total xylA phylotypes. The differences among xylA members and compositions within each soil sample were significantly smaller than they were between different soils based on a UniFrac distance analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications.
Collapse
|
24
|
Yang G, Ding Y. Recent advances in biocatalyst discovery, development and applications. Bioorg Med Chem 2014; 22:5604-12. [DOI: 10.1016/j.bmc.2014.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
|
25
|
Jacquiod S, Demanèche S, Franqueville L, Ausec L, Xu Z, Delmont TO, Dunon V, Cagnon C, Mandic-Mulec I, Vogel TM, Simonet P. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library. J Biotechnol 2014; 190:18-29. [PMID: 24721211 DOI: 10.1016/j.jbiotec.2014.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/27/2022]
Abstract
A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| | - Sandrine Demanèche
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laure Franqueville
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Luka Ausec
- Department for Food Science and Technology Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zhuofei Xu
- Molecular Microbial Ecology Group, Section of Microbiology, København Universitet, København, Denmark
| | - Tom O Delmont
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Vincent Dunon
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, University of Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Christine Cagnon
- Équipe Environnement et Microbiologie, IBEAS - UFR Sciences et Techniques, Université de Pau et des Pays de l'Adour, 64013 Pau, France
| | - Ines Mandic-Mulec
- Department for Food Science and Technology Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Timothy M Vogel
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
26
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
27
|
Salusjärvi L, Kaunisto S, Holmström S, Vehkomäki ML, Koivuranta K, Pitkänen JP, Ruohonen L. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2013; 40:1383-92. [PMID: 24113892 DOI: 10.1007/s10295-013-1344-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023]
Abstract
Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT, Technical Research Centre of Finland, PO Box 1000, 02044, VTT, Finland,
| | | | | | | | | | | | | |
Collapse
|
28
|
Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:84. [PMID: 23721368 PMCID: PMC3673840 DOI: 10.1186/1754-6834-6-84] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation. RESULTS Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain's ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM. CONCLUSION This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.
Collapse
Affiliation(s)
- Ronald E Hector
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Bruce S Dien
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Michael A Cotta
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Jeffrey A Mertens
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| |
Collapse
|
29
|
Leis B, Angelov A, Liebl W. Screening and expression of genes from metagenomes. ADVANCES IN APPLIED MICROBIOLOGY 2013; 83:1-68. [PMID: 23651593 DOI: 10.1016/b978-0-12-407678-5.00001-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.
Collapse
Affiliation(s)
- Benedikt Leis
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Bavaria, Germany
| | | | | |
Collapse
|
30
|
Kovalevsky A, Hanson BL, Mason SA, Forsyth VT, Fisher Z, Mustyakimov M, Blakeley MP, Keen DA, Langan P. Inhibition of D-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1201-6. [PMID: 22948921 PMCID: PMC3489103 DOI: 10.1107/s0907444912024808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022]
Abstract
D-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni(2+) cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg(2+) ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni(2+) ions occupying the catalytic metal site (M2) were found at two locations, while Mg(2+) in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2012; 78:5708-16. [PMID: 22685138 DOI: 10.1128/aem.01419-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.
Collapse
|
32
|
Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:14. [PMID: 22424089 PMCID: PMC3364893 DOI: 10.1186/1754-6834-5-14] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/16/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. RESULTS To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. CONCLUSION Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization, further catabolism of D-glucose can also impede pentose utilization. Nevertheless, the results suggest that co-fermentation of pentoses in the presence of D-glucose can significantly be improved by the overexpression of pentose transporters, especially if they are not inhibited by D-glucose.
Collapse
Affiliation(s)
- Thorsten Subtil
- Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Owen JG, Robins KJ, Parachin NS, Ackerley DF. A functional screen for recovery of 4'-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environ Microbiol 2012; 14:1198-209. [PMID: 22356582 DOI: 10.1111/j.1462-2920.2012.02699.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The single-module non-ribosomal peptide synthetase BpsA from Streptomyces lavendulae has the unique ability to autonomously synthesize a coloured product (indigoidine) from a single substrate (l-glutamine), conditional upon activation by a 4'-phosphopantetheinyl transferase (PPTase) partner. We show that bpsA can be expressed in an entD PPTase gene deleted mutant of Escherichia coli to yield a sensitive reporter strain for recovery of PPTase genes from metagenome libraries. We also show that recombinant bpsA constructs, generated by substitution of the native peptidyl carrier protein domain followed by directed evolution to restore function, can be used to increase the diversity of PPTase genes recovered from a sample. As PPTases are essential for activation of non-ribosomal peptide synthetase and polyketide synthase enzymes, they are frequently associated with secondary metabolite gene clusters. Nearly half of the PPTases recovered in our screening of two small-insert soil metagenome libraries were genetically linked to recognizable secondary metabolite biosynthetic genes, demonstrating that PPTase-targeting functional screens can be used for efficient recovery of natural product gene clusters from metagenome libraries. The plasticity and portability of bpsA reporter genes can potentially be exploited to maximize recovery and expression of PPTase-bearing clones in a wide range of hosts.
Collapse
Affiliation(s)
- J G Owen
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | | | | | | |
Collapse
|