1
|
Yang X, Li Z, Li L, Li N, Jing F, Hu L, Shang Q, Zhang X, Zhou Y, Pan X. Depolymerization and Demethylation of Kraft Lignin in Molten Salt Hydrate and Applications as an Antioxidant and Metal Ion Scavenger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13568-13577. [PMID: 34730357 DOI: 10.1021/acs.jafc.1c05759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To improve the reactivity and enrich the functionality of lignin for valorization, kraft lignin was depolymerized and demethylated via cleaving aryl and alkyl ether bonds in acidic lithium bromide trihydrate (∼60% LiBr aqueous solution). It was found that the cleavage of the ether bonds followed the order of β-O-4 ether > aryl alkyl ether in phenylcoumaran > dialkyl ether in resinol > methoxyl (MeO). The depolymerization via β-O-4 cleavage occurred under mild conditions (e.g., <0.5 M HCl at 110 °C), while sufficient demethylation of the lignin needed harsher conditions (>1.5 M HCl). Both depolymerization and demethylation generated new aromatic hydroxyl (ArOH). With 2.4 M HCl, MeO content dropped from 4.85 to 0.95 mmol/g lignin, and ArOH content increased from 2.78 to 5.09 mmol/g lignin. The depolymerized and demethylated kraft lignin showed excellent antioxidant activity and Cr(VI)-scavenging capacity, compared with original kraft lignin and tannins.
Collapse
Affiliation(s)
- Xiaohui Yang
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Dongxiaofu-1 Xiangshan Road, Beijing 100091, China
| | - Zheng Li
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| | - Long Li
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Ning Li
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| | - Fei Jing
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Lihong Hu
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Dongxiaofu-1 Xiangshan Road, Beijing 100091, China
| | - Qianqian Shang
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xiao Zhang
- Center for Bioproducts and Bioenergy, Washington State University, 2710 University Drive, Richland, Washington 99354, United States
| | - Yonghong Zhou
- Jiangsu Province Key Laboratory of Biomass Energy and Material; Jiangsu Province Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
3
|
Liu X, Van Acker R, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, Muylle H, Bosio M, Ralph J, Vanholme R, Boerjan W. Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1240-1257. [PMID: 33258151 DOI: 10.1111/tpj.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wannes Voorend
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas Pallidis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Hilde Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Dixon RA, Sarnala S. Proanthocyanidin Biosynthesis-a Matter of Protection. PLANT PHYSIOLOGY 2020; 184:579-591. [PMID: 32817234 PMCID: PMC7536678 DOI: 10.1104/pp.20.00973] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins are the second most abundant plant phenolic polymer, but, despite intensive investigation, several aspects of their biosynthesis and functions remain unclear.
Collapse
Affiliation(s)
- Richard A Dixon
- Hagler Institute for Advanced Study and Department of Biological Sciences, Texas A&M University, College Station, Texas 77843-3572
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Sai Sarnala
- Texas Academy of Mathematics and Science, University of North Texas, Denton, Texas 76203-5017
| |
Collapse
|
5
|
Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, Ress D, Pan X, Ralph J. Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110070. [PMID: 31481197 DOI: 10.1016/j.plantsci.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/19/2023]
Abstract
Plant biologists are seeking new approaches for modifying lignin to improve the digestion and utilization of structural polysaccharides in crop cultivars for the production of biofuels, biochemicals, and livestock. To identify promising targets for lignin bioengineering, we artificially lignified maize (Zea mays L.) cell walls with normal monolignols plus 21 structurally diverse alternative monomers to assess their suitability for lignification and for improving fiber digestibility. Lignin formation and structure were assessed by mass balance, Klason lignin, acetyl bromide lignin, gel-state 2D-NMR and thioacidolysis procedures, and digestibility was evaluated with rumen microflora and from glucose production by fungal enzymes following mild acid or base pretreatments. Highly acidic or hydrophilic monomers proved unsuitable for lignin modification because they severely depressed cell wall lignification. By contrast, monomers designed to moderately alter hydrophobicity or introduce cleavable acetal, amide, or ester functionalities into the polymer often readily formed lignin, but most failed to improve digestibility, even after chemical pretreatment. Fortunately, several types of phenylpropanoid derivatives containing multiple ester-linked catechol or pyrogallol units were identified as desirable genetic engineering targets because they readily formed wall-bound polymers and improved digestibility, presumably by blocking cross-linking of lignin to structural polysaccharides and promoting lignin fragmentation during mild acidic and especially alkaline pretreatment.
Collapse
Affiliation(s)
| | - Christy Davidson
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Yuki Tobimatsu
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hoon Kim
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Yimin Zhu
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Martina Opietnik
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Nicholas Santoro
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Cliff E Foster
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Fengxia Yue
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Dino Ress
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA
| | - John Ralph
- Department of Biochemistry, and D.O.E. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-lignins in rice cell walls. Sci Rep 2019; 9:11597. [PMID: 31406182 PMCID: PMC6690965 DOI: 10.1038/s41598-019-47957-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/26/2019] [Indexed: 01/26/2023] Open
Abstract
Lignin is a phenylpropanoid polymer produced in the secondary cell walls of vascular plants. Although most eudicot and gymnosperm species generate lignins solely via polymerization of p-hydroxycinnamyl alcohols (monolignols), grasses additionally use a flavone, tricin, as a natural lignin monomer to generate tricin-incorporated lignin polymers in cell walls. We previously found that disruption of a rice 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (OsCAldOMT1) reduced extractable tricin-type metabolites in rice vegetative tissues. This same enzyme has also been implicated in the biosynthesis of sinapyl alcohol, a monolignol that constitutes syringyl lignin polymer units. Here, we further demonstrate through in-depth cell wall structural analyses that OsCAldOMT1-deficient rice plants produce altered lignins largely depleted in both syringyl and tricin units. We also show that recombinant OsCAldOMT1 displayed comparable substrate specificities towards both 5-hydroxyconiferaldehyde and selgin intermediates in the monolignol and tricin biosynthetic pathways, respectively. These data establish OsCAldOMT1 as a bifunctional O-methyltransferase predominantly involved in the two parallel metabolic pathways both dedicated to the biosynthesis of tricin-lignins in rice cell walls. Given that cell wall digestibility was greatly enhanced in the OsCAldOMT1-deficient rice plants, genetic manipulation of CAldOMTs conserved in grasses may serve as a potent strategy to improve biorefinery applications of grass biomass.
Collapse
|
7
|
Carlos Del Río J, Rencoret J, Gutiérrez A, Kim H, Ralph J. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. PLANT PHYSIOLOGY 2017; 174:2072-2082. [PMID: 28588115 PMCID: PMC5543948 DOI: 10.1104/pp.17.00362] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 05/03/2023]
Abstract
Lignin, the plant cell wall polymer that binds fibers together but makes processing difficult, is traditionally formed from three monomers, the so-called monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). Recently, we discovered, in grass lignins, a phenolic monomer that falls outside the canonical lignin biosynthetic pathway, the flavone tricin. As we show here, palm fruit (macaúba [Acrocomia aculeata], carnauba [Copernicia prunifera], and coconut [Cocos nucifera]) endocarps contain lignin polymers derived in part from a previously unconsidered class of lignin monomers, the hydroxystilbenes, including the valuable compounds piceatannol and resveratrol. Piceatannol could be released from these lignins upon derivatization followed by reductive cleavage, a degradative method that cleaves β-ether bonds, indicating that at least a fraction is incorporated through labile ether bonds. Nuclear magnetic resonance spectroscopy of products from the copolymerization of piceatannol and monolignols confirms the structures in the natural polymer and demonstrates that piceatannol acts as an authentic monomer participating in coupling and cross-coupling reactions during lignification. Therefore, palm fruit endocarps contain a new class of stilbenolignin polymers, further expanding the definition of lignin and implying that compounds such as piceatannol and resveratrol are potentially available in what is now essentially a waste product.
Collapse
Affiliation(s)
- José Carlos Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. PLANT PHYSIOLOGY 2017; 174:972-985. [PMID: 28385728 PMCID: PMC5462022 DOI: 10.1104/pp.16.01973] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuri Takeda
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiro Suzuki
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaomi Yamamura
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Li M, Pu Y, Ragauskas AJ. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Front Chem 2016; 4:45. [PMID: 27917379 PMCID: PMC5114238 DOI: 10.3389/fchem.2016.00045] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability-pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
Collapse
Affiliation(s)
- Mi Li
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Yunqiao Pu
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National LaboratoryOak Ridge, TN, USA; Department of Chemical and Bimolecular Engineering, University of Tennessee KnoxvilleKnoxville, TN, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University Tennessee Institute of AgricultureKnoxville, TN, USA
| |
Collapse
|
10
|
Gao R, Lu F, Zhu Y, Hahn MG, Ralph J. Flexible Method for Conjugation of Phenolic Lignin Model Compounds to Carrier Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7782-7788. [PMID: 27690421 DOI: 10.1021/acs.jafc.6b04273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linking lignin model compounds to carrier proteins is required either to raise antibodies to them or to structurally screen antibodies raised against lignins or models. This paper describes a flexible method to link phenolic compounds of interest to cationic bovine serum albumin (cBSA) without interfering with their important structural features. With the guaiacylglycerol-β-guaiacyl ether dimer, for example, the linking was accomplished in 89% yield with the number of dimers per carrier protein being as high as 50; NMR experiments on a 15N- and 13C-labeled conjugation product indicated that 13 dimers were added to the native lysine residues and the remainder (∼37) to the amine moieties on the ethylenediamine linkers added to BSA; ∼32% of the available primary amine groups on cBSA were therefore conjugated to the hapten. This loading is suitable for attempting to raise new antibodies to plant lignins and for screening.
Collapse
Affiliation(s)
- Ruili Gao
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison , Madison, Wisconsin 53726, United States
| | - Fachuang Lu
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison , Madison, Wisconsin 53726, United States
| | - Yimin Zhu
- Department of Chemistry, The Pennsylvania State University , Altoona College, 3000 Ivyside Park, Altoona, Pennsylvania 16601, United States
| | - Michael G Hahn
- Complex Carbohydrate Research Center, The University of Georgia , Athens, Georgia 30602, United States
| | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison , Madison, Wisconsin 53726, United States
| |
Collapse
|
11
|
Elumalai S, Agarwal B, Sangwan RS. Thermo-chemical pretreatment of rice straw for further processing for levulinic acid production. BIORESOURCE TECHNOLOGY 2016; 218:232-246. [PMID: 27371796 DOI: 10.1016/j.biortech.2016.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
A variety of pretreatment protocols for rice straw fiber reconstruction were evaluated under mild conditions (upto 0.2%wt. and 121°C) with the object of improving polymer susceptibility to chemical attack while preserving carbohydrate sugars for levulinic acid (LA) production. Each of the protocols tested significantly enhanced pretreatment recoveries of carbohydrate sugars and lignin, and a NaOH protocol showed the most promise, with enhanced carbohydrate preservation (upto 20% relative to the other protocols) and more effective lignin dissolution (upto 60%). Consequently, post-pretreatment fibers were evaluated for LA preparation using an existing co-solvent system consisting of HCl and THF, in addition supplementation of DMSO was attempted, in order to improve final product recovery. In contrast to pretreatment response, H2SO4 protocol fibers yielded highest LA conc. (21%wt. with 36% carbohydrate conversion efficiency) under the modest reaction conditions. Apparent spectroscopic analysis witnessed for fiber destruction and delocalization of inherent constituents during pretreatment protocols.
Collapse
Affiliation(s)
- Sasikumar Elumalai
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 160071, India.
| | - Bhumica Agarwal
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 160071, India
| | - Rajender S Sangwan
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 160071, India
| |
Collapse
|
12
|
Elumalai S, Agarwal B, Runge TM, Sangwan RS. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate. Carbohydr Polym 2016; 150:286-98. [DOI: 10.1016/j.carbpol.2016.04.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
|
13
|
Jiang Y, Zhu Y, Hu Z, Lei A, Wang J. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1417-1425. [PMID: 27395008 DOI: 10.1007/s10646-016-1692-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Toxic effects of copper on aquatic organisms in polluted water bodies have garnered particular attention in recent years. Microalgae play an important role in aquatic ecosystems, and they are sensitive to heavy metal pollution. Thus, it is important to clarify the mechanism of copper toxicity first for ecotoxicology studies. In this study, the physiological, biochemical and gene expression characteristics of a model green microalga, Chlamydomonas reinhardtii, with 0, 50, 150 and 250 μM copper treatments were investigated. The response of C. reinhardtii to copper stress was significantly shown at a dose dependent manner. Inhibition of cell growth and variation of total chlorophyll content were observed with copper treatments. The maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII and photochemical quenching value decreased in the 250 μM copper treatment with minimum values equal to 28, 24 and 60 % of the control values respectively. The content of lipid peroxidation biomarker malondialdehyde with copper treatments increased with a maximum value sevenfold higher than the control value. Inhibition of cell growth and photosynthesis was ascribed to peroxidation of membrane lipids. The glutathione content and activities of antioxidant enzymes, glutathione S-transferase, glutathione peroxidase, superoxide dismutase and peroxidase were induced by copper. Interestingly, the expression of antioxidant genes and the photosynthetic gene decreased in most copper treatments. In conclusion, oxidative stress caused by production of excess reactive oxidative species might be the major mechanism of copper toxicity on C. reinhardtii.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen, People's Republic of China
| | - Yanli Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen, People's Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen, People's Republic of China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen, People's Republic of China.
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen, People's Republic of China.
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen, People's Republic of China.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
14
|
Marriott PE, Gómez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. THE NEW PHYTOLOGIST 2016; 209:1366-81. [PMID: 26443261 DOI: 10.1111/nph.13684] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/17/2023]
Abstract
The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.
Collapse
Affiliation(s)
- Poppy E Marriott
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Leonardo D Gómez
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
15
|
Hatfield RD, Rancour DM, Marita JM. Grass Cell Walls: A Story of Cross-Linking. FRONTIERS IN PLANT SCIENCE 2016; 7:2056. [PMID: 28149301 PMCID: PMC5241289 DOI: 10.3389/fpls.2016.02056] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/23/2016] [Indexed: 05/18/2023]
Abstract
Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p-coumaroylation could lead to differing cell wall properties.
Collapse
|
16
|
Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts. ENERGIES 2015. [DOI: 10.3390/en8087654] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Vermerris W, Abril A. Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture. Curr Opin Biotechnol 2014; 32:104-112. [PMID: 25531269 DOI: 10.1016/j.copbio.2014.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
Abstract
Cellulose from plant biomass can serve as a sustainable feedstock for fuels, chemicals and polymers that are currently produced from petroleum. In order to enhance economic feasibility, the efficiency of cell wall deconstruction needs to be enhanced. With the use of genetic and biotechnological approaches cell wall composition can be modified in such a way that interactions between the major cell wall polymers—cellulose, hemicellulosic polysaccharides and lignin—are altered. Some of the resulting plants are compromised in their growth and development, but this may be caused in part by the plant's overcompensation for metabolic perturbances. In other cases novel structures have been introduced in the cell wall without negative effects. The first field studies with engineered bioenergy crops look promising, while detailed structural analyses of cellulose synthase offer new opportunities to modify cellulose itself.
Collapse
Affiliation(s)
- Wilfred Vermerris
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, United States; Graduate Program in Plant Molecular & Cellular Biology, University of Florida, Gainesville, FL 32611, United States.
| | - Alejandra Abril
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, United States; Graduate Program in Plant Molecular & Cellular Biology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
18
|
Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL. Plant biotechnology for lignocellulosic biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1174-92. [PMID: 25330253 DOI: 10.1111/pbi.12273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 05/18/2023]
Abstract
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu CJ, Cai Y, Zhang X, Gou M, Yang H. Tailoring lignin biosynthesis for efficient and sustainable biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1154-62. [PMID: 25209835 DOI: 10.1111/pbi.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 05/03/2023]
Abstract
Increased global interest in a bio-based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio-based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost-competitive biofuel to meet our energy needs.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Biosciences Department, Brookhaven Nation Laboratory, Upton, NY, USA
| | | | | | | | | |
Collapse
|
20
|
Elumalai S, Espinosa AR, Markley JL, Runge TM. Combined sodium hydroxide and ammonium hydroxide pretreatment of post-biogas digestion dairy manure fiber for cost effective cellulosic bioethanol production. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/2043-7129-2-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The current higher manufacturing cost of biofuels production from lignocellulosics hinders the commercial process development. Although many approaches for reducing the manufacturing cost of cellulosic biofuels may be considered, the use of less expensive feedstocks may represent the largest impact. In the present study, we investigated the use of a low cost feedstock: post-biogas digestion dairy manure fiber. We used an innovative pretreatment procedure that combines dilute sodium hydroxide with supplementary aqueous ammonia, with the goal of releasing fermentable sugar for ethanol fermentation.
Results
Post-biogas digestion manure fiber were found to contain 41.1% total carbohydrates, 29.4% lignin, 13.7% ash, and 11.7% extractives on dry basis. Chemical treatment were applied using varying amounts of NaOH and NH3 (2-10% loadings of each alkali on dry solids) at mild conditions of 100°C for 5 min, which led to a reduction in lignin of 16-40%. Increasing treatment severity conditions to 121°C for 60 min improved delignification to 17-67%, but also solubilized significant amounts of the carbohydrates. A modified severity parameter model was used to determine the delignification efficiency of manure fiber during alkaline pretreatment. The linear model well predicted the experimental values of fiber delignification for all pretreatment methods (R2 > 0.94). Enzymatic digestion of the treated fibers attained 15-50% saccharification for the low severity treatment, whereas the high severity treatment achieved up to 2-fold higher saccharification. Pretreatment with NaOH alone at a variety of concentrations and temperatures provide low delignification levels of only 5 − 21% and low saccharification yields of 3 − 8%, whereas pretreatment with the combination of NaOH and NH3 improved delignification levels and saccharification yields 2–3.5 higher than pretreatment with NH3 alone. Additionally, the combined NaOH and NH3 pretreatment led to noticeable changes in fiber morphology as determined by SEM and CrI measurements.
Conclusions
We show that combined alkaline treatment by NaOH and NH3 improves the delignification and enzymatic digestibility of anaerobically digested manure fibers. Although pretreatment leads to acceptable saccharification for this low-cost feedstock, the high chemical consumption costs of the process likely will require recovery and reuse of the treatment chemicals, prior to this process being economically feasibility.
Collapse
|
21
|
Lignin bioengineering. Curr Opin Biotechnol 2014; 26:189-98. [DOI: 10.1016/j.copbio.2014.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
|
22
|
Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR. The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels. Bioscience 2014. [DOI: 10.1093/biosci/bit037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Tobimatsu Y, Chen F, Nakashima J, Escamilla-Treviño LL, Jackson L, Dixon RA, Ralph J. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. THE PLANT CELL 2013; 25:2587-600. [PMID: 23903315 PMCID: PMC3753385 DOI: 10.1105/tpc.113.113142] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/22/2013] [Accepted: 07/06/2013] [Indexed: 05/18/2023]
Abstract
Lignins are phenylpropanoid polymers, derived from monolignols, commonly found in terrestrial plant secondary cell walls. We recently reported evidence of an unanticipated catechyl lignin homopolymer (C lignin) derived solely from caffeyl alcohol in the seed coats of several monocot and dicot plants. We previously identified plant seeds that possessed either C lignin or traditional guaiacyl/syringyl (G/S) lignins, but not both. Here, we identified several dicot plants (Euphorbiaceae and Cleomaceae) that produce C lignin together with traditional G/S lignins in their seed coats. Solution-state NMR analyses, along with an in vitro lignin polymerization study, determined that there is, however, no copolymerization detectable (i.e., that the synthesis and polymerization of caffeyl alcohol and conventional monolignols in vivo is spatially and/or temporally separated). In particular, the deposition of G and C lignins in Cleome hassleriana seed coats is developmentally regulated during seed maturation; C lignin appears successively after G lignin within the same testa layers, concurrently with apparent loss of the functionality of O-methyltransferases, which are key enzymes for the conversion of C to G lignin precursors. This study exemplifies the flexible biosynthesis of different types of lignin polymers in plants dictated by substantial, but poorly understood, control of monomer supply by the cells.
Collapse
Affiliation(s)
- Yuki Tobimatsu
- Department of Biochemistry, University of Wisconsin–Madison, Wisconsin Energy Institute, Madison, Wisconsin 53726
| | - Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- U.S. Department of Energy, BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Jin Nakashima
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Luis L. Escamilla-Treviño
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- U.S. Department of Energy, BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Lisa Jackson
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- U.S. Department of Energy, BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Richard A. Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- U.S. Department of Energy, BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - John Ralph
- Department of Biochemistry, University of Wisconsin–Madison, Wisconsin Energy Institute, Madison, Wisconsin 53726
- U.S. Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726
- Address correspondence to
| |
Collapse
|
24
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
25
|
Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:15. [PMID: 23356640 PMCID: PMC3575271 DOI: 10.1186/1754-6834-6-15] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 05/04/2023]
Abstract
The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicated structure of plant cell walls. Currently, a pretreatment step that can effectively reduce biomass recalcitrance is generally required to make the polysaccharide fractions locked in the intricacy of plant cell walls to become more accessible and amenable to enzymatic hydrolysis. Dilute acid and hydrothermal pretreatments are attractive and among the most promising pretreatment technologies that enhance sugar release performance. This review highlights our recent understanding on molecular structure basis for recalcitrance, with emphasis on structural transformation of major biomass biopolymers (i.e., cellulose, hemicellulose, and lignin) related to the reduction of recalcitrance during dilute acid and hydrothermal pretreatments. The effects of these two pretreatments on biomass porosity as well as its contribution on reduced recalcitrance are also discussed.
Collapse
Affiliation(s)
- Yunqiao Pu
- Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Fan Hu
- BioEnergy Science Center, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Fang Huang
- BioEnergy Science Center, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| |
Collapse
|
26
|
Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE. Biomass for thermochemical conversion: targets and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:218. [PMID: 23847629 PMCID: PMC3697057 DOI: 10.3389/fpls.2013.00218] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.
Collapse
Affiliation(s)
- Paul Tanger
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - John L. Field
- Engines and Energy Conversion Laboratory, Department of Mechanical Engineering, Colorado State UniversityFort Collins, CO, USA
- Natural Resource Ecology Laboratory, Colorado State UniversityFort Collins, CO, USA
| | - Courtney E. Jahn
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - Morgan W. DeFoort
- Engines and Energy Conversion Laboratory, Department of Mechanical Engineering, Colorado State UniversityFort Collins, CO, USA
| | - Jan E. Leach
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- *Correspondence: Jan E. Leach, Bioagricultural Sciences and Pest Management, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523-1177, USA e-mail:
| |
Collapse
|