1
|
Abd Manaf M, Harun S, Md. Jahim J, Sajab MS, Ibrahim Z. Synergistic sequential oxidative extraction for nanofibrillated cellulose isolated from oil palm empty fruit bunch. PLoS One 2024; 19:e0299312. [PMID: 38843202 PMCID: PMC11156338 DOI: 10.1371/journal.pone.0299312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/08/2024] [Indexed: 06/09/2024] Open
Abstract
This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.
Collapse
Affiliation(s)
- Mastura Abd Manaf
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Shuhaida Harun
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jamaliah Md. Jahim
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Zulkifli Ibrahim
- Faculty of Electrical and Electronic Engineering Technology, Electrical Engineering Technology Department, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
| |
Collapse
|
2
|
Mohammadi M, Alian M, Dale B, Ubanwa B, Balan V. Multifaced application of AFEX-pretreated biomass in producing second-generation biofuels, ruminant animal feed, and value-added bioproducts. Biotechnol Adv 2024; 72:108341. [PMID: 38499256 DOI: 10.1016/j.biotechadv.2024.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers. Consequently, the bioconversion of lignocellulosic biomass into fermentable sugars remains a prominent challenge in biorefinery processes to produce biofuels and biochemicals. In addressing these challenges, extensive efforts have been dedicated to mitigating biomass recalcitrance through diverse pretreatment methods. One noteworthy process is Ammonia Fiber Expansion (AFEX) pretreatment, characterized by its dry-to-dry nature and minimal water usage. The volatile ammonia, acting as a catalyst in the process, is recyclable. AFEX contributes to cleaning biomass ester linkages and facilitating the opening of cell wall structures, enhancing enzyme accessibility and leading to a fivefold increase in sugar conversion compared to untreated biomass. Over the last decade, AFEX has demonstrated substantial success in augmenting the efficiency of biomass conversion processes. This success has unlocked the potential for sustainable and economically viable biorefineries. This paper offers a comprehensive review of studies focusing on the utilization of AFEX-pretreated biomass in the production of second-generation biofuels, ruminant feed, and additional value-added bioproducts like enzymes, lipids, proteins, and mushrooms. It delves into the details of the AFEX pretreatment process at both laboratory and pilot scales, elucidates the mechanism of action, and underscores the role of AFEX in the biorefinery for developing biofuels and bioproducts, and nutritious ruminant animal feed production. While highlighting the strides made, the paper also addresses current challenges in the commercialization of AFEX pretreatment within biorefineries. Furthermore, it outlines critical considerations that must be addressed to overcome these challenges, ensuring the continued progress and widespread adoption of AFEX in advancing sustainable and economically viable bio-based industries.
Collapse
Affiliation(s)
- Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Bruce Dale
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA.
| |
Collapse
|
3
|
Investigation of the Mechanical and Liquid Absorption Properties of a Rice Straw-Based Composite for Ayurvedic Treatment Tables. MATERIALS 2022; 15:ma15020606. [PMID: 35057325 PMCID: PMC8779928 DOI: 10.3390/ma15020606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022]
Abstract
Managing rice crop stubble is one of the major challenges witnessed in the agricultural sector. This work attempts to investigate the physical, mechanical, and liquid absorption properties of rice straw (RS)-reinforced polymer composite for assessing its suitability to use as an ayurvedic treatment table. This material is expected to be an alternative for wooden-based ayurvedic treatment tables. The results showed that the addition of rice straw particles (RSp) up to 60% volume in epoxy reduced the density of the composite material by 46.20% and the hardness by 15.69%. The maximum tensile and flexural strength of the RSp composite was 17.53 MPa and 43.23 MPa, respectively. The scanning electron microscopy (SEM) analysis showed deposits of silica in the form of phytoliths in various size and shapes on the outer surface of RS. The study also revealed that the water absorption rate (WA) was less than 7.8% for the test samples with 45% volume of RSp. Interestingly the test samples showed greater resistance to the absorption of Kottakal Dhanvantaram Thailam (<2%). In addition, the developed samples showed resistance towards bacterial and fungal growth under the exposure of treatment oils and water.
Collapse
|
4
|
Liu ZH, Hao N, Wang YY, Dou C, Lin F, Shen R, Bura R, Hodge DB, Dale BE, Ragauskas AJ, Yang B, Yuan JS. Transforming biorefinery designs with 'Plug-In Processes of Lignin' to enable economic waste valorization. Nat Commun 2021; 12:3912. [PMID: 34162838 PMCID: PMC8222318 DOI: 10.1038/s41467-021-23920-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Naijia Hao
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yun-Yan Wang
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Chang Dou
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Rongchun Shen
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Renata Bura
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - David B Hodge
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Bruce E Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Arora R, Behera S, Sharma NK, Singh I, Ransore V, Saiyyed R, Kumar S. Bioprospecting Saccharification of Alkali Pretreated Paddy Straw Through Statistically Designed Parameters for Biofuel Production. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richa Arora
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Nilesh Kumar Sharma
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Isheeta Singh
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Vishnu Ransore
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Rehan Saiyyed
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| |
Collapse
|
6
|
Davaritouchaee M, Chen S, Mancini RJ. Delignification and Enzyme-Diffusion Kinetics of Radical Systems Treating Wheat Straw. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Davaritouchaee
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, 1470 NE College Avenue, Pullman, Washington 99164, United States
| | - Shulin Chen
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, Washington 99164, United States
- Department of Biological Systems Engineering, Washington State University, 1935 E. Grimes Way, Pullman, Washington 99164, United States
| | - Rock J. Mancini
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, 1470 NE College Avenue, Pullman, Washington 99164, United States
| |
Collapse
|
7
|
Bhatia R, Winters A, Bryant DN, Bosch M, Clifton-Brown J, Leak D, Gallagher J. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment. BIORESOURCE TECHNOLOGY 2020; 296:122285. [PMID: 31715557 PMCID: PMC6920740 DOI: 10.1016/j.biortech.2019.122285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
This study investigated pilot-scale production of xylo-oligosaccharides (XOS) and fermentable sugars from Miscanthus using steam explosion (SE) pretreatment. SE conditions (200 °C; 15 bar; 10 min) led to XOS yields up to 52 % (w/w of initial xylan) in the hydrolysate. Liquid chromatography-mass spectrometry demonstrated that the solubilised XOS contained bound acetyl- and hydroxycinnamate residues, physicochemical properties known for high prebiotic effects and anti-oxidant activity in nutraceutical foods. Enzymatic hydrolysis of XOS-rich hydrolysate with commercial endo-xylanases resulted in xylobiose yields of 380 to 500 g/kg of initial xylan in the biomass after only 4 h, equivalent to ~74 to 90 % conversion of XOS into xylobiose. Fermentable glucose yields from enzymatic hydrolysis of solid residues were 8 to 9-fold higher than for untreated material. In view of an integrated biorefinery, we demonstrate the potential for efficient utilisation of Miscanthus for the production of renewable sources, including biochemicals and biofuels.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK.
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David N Bryant
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Joe Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
8
|
Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:294. [PMID: 31890022 PMCID: PMC6927169 DOI: 10.1186/s13068-019-1634-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define "the best pretreatment" method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation.
Collapse
Affiliation(s)
- Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Beauchemin KA, Ribeiro GO, Ran T, Marami Milani MR, Yang W, Khanaki H, Gruninger R, Tsang A, McAllister TA. Recombinant fibrolytic feed enzymes and ammonia fibre expansion (AFEX) pretreatment of crop residues to improve fibre degradability in cattle. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Luthfi AAI, Tan JP, Harun S, Manaf SFA, Jahim JM. Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess Biosyst Eng 2018; 42:117-130. [DOI: 10.1007/s00449-018-2019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/23/2018] [Indexed: 01/22/2023]
|
11
|
Zhang H, Li J, Huang G, Yang Z, Han L. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment. BIORESOURCE TECHNOLOGY 2018; 264:327-334. [PMID: 29885582 DOI: 10.1016/j.biortech.2018.05.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/26/2023]
Abstract
A thorough assessment of the microstructural changes and synergistic effects of hydrothermal and/or ultrafine grinding pretreatment on the subsequent enzymatic hydrolysis of corn stover was performed in this study. The mechanism of pretreatment was elucidated by characterizing the particle size, specific surface area (SSA), pore volume (PV), average pore size, cellulose crystallinity (CrI) and surface morphology of the pretreated samples. In addition, the underlying relationships between the structural parameters and final glucose yields were elucidated, and the relative significance of the factors influencing enzymatic hydrolyzability were assessed by principal component analysis (PCA). Hydrothermal pretreatment at a lower temperature (170 °C) combined with ultrafine grinding achieved a high glucose yield (80.36%) at a low enzyme loading (5 filter paper unit (FPU)/g substrate) which is favorable. The relative significance of structural parameters in enzymatic hydrolyzability was SSA > PV > average pore size > CrI/cellulose > particle size. PV and SSA exhibited logarithmic correlations with the final enzymatic hydrolysis yield.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Guangqun Huang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Zengling Yang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
12
|
Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To meet the worldwide rapid growth of industrialization and population, the demand for the production of bioethanol as an alternative green biofuel is gaining significant prominence. The bioethanol production process is still considered one of the largest energy-consuming processes and is challenging due to the limited effectiveness of conventional pretreatment processes, saccharification processes, and extreme use of electricity in common fermentation and purification processes. Thus, it became necessary to improve the bioethanol production process through reduced energy requirements. Membrane-based separation technologies have already gained attention due to their reduced energy requirements, investment in lower labor costs, lower space requirements, and wide flexibility in operations. For the selective conversion of biomasses to bioethanol, membrane bioreactors are specifically well suited. Advanced membrane-integrated processes can effectively contribute to different stages of bioethanol production processes, including enzymatic saccharification, concentrating feed solutions for fermentation, improving pretreatment processes, and finally purification processes. Advanced membrane-integrated simultaneous saccharification, filtration, and fermentation strategies consisting of ultrafiltration-based enzyme recycle system with nanofiltration-based high-density cell recycle fermentation system or the combination of high-density cell recycle fermentation system with membrane pervaporation or distillation can definitely contribute to the development of the most efficient and economically sustainable second-generation bioethanol production process.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Karunya Nagar Coimbatore 641114 , India
| | - Parimal Pal
- Department of Chemical Engineering , National Institute of Technology , Durgapur , India
| | - Joseph Dilip Kevin
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Diganta Bhusan Das
- Department of Chemical Engineering, School of AACME , Loughborough University , Loughborough, Leicestershire , UK
| |
Collapse
|
13
|
Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:202. [PMID: 30061924 PMCID: PMC6055353 DOI: 10.1186/s13068-018-1207-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pineapple is the third most important tropical fruit produced worldwide, and approximately 24.8 million tons of this fruit are produced annually throughout the world, including in Thailand, which is the fourth largest pineapple producer in the world. Pineapple wastes (peel and core) are generated in a large amount equal to approximately 59.36% based on raw material. In general, the anaerobic digestion of pineapple wastes is associated with a high biochemical oxygen demand and high chemical oxygen demand, and this process generates methane and can cause greenhouse gas emissions if good waste management practices are not enforced. This study aims to fill the research gap by examining the feasibility of pineapple wastes for promoting the high-value-added production of biodegradable polyhydroxybutyrate (PHB) from the available domestic raw materials. The objective of this study was to use agro-industrial residue from the canned pineapple industry for biodegradable PHB production. RESULTS The results indicated that pretreatment with an alkaline reagent is not necessary. Pineapple core was sized to - 20/+ 40 mesh particle and then hydrolyzed with 1.5% (v/v) H2SO4 produced the highest concentration of fermentable sugars, equal to 0.81 g/g dry pineapple core, whereas pineapple core with a + 20 mesh particle size and hydrolyzed with 1.5% (v/v) H3PO4 yielded the highest concentration of PHB substrates (57.2 ± 1.0 g/L). The production of PHB from core hydrolysate totaled 35.6 ± 0.1% (w/w) PHB content and 5.88 ± 0.25 g/L cell dry weight. The use of crude aqueous extract (CAE) of pineapple waste products (peel and core) as a culture medium was investigated. CAE showed very promising results, producing the highest PHB content of 60.00 ± 0.5% (w/w), a cell dry weight of 13.6 ± 0.2 g/L, a yield ( YP/S ) of 0.45 g PHB/g PHB substrate, and a productivity of 0.160 g/(L h). CONCLUSIONS This study demonstrated the feasibility of utilizing pineapple waste products from the canned pineapple industry as lignocellulosic feedstocks for PHB production. C. necator strain A-04 was able to grow on various sugars and tolerate levulinic acid and 5-hydroxymethyl furfural, and a detoxification step was not required prior to the conversion of cellulose hydrolysate to PHB. In addition to acid hydrolysis, CAE was identified as a potential carbon source and offers a novel method for the low-cost production of PHB from a realistic lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Vibhavee Sukruansuwan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330 Thailand
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330 Thailand
| |
Collapse
|
14
|
Yang M, Xu M, Nan Y, Kuittinen S, Kamrul Hassan M, Vepsäläinen J, Xin D, Zhang J, Pappinen A. Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production. BIORESOURCE TECHNOLOGY 2018; 257:113-120. [PMID: 29494838 DOI: 10.1016/j.biortech.2018.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation.
Collapse
Affiliation(s)
- Ming Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Minyuan Xu
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Yufei Nan
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Md Kamrul Hassan
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI70211 Kuopio, Finland
| | - Donglin Xin
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China.
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
15
|
Understanding the Impacts of AFEX™ Pretreatment and Densification on the Fast Pyrolysis of Corn Stover, Prairie Cord Grass, and Switchgrass. Appl Biochem Biotechnol 2016; 181:1060-1079. [PMID: 27723010 DOI: 10.1007/s12010-016-2269-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ pretreatment and densification were studied on the fast pyrolysis product yields. Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™-pretreated feedstocks were moisture adjusted at three levels (5, 10, and 15 % wb) and were extruded using a lab-scale single screw extruder. The barrel temperature of the extruder was maintained at 75, 100, and 125 °C. Durability of the extruded pellets made from AFEX™-pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5 to 99.2, 94.3 to 98.7, and 90.1 to 97.5 %, respectively. Results of the thermogravimetric analysis showed the decrease in the decomposition temperature of the all the feedstocks after AFEX™ pretreatment indicating the increase in thermal stability. Loose and densified feedstocks were subjected to fast pyrolysis in a lab-scale reactor, and the yields (bio-oil and bio-char) were measured. Bio-char obtained from the AFEX™-pretreated feedstocks exhibited increased bulk and particle density compared to the untreated feedstocks. The properties of the bio-oil were statistically similar for the untreated, AFEX™-pretreated, and AFEX™-pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the AFEX™-pretreated feedstocks and the densified AFEX™-pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be concluded that densifying the AFEX™-pretreated feedstocks could be a viable option in the biomass-processing depots to reduce the transportation costs and the logistical impediments without affecting the product yields.
Collapse
|
16
|
|
17
|
Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, Balan V, Dale BE, Mohd Nor MT. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. BIORESOURCE TECHNOLOGY 2016; 211:200-8. [PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 05/09/2023]
Abstract
Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
Collapse
Affiliation(s)
- Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Shuhaida Harun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Masturah Markom
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nabilah Aminah Lutpi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Osman Hassan
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Venkatesh Balan
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI 48823, USA
| | - Bruce E Dale
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI 48823, USA
| | - Mohd Tusirin Mohd Nor
- Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
18
|
Lima MS, Damasio ARDL, Crnkovic PM, Pinto MR, da Silva AM, da Silva JCR, Segato F, de Lucas RC, Jorge JA, Polizeli MDLTDM. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment. Front Microbiol 2016; 7:583. [PMID: 27199917 PMCID: PMC4848300 DOI: 10.3389/fmicb.2016.00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.
Collapse
Affiliation(s)
- Matheus S Lima
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - André R de L Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas São Paulo, Brazil
| | - Paula M Crnkovic
- Department of Mechanical Engineering, University of São Paulo São Paulo, Brazil
| | - Marcelo R Pinto
- Laboratory of Biopathology and Molecular Biology, Uberaba University Uberaba, Brazil
| | | | - Jean C R da Silva
- Federal Institute of Education, Science and Technology of São Paulo São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo São Paulo, Brazil
| | - Rosymar C de Lucas
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São PauloSão Paulo, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil
| | - João A Jorge
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Maria de L T de M Polizeli
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| |
Collapse
|
19
|
Pretreatment of Oil Palm Empty Fruit Fiber (OPEFB) with Aquaeous Ammonia for High Production of Sugar. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proche.2016.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Pretreatment Processes for Cellulosic Ethanol Production: Processes Integration and Modeling for the Utilization of Lignocellulosics Such as Sugarcane Straw. GREEN FUELS TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-30205-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Wood IP, Cao HG, Tran L, Cook N, Ryden P, Wilson DR, Moates GK, Collins SRA, Elliston A, Waldron KW. Comparison of saccharification and fermentation of steam exploded rice straw and rice husk. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:193. [PMID: 27602056 PMCID: PMC5011935 DOI: 10.1186/s13068-016-0599-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/19/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rice cultivation produces two waste streams, straw and husk, which could be exploited more effectively. Chemical pretreatment studies using rice residues have largely focussed on straw exploitation alone, and often at low substrate concentrations. Moreover, it is currently not known how rice husk, the more recalcitrant residue, responds to steam explosion without the addition of chemicals. RESULTS The aim of this study has been to systematically compare the effects of steam explosion severity on the enzymatic saccharification and simultaneous saccharification and fermentation of rice straw and husk produced from a variety widely grown in Vietnam (Oryza sativa, cv. KhangDan18). Rice straw and husk were steam exploded (180-230 °C for 10 min) into hot water and washed to remove fermentation inhibitors. In both cases, pretreatment at 210 °C and above removed most of the noncellulosic sugars. Prolonged saccharification at high cellulase doses showed that rice straw could be saccharified most effectively after steam explosion at 210 °C for 10 min. In contrast, rice husk required more severe pretreatment conditions (220 °C for 10 min), and achieved a much lower yield (75 %), even at optimal conditions. Rice husk also required a higher cellulase dose for optimal saccharification (10 instead of 6 FPU/g DM). Hemicellulase addition failed to improve saccharification. Small pilot scale saccharification at 20 % (w/v) substrate loading in a 10 L high torque bioreactor resulted in similarly high glucose yields for straw (reaching 9 % w/v), but much less for husk. Simultaneous saccharification and fermentation under optimal pretreatment and saccharification conditions showed similar trends, but the ethanol yield from the rice husk was less than 40 % of the theoretical yield. CONCLUSIONS Despite having similar carbohydrate compositions, pretreated rice husk is much less amenable to saccharification than pretreated rice straw. This is likely to attenuate its use as a biorefinery feedstock unless improvements can be made either in the feedstock through breeding and/or modern biotechnology, or in the pretreatment through the employment of improved or alternative technologies. Physiological differences in the overall chemistry or structure may provide clues to the nature of lignocellulosic recalcitrance.
Collapse
Affiliation(s)
- Ian P. Wood
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | | | - Long Tran
- Vietnam Academy of Agricultural Science, Hanoi, Vietnam
| | - Nicola Cook
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UG UK
| | - Peter Ryden
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - David R. Wilson
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Graham K. Moates
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Samuel R. A. Collins
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Adam Elliston
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| | - Keith W. Waldron
- The Biorefinery Centre, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
| |
Collapse
|
22
|
Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed inPichia pastorisimprove bioethanol production fromMiscanthus sinensis. Biotechnol J 2015; 10:1912-9. [DOI: 10.1002/biot.201500081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/17/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
|
23
|
Assessment of bacterial and fungal (hemi)cellulose-degrading enzymes in saccharification of ammonia fibre expansion-pretreated Arundo donax. Appl Microbiol Biotechnol 2015; 100:2213-24. [PMID: 26521250 PMCID: PMC4756041 DOI: 10.1007/s00253-015-7066-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 11/07/2022]
Abstract
This study reports enzymatic hydrolysis of the biomass of the giant reed (Arundo donax L.) after ammonia fibre expansion (AFEX) pretreatment. In particular, the capacity of the arabinofuranosidase from the fungus Pleurotus ostreatus recombinantly expressed in Pichia pastoris rPoAbf, its evolved mutant rPoAbf F435Y/Y446F and the endo-cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli to enhance the hydrolysis of AFEX-treated A. donax was investigated, using the corn stover as reference feedstock. The investigated enzymes were assayed using a mixture of purified cellulases (CBHI, CBHII, EGI and βG), endoxylanases (LX3, LX4) and accessory hemicellulases (LarbF and LβX) as reference enzyme mixture and substituting EGI with rCelStrep and LarbF with rPoAbf or rPoAbf F435Y/Y446F. The use of rPoAbf F435Y/Y446F in the substitution of LarbF led to improvements in sugar conversion, giving a glucan, xylan and arabinan conversion after 72 h of around 62, 63 and 80 %, respectively, similar or higher than those (44, 66 and 55 %) achieved by 72 h hydrolysis with commercial enzymes Novozymes Cellic®, Ctec3 and Htec3. The enzymes rPoAbf, rPoAbf F435Y/Y446F and rCelStrep were also investigated for their effect on hydrolysis of AFEX-pretreated A. donax by addition to commercial enzyme mixture Novozymes Cellic®, Ctec3 and Htec3, and it was shown that the addition of rPoAbf and its evolved mutant rPoAbf F435Y/Y446F enhanced both xylan and arabinan conversions, which achieved 80 % after 6 days of saccharification with rPoAbf F435Y/Y446F.
Collapse
|
24
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
25
|
Sui W, Chen H. Study on loading coefficient in steam explosion process of corn stalk. BIORESOURCE TECHNOLOGY 2015; 179:534-542. [PMID: 25576989 DOI: 10.1016/j.biortech.2014.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation.
Collapse
Affiliation(s)
- Wenjie Sui
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
26
|
Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:180. [PMID: 26583044 PMCID: PMC4650398 DOI: 10.1186/s13068-015-0356-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.
Collapse
Affiliation(s)
- Jose Serate
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Charles Donald
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Mahboubeh Shabani
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Li Hinchman
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alan Higbee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Mick Mcgee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alex La Reau
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Grace E. Klinger
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Sheena Li
- />RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Chad L. Myers
- />Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Charles Boone
- />Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON Canada
| | - Donna M. Bates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dave Cavalier
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Dustin Eilert
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg Sanford
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Bruce Dale
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Robert Landick
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff Piotrowski
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rebecca Garlock Ong
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
27
|
Li J, Lin J, Zhou P, Wu K, Liu H, Xiong C, Gong Y, Xiao W, Liu Z. One-pot simultaneous saccharification and fermentation: a preliminary study of a novel configuration for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2014; 161:171-8. [PMID: 24704838 DOI: 10.1016/j.biortech.2014.02.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 05/16/2023]
Abstract
Combination of size reduction and mild alkali pretreatment may be a feasible way to produce bioethanol without rinsing and detoxifying the solid substrate. Based on that, a fermentation configuration named one-pot SSF in which pretreatment and fermentation steps were integrated was developed. Additionally, the effect of laccase on fermentation performance was investigated. Delignification was the major effect of the alkali pretreatment at 121°C for 60min. The highest glucose and xylose yield, which obtained from the smallest particle at a substrate loading of 2%, was 6.75 and 2.71g/L, respectively. Laccase improved the fermentation efficiency by 6.8% for one-pot SSF and 5.7% for SSF. Bioethanol from one-pot SSF with laccase supplementation reached 67.56% of the theoretical maximum, whereas that from SSF with laccase supplementation reached 57.27%. One-pot SSF might be a promising configuration to produce bioethanol because of 100% solid recovery, and rinsing water and detoxification elimination.
Collapse
Affiliation(s)
- Jingbo Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Pengfei Zhou
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Kejing Wu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongmei Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Chunjiang Xiong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
28
|
Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN BIOTECHNOLOGY 2014; 2014:463074. [PMID: 25937989 PMCID: PMC4393053 DOI: 10.1155/2014/463074] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.
Collapse
|
29
|
Chen HZ, Liu ZH, Dai SH. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:53. [PMID: 24713041 PMCID: PMC3998520 DOI: 10.1186/1754-6834-7-53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/20/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. RESULTS TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. CONCLUSIONS SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shu-Hua Dai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
The optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw. Bioprocess Biosyst Eng 2014; 37:1907-15. [PMID: 24671270 PMCID: PMC4141972 DOI: 10.1007/s00449-014-1165-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/26/2014] [Indexed: 11/04/2022]
Abstract
A CO2-added ammonia explosion pretreatment was performed for bioethanol production from rice straw. The pretreatment conditions, such as ammonia concentration, CO2 loading level, residence time, and temperature were optimized using response surface methodology. The response for optimization was defined as the glucose conversion rate. The optimized pretreatment conditions resulting in maximal glucose yield (93.6 %) were determined as 14.3 % of ammonia concentration, 2.2 MPa of CO2 loading level, 165.1 °C of temperature, and 69.8 min of residence time. Scanning electron microscopy analysis showed that pretreatment of rice straw strongly increased the surface area and pore size, thus increasing enzymatic accessibility for enzymatic saccharification. Finally, an ethanol yield of 97 % was achieved via simultaneous saccharification and fermentation. Thus, the present study suggests that CO2-added ammonia pretreatment is an appropriate process for bioethanol production from rice straw.
Collapse
|
31
|
Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ. Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:167. [PMID: 25516770 PMCID: PMC4267439 DOI: 10.1186/s13068-014-0167-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/10/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process for bioconversion of lignocellulosic biomass. High glucan loading for hydrolysis and fermentation is an efficient approach to reduce the capital costs for bio-based products production. The SSF of steam-exploded corn stover (SECS) for ethanol production at high glucan loading and high temperature was investigated in this study. RESULTS Glucan conversion of corn stover biomass pretreated by steam explosion was maintained at approximately 71 to 79% at an enzyme loading of 30 filter paper units (FPU)/g glucan, and 74 to 82% at an enzyme loading of 60 FPU/g glucan, with glucan loading varying from 3 to 12%. Glucan conversion decreased obviously with glucan loading beyond 15%. The results indicated that the mixture was most efficient in enzymatic hydrolysis of SECS at 3 to 12% glucan loading. The optimal SSF conditions of SECS using a novel Saccharomyces cerevisiae were inoculation optical density (OD)600 = 4.0, initial pH 4.8, 50% nutrients added, 36 hours pre-hydrolysis time, 39°C, and 12% glucan loading (20% solid loading). With the addition of 2% Tween 20, glucan conversion, ethanol yield, final ethanol concentration reached 78.6%, 77.2%, and 59.8 g/L, respectively, under the optimal conditions. The results suggested that the solid and degradation products' inhibitory effect on the hydrolysis and fermentation of SECS were also not obvious at high glucan loading. Additionally, glucan conversion and final ethanol concentration in SSF of SECS increased by 13.6% and 18.7%, respectively, compared with separate hydrolysis and fermentation (SHF). CONCLUSIONS Our research suggested that high glucan loading (6 to 12% glucan loading) and high temperature (39°C) significantly improved the SSF performance of SECS using a thermal- and ethanol-tolerant strain of S. cerevisiae due to the removal of degradation products, sugar feedback, and solid's inhibitory effects. Furthermore, the surfactant addition obviously increased ethanol yield in SSF process of SECS.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Lei Qin
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Jia-Qing Zhu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Bing-Zhi Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Ying-Jin Yuan
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| |
Collapse
|
32
|
Chen HZ, Liu ZH. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:137. [PMID: 25426164 PMCID: PMC4240850 DOI: 10.1186/s13068-014-0137-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/03/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. RESULTS The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. CONCLUSIONS Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Zhongguancun North Second Street, Haidian District Beijing, 100190 PR China
| | - Zhi-Hua Liu
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Zhongguancun North Second Street, Haidian District Beijing, 100190 PR China
- />University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District Beijing, 100049 PR China
| |
Collapse
|