1
|
Takamatsu S, Hillman RT, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai M, Okamoto A, Enomoto T, Matsumura N. Molecular classification of ovarian high-grade serous/endometrioid carcinomas through multi-omics analysis: JGOG3025-TR2 study. Br J Cancer 2024; 131:1340-1349. [PMID: 39215190 PMCID: PMC11473812 DOI: 10.1038/s41416-024-02837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Considerable interobserver variability exists in diagnosis of ovarian high-grade endometrioid carcinoma (HGEC) and high-grade serous carcinoma (HGSC) due to histopathological similarities. While homologous recombination deficiency (HRD) correlates with drug sensitivity in HGSC, the molecular features of HGEC are unclear. METHODS Fresh-frozen samples from 15 ovarian HGECs and 274 ovarian HGSCs in the JGOG-TR2 cohort were submitted to targeted DNA sequencing, RNA sequencing, DNA methylation array, and SNP array. We additionally analyzed 555 ovarian HGSCs from TCGA-OV and 287 endometrial high-grade carcinomas from TCGA-UCEC. RESULTS Unsupervised clustering using copy number signatures identified four distinct tumor groups (C1, C2, C3 and C4). C1 (n = 41) showed CCNE1 amplification and poor survival. C2 (n = 160) and C3 (n = 59) showed high BRCA1/2 alteration frequency with low and moderate ploidy, respectively. C4 (n = 22) was characterized by favorable outcome, higher HGEC proportion, no BRCA1/2 alteration or CCNE1 amplification, and low levels of HRD score, ploidy, intra-tumoral heterogeneity, cell proliferation rate, and WT1 gene expression. Notably, C4 exhibited a normal endometrium-like DNA methylation profile, thus, defined as "HGEC-type" tumors, which were also identified in TCGA-OV and TCGA-UCEC. CONCLUSIONS Ovarian "HGEC-type" tumors present a non-HRD status, favorable prognosis, and endometrial differentiation, possibly constituting a subset of clinically diagnosed HGSCs.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Tyler Hillman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Houston, TX, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
2
|
Herrington CS, Oswald AJ, Stillie LJ, Croy I, Churchman M, Hollis RL. Compartment-specific multiomic profiling identifies SRC and GNAS as candidate drivers of epithelial-to-mesenchymal transition in ovarian carcinosarcoma. Br J Cancer 2024; 130:327-335. [PMID: 38097740 PMCID: PMC10803731 DOI: 10.1038/s41416-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial-to-mesenchymal transition (EMT). METHODS We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma (HGSOC). Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFβ, NOTCH); chrX is a highly enriched target of these microRNAs and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.
Collapse
Affiliation(s)
- C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ailsa J Oswald
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lorna J Stillie
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre and Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian Croy
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Psaras AM, Valiuska S, Noé V, Ciudad CJ, Brooks TA. Targeting KRAS Regulation with PolyPurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 23:2097. [PMID: 35216221 PMCID: PMC8876201 DOI: 10.3390/ijms23042097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS is a GTPase involved in the proliferation signaling of several growth factors. The KRAS gene is GC-rich, containing regions with known and putative G-quadruplex (G4) forming regions. Within the middle of the G-rich proximal promoter, stabilization of the physiologically active G4mid structure downregulates transcription of KRAS; the function and formation of other G4s within the gene are unknown. Herein we identify three putative G4-forming sequences (G4FS) within the KRAS gene, explore their G4 formation, and develop oligonucleotides targeting these three regions and the G4mid forming sequence. We tested Polypurine Reverse Hoogsteen hairpins (PPRHs) for their effects on KRAS regulation via enhancing G4 formation or displacing G-rich DNA strands, downregulating KRAS transcription and mediating an anti-proliferative effect. Five PPRH were designed, two against the KRAS promoter G4mid and three others against putative G4FS in the distal promoter, intron 1 and exon 5. PPRH binding was confirmed by gel electrophoresis. The effect on KRAS transcription was examined by luciferase, FRET Melt2, qRT-PCR. Cytotoxicity was evaluated in pancreatic and ovarian cancer cells. PPRHs decreased activity of a luciferase construct driven by the KRAS promoter. PPRH selectively suppressed proliferation in KRAS dependent cancer cells. PPRH demonstrated synergistic activity with a KRAS promoter selective G4-stabilizing compound, NSC 317605, in KRAS-dependent pancreatic cells. PPRHs selectively stabilize G4 formation within the KRAS mid promoter region and represent an innovative approach to both G4-stabilization and to KRAS modulation with potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| |
Collapse
|
4
|
Kitamura S, Yamaguchi K, Murakami R, Furutake Y, Higasa K, Abiko K, Hamanishi J, Baba T, Matsumura N, Mandai M. PDK2 leads to cisplatin resistance through suppression of mitochondrial function in ovarian clear cell carcinoma. Cancer Sci 2021; 112:4627-4640. [PMID: 34464482 PMCID: PMC8586679 DOI: 10.1111/cas.15125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian clear cell carcinoma (CCC) exhibits an association with endometriosis, resistance to oxidative stress, and poor prognosis owing to its resistance to conventional platinum‐based chemotherapy. A greater understanding of the molecular characteristics and pathogenesis of ovarian cancer subtypes may facilitate the development of targeted therapeutic strategies, although the mechanism of drug resistance in ovarian CCC has yet to be determined. In this study, we assessed exome sequencing data to identify new therapeutic targets of mitochondrial function in ovarian CCC because of the central role of mitochondria in redox homeostasis. Copy number analyses revealed that chromosome 17q21‐24 (chr.17q21‐24) amplification was associated with recurrence in ovarian CCC. Cell viability assays identified an association between cisplatin resistance and chr.17q21‐24 amplification, and mitochondrion‐related genes were enriched in patients with chr.17q21‐24 amplification. Patients with high expression of pyruvate dehydrogenase kinase 2 (PDK2) had a worse prognosis than those with low PDK2 expression. Furthermore, inhibition of PDK2 synergistically enhanced cisplatin sensitivity by activating the electron transport chain and by increasing the production of mitochondrial reactive oxygen species. Mouse xenograft models showed that inhibition of PDK2 with cisplatin inhibited tumor growth. This evidence suggests that targeting mitochondrial metabolism and redox homeostasis is an attractive therapeutic strategy for improving drug sensitivity in ovarian CCC.
Collapse
Affiliation(s)
- Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021; 21:499. [PMID: 33947352 PMCID: PMC8097933 DOI: 10.1186/s12885-021-08233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic alterations for epithelial ovarian cancer are insufficiently characterized. Previous studies are limited regarding included histologies, gene numbers, copy number variant (CNV) detection, and interpretation of pathway alteration patterns of individual patients. METHODS We sequenced 410 genes to analyze mutations and CNV of 82 ovarian carcinomas, including high-grade serous (n = 37), endometrioid (n = 22) and clear cell (n = 23) histologies. Eligibility for targeted therapy was determined for each patient by a pathway-based approach. The analysis covered DNA repair, receptor tyrosine kinase, PI3K/AKT/MTOR, RAS/MAPK, cell cycle, and hedgehog pathways, and included 14 drug targets. RESULTS Postulated PARP, MTOR, and CDK4/6 inhibition sensitivity were most common. BRCA1/2 alterations, PTEN loss, and gain of PIK3CA and CCND1 were characteristic for high-grade serous carcinomas. Mutations of ARID1A, PIK3CA, and KRAS, and ERBB2 gain were enriched in the other histologies. PTEN mutations and high tumor mutational burden were characteristic for endometrioid carcinomas. Drug target downstream alterations impaired actionability in all histologies, and many alterations would not have been discovered by key gene mutational analysis. Individual patients often had more than one actionable drug target. CONCLUSIONS Genetic alterations in ovarian carcinomas are complex and differ among histologies. Our results aid the personalization of therapy and biomarker analysis for clinical studies, and indicate a high potential for combinations of targeted therapies.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Endometrioid/therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Cycle/genetics
- DNA Copy Number Variations
- DNA Mutational Analysis/methods
- DNA Repair/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Precision Medicine
- Retrospective Studies
Collapse
Affiliation(s)
- Nina Lapke
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
- ACT Genomics, Co. Ltd., Units 803 - 807, 8F, Building 15W, No.15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok. NT, Hong Kong, Hong Kong
| | - Chien-Hung Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hua-Chien Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hsiao-Yun Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Shu-Jen Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| |
Collapse
|
6
|
Characterization of Mutational Status, Spheroid Formation, and Drug Response of a New Genomically-Stable Human Ovarian Clear Cell Carcinoma Cell Line, 105C. Cells 2020; 9:cells9112408. [PMID: 33153119 PMCID: PMC7693681 DOI: 10.3390/cells9112408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of gynecological cancer for which well-characterized and authenticated model systems are scarce. We provide an extensive characterization of ‘105C’, a cell line generated from an adenocarcinoma of the clear cell histotype using targeted next-generation sequencing, cytogenetic microarrays, along with analyses of AKT/mTOR signaling. We report that that the 105C cell line is a bona fide OCCC cell line, carrying PIK3CA, PTEN, and ARID1A gene mutations, consistent with OCCC, yet maintain a stable genome as reflected by low copy number variation. Unlike KOC-7c, TOV-21G, and RMG-V OCCC lines also mutated for the above genes, the 105C cells do not carry mutations in mismatch repair genes. Importantly, we show that 105C cells exhibit greater resistance to mTOR inhibition and carboplatin treatment compared to 9 other OCCC cell lines in 3D spheroid cultures. This resistance may be attributed to 105C cells remaining dormant in suspension culture which surprisingly, contrasts with several other OCCC lines which continue to proliferate in long-term suspension culture. 105C cells survive xenotransplantation but do not proliferate and metastasize. Collectively, we show that the 105C OCCC cell line exhibits unique properties useful for the pre-clinical investigation of OCCC pathobiology.
Collapse
|
7
|
Yuan X, Bai J, Zhang J, Yang L, Duan J, Li Y, Gao M. CONDEL: Detecting Copy Number Variation and Genotyping Deletion Zygosity from Single Tumor Samples Using Sequence Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1141-1153. [PMID: 30489272 DOI: 10.1109/tcbb.2018.2883333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characterizing copy number variations (CNVs) from sequenced genomes is a both feasible and cost-effective way to search for driver genes in cancer diagnosis. A number of existing algorithms for CNV detection only explored part of the features underlying sequence data and copy number structures, resulting in limited performance. Here, we describe CONDEL, a method for detecting CNVs from single tumor samples using high-throughput sequence data. CONDEL utilizes a novel statistic in combination with a peel-off scheme to assess the statistical significance of genome bins, and adopts a Bayesian approach to infer copy number gains, losses, and deletion zygosity based on statistical mixture models. We compare CONDEL to six peer methods on a large number of simulation datasets, showing improved performance in terms of true positive and false positive rates, and further validate CONDEL on three real datasets derived from the 1000 Genomes Project and the EGA archive. CONDEL obtained higher consistent results in comparison with other three single sample-based methods, and exclusively identified a number of CNVs that were previously associated with cancers. We conclude that CONDEL is a powerful tool for detecting copy number variations on single tumor samples even if these are sequenced at low-coverage.
Collapse
|
8
|
Integrative genomics approach identifies molecular features associated with early-stage ovarian carcinoma histotypes. Sci Rep 2020; 10:7946. [PMID: 32409713 PMCID: PMC7224294 DOI: 10.1038/s41598-020-64794-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer comprises multiple subtypes (clear-cell (CCC), endometrioid (EC), high-grade serous (HGSC), low-grade serous (LGSC), and mucinous carcinomas (MC)) with differing molecular and clinical behavior. However, robust histotype-specific biomarkers for clinical use have yet to be identified. Here, we utilized a multi-omics approach to identify novel histotype-specific genetic markers associated with ovarian carcinoma histotypes (CCC, EC, HGSC, and MC) using DNA methylation, DNA copy number alteration and RNA sequencing data for 96 primary invasive early-stage (stage I and II) ovarian carcinomas. More specifically, the DNA methylation analysis revealed hypermethylation for CCC in comparison with the other histotypes. Moreover, copy number imbalances and novel chromothripsis-like rearrangements (n = 64) were identified in ovarian carcinoma, with the highest number of chromothripsis-like patterns in HGSC. For the 1000 most variable transcripts, underexpression was most prominent for all histotypes in comparison with normal ovarian samples. Overall, the integrative approach identified 46 putative oncogenes (overexpressed, hypomethylated and DNA gain) and three putative tumor suppressor genes (underexpressed, hypermethylated and DNA loss) when comparing the different histotypes. In conclusion, the current study provides novel insights into molecular features associated with early-stage ovarian carcinoma that may improve patient stratification and subclassification of the histotypes.
Collapse
|
9
|
Simons M, Simmer F, Bulten J, Ligtenberg MJ, Hollema H, van Vliet S, de Voer RM, Kamping EJ, van Essen DF, Ylstra B, Schwartz LE, Wang Y, Massuger LF, Nagtegaal ID, Kurman RJ. Two types of primary mucinous ovarian tumors can be distinguished based on their origin. Mod Pathol 2020; 33:722-733. [PMID: 31695154 DOI: 10.1038/s41379-019-0401-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
Abstract
The origin of primary mucinous ovarian tumors is unknown. We explore the hypothesis that they originate from either Brenner tumors or teratomas and examine differences between the tumors that arise in these settings. A total of 104 Brenner tumor-associated mucinous tumors and 58 teratoma-associated mucinous tumors were analyzed. Immunohistochemistry for 21 antigens and fluorescence in situ hybridization for ERBB2 and MYC were performed. Genome-wide copy number analysis and mutation analysis for 56 cancer-related genes was carried out on a subset of mucinous ovarian tumors and their complementary Brenner tumor or teratoma. Patients with teratoma-associated mucinous tumors were significantly younger than patients with Brenner tumor-associated mucinous tumors (43 vs. 61 years). During progression from cystadenoma to atypical proliferative mucinous (borderline) tumor to carcinoma expression of typical gastrointestinal markers was increased in both Brenner tumor-associated and teratoma-associated mucinous tumors. Brenner tumor-associated mucinous tumors showed more frequently calcifications and Walthard cell nests, rarely expressed SATB2 and showed more often co-deletion of CDKN2A and MTAP. Teratoma-associated mucinous tumors were characterized by mucinous stromal dissection, SATB2 expression and RNF43 mutations. Other frequent mutations in both Brenner tumor-associated and teratoma-associated mucinous tumors were TP53 and KRAS mutations. Based on identical mutations or copy number profiles clonal relationships were indicated in two mucinous tumors and their associated Brenner tumor. Teratomas and Brenner tumors give rise to different subtypes of mucinous ovarian tumors. Subsequent progression pathways are comparable since both Brenner tumor-associated and teratoma-associated mucinous tumors develop a gastrointestinal immunophenotype during progression and show early mutations in KRAS and TP53. Teratoma-associated mucinous tumors may more closely resemble true gastrointestinal tumors, indicated by their expression of SATB2 and the presence of RNF43 mutations.
Collapse
Affiliation(s)
- Michiel Simons
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Femke Simmer
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Shannon van Vliet
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eveline J Kamping
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk F van Essen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lauren E Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yihong Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Kurman
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
10
|
Liu G, Ruan G, Huang M, Chen L, Sun P. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities. Aging (Albany NY) 2020; 12:178-192. [PMID: 31895688 PMCID: PMC6977652 DOI: 10.18632/aging.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) metastasis presents major hurdles that must be overcome to improve patient outcomes. Recent studies have demonstrated copy number variations (CNVs) frequently contribute to alterations in oncogenic drivers. The present study used a CytoScan HD Array to analyse CNVs and loss of heterozygosity (LOH) in the entire genomes of 6 OC patients and human OC cell lines to determine the genetic target events leading to the distinct invasive/migratory capacities of OC. The results showed that LOH at Xq11.1 and Xp21.1 and gains at 8q21.13 were novel, specific CNVs. Ovarian cancer-related CNVs were then screened by bioinformatics analysis. In addition, transcription factors-target gene interactions were predicted with information from PASTAA analysis. As a result, six genes (i.e., GAB2, AKT1, EGFR, COL6A3, UGT1A1 and UGT1A8) were identified as strong candidates by integrating the above data with gene expression and clinical outcome data. In the transcriptional regulatory network, 4 known cancer-related transcription factors (TFs) interacted with 6 CNV-driven genes. The protein/DNA arrays revealed 3 of these 4 TFs as potential candidate gene-related transcription factors in OC. We then demonstrated that these six genes can serve as potential biomarkers for OC. Further studies are required to elucidate the pathogenesis of OC.
Collapse
Affiliation(s)
- GuiFen Liu
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - GuanYu Ruan
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - MeiMei Huang
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - LiLi Chen
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - PengMing Sun
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China.,Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
11
|
Papp E, Hallberg D, Konecny GE, Bruhm DC, Adleff V, Noë M, Kagiampakis I, Palsgrove D, Conklin D, Kinose Y, White JR, Press MF, Drapkin R, Easwaran H, Baylin SB, Slamon D, Velculescu VE, Scharpf RB. Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep 2019; 25:2617-2633. [PMID: 30485824 PMCID: PMC6481945 DOI: 10.1016/j.celrep.2018.10.096] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
To improve our understanding of ovarian cancer, we performed genome-wide analyses of 45 ovarian cancer cell lines. Given the challenges of genomic analyses of tumors without matched normal samples, we developed approaches for detection of somatic sequence and structural changes and integrated these with epigenetic and expression alterations. Alterations not previously implicated in ovarian cancer included amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and TGF-beta receptor pathway members, and rearrangements of YAP1-MAML2 and IKZF2-ERBB4. Dose-response analyses to targeted therapies revealed unique molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, MYC amplifications to PARP inhibitor BMN673, and SMAD3/4 alterations to MEK inhibitor MEK162. Genome-wide rearrangements provided an improved measure of sensitivity to PARP inhibition. This study provides a comprehensive and broadly accessible resource of molecular information for the development of therapeutic avenues in ovarian cancer. The overall survival of patients with late-stage ovarian cancer is dismal. To identify therapeutic opportunities, Papp et al. integrate genomic, epigenomic, and expression analyses to provide a resource of molecular abnormalities in ovarian cancer cell lines and use these to identify tumors sensitive to PARP, MEK, and PI3K inhibitors.
Collapse
Affiliation(s)
- Eniko Papp
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gottfried E Konecny
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doreen Palsgrove
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dylan Conklin
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis Slamon
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Newton R, Wernisch L. A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes. PLoS One 2019; 14:e0213221. [PMID: 31335867 PMCID: PMC6650054 DOI: 10.1371/journal.pone.0213221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
The copy numbers of genes in cancer samples are often highly disrupted and form a natural amplification/deletion experiment encompassing multiple genes. Matched array comparative genomics and transcriptomics datasets from such samples can be used to predict inter-chromosomal gene regulatory relationships. Previously we published the database METAMATCHED, comprising the results from such an analysis of a large number of publically available cancer datasets. Here we investigate genes in the database which are unusual in that their copy number exhibits consistent heterogeneous disruption in a high proportion of the cancer datasets. We assess the potential relevance of these genes to the pathology of the cancer samples, in light of their predicted regulatory relationships and enriched biological pathways. A network-based method was used to identify enriched pathways from the genes’ inferred targets. The analysis predicts both known and new regulator-target interactions and pathway memberships. We examine examples in detail, in particular the gene POGZ, which is disrupted in many of the cancer datasets and has an unusually large number of predicted targets, from which the network analysis predicts membership of cancer related pathways. The results suggest close involvement in known cancer pathways of genes exhibiting consistent heterogeneous copy number disruption. Further experimental work would clarify their relevance to tumor biology. The results of the analysis presented in the database METAMATCHED, and included here as an R archive file, constitute a large number of predicted regulatory relationships and pathway memberships which we anticipate will be useful in informing such experiments.
Collapse
Affiliation(s)
- Richard Newton
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
13
|
Mercatelli D, Ray F, Giorgi FM. Pan-Cancer and Single-Cell Modeling of Genomic Alterations Through Gene Expression. Front Genet 2019; 10:671. [PMID: 31379928 PMCID: PMC6657420 DOI: 10.3389/fgene.2019.00671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Cancer is a disease often characterized by the presence of multiple genomic alterations, which trigger altered transcriptional patterns and gene expression, which in turn sustain the processes of tumorigenesis, tumor progression, and tumor maintenance. The links between genomic alterations and gene expression profiles can be utilized as the basis to build specific molecular tumorigenic relationships. In this study, we perform pan-cancer predictions of the presence of single somatic mutations and copy number variations using machine learning approaches on gene expression profiles. We show that gene expression can be used to predict genomic alterations in every tumor type, where some alterations are more predictable than others. We propose gene aggregation as a tool to improve the accuracy of alteration prediction models from gene expression profiles. Ultimately, we show how this principle can be beneficial in intrinsically noisy datasets, such as those based on single-cell sequencing.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Forest Ray
- Department of Systems Biology, Columbia University Medical Center, New York, NY, United States
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Winham SJ, Larson NB, Armasu SM, Fogarty ZC, Larson MC, McCauley BM, Wang C, Lawrenson K, Gayther S, Cunningham JM, Fridley BL, Goode EL. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum Mol Genet 2019; 28:1331-1342. [PMID: 30576442 DOI: 10.1093/hmg/ddy444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brian M McCauley
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Takenaka M, Köbel M, Garsed DW, Fereday S, Pandey A, Etemadmoghadam D, Hendley J, Kawabata A, Noguchi D, Yanaihara N, Takahashi H, Kiyokawa T, Ikegami M, Takano H, Isonishi S, Ochiai K, Traficante N, Gadipally S, Semple T, Vassiliadis D, Amarasinghe K, Li J, Mir Arnau G, Okamoto A, Friedlander M, Bowtell DDL. Survival Following Chemotherapy in Ovarian Clear Cell Carcinoma Is Not Associated with Pathological Misclassification of Tumor Histotype. Clin Cancer Res 2019; 25:3962-3973. [PMID: 30967419 DOI: 10.1158/1078-0432.ccr-18-3691] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Although ovarian clear cell carcinomas (OCCC) are commonly resistant to platinum-based chemotherapy, good clinical outcomes are observed in a subset of patients. The explanation for this is unknown but may be due to misclassification of high-grade serous ovarian cancer (HGSOC) as OCCC or mixed histology. EXPERIMENTAL DESIGN To discover potential biomarkers of survival benefit following platinum-based chemotherapy, we ascertained a cohort of 68 Japanese and Australian patients in whom progression-free survival (PFS) and overall survival (OS) could be assessed. We performed IHC reclassification of tumors, and targeted sequencing and immunohistochemistry of known driver genes. Exome sequencing was performed in 10 patients who had either unusually long survival (N = 5) or had a very short time to progression (N = 5). RESULTS The majority of mixed OCCC (N = 6, 85.7%) and a small proportion of pure OCCC (N = 3, 4.9%) were reclassified as likely HGSOC. However, the PFS and OS of patients with misclassified samples were similar to that of patients with pathologically validated OCCC. Absent HNF1B expression was significantly correlated with longer PFS and OS (P = 0.0194 and 0.0395, respectively). Mutations in ARID1A, PIK3CA, PPP2R1A, and TP53 were frequent, but did not explain length of PFS and OS. An exploratory exome analysis of patients with favorable and unfavorable outcomes did not identify novel outcome-associated driver mutations. CONCLUSIONS Survival benefit following chemotherapy in OCCC was not associated with pathological misclassification of tumor histotype. HNF1B loss may help identify the subset of patients with OCCC with a more favorable outcome.
Collapse
Affiliation(s)
- Masataka Takenaka
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothill Medical Center, University of Calgary, Calgary, Canada
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dariush Etemadmoghadam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Victoria, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ayako Kawabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Daito Noguchi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takako Kiyokawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Seiji Isonishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiko Ochiai
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Timothy Semple
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
16
|
Cheng Y, Dai JY, Wang X, Kooperberg C. Identifying disease-associated copy number variations by a doubly penalized regression model. Biometrics 2018; 74:1341-1350. [PMID: 29894562 PMCID: PMC6663092 DOI: 10.1111/biom.12920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/27/2022]
Abstract
Copy number variation (CNV) of DNA plays an important role in the development of many diseases. However, due to the irregularity and sparsity of the CNVs, studying the association between CNVs and a disease outcome or a trait can be challenging. Up to now, not many methods have been proposed in the literature for this problem. Most of the current researchers reply on an ad hoc two-stage procedure by first identifying CNVs in each individual genome and then performing an association test using these identified CNVs. This potentially leads to information loss and as a result a lower power to identify disease associated CNVs. In this article, we describe a new method that combines the two steps into a single coherent model to identify the common CNV across patients that are associated with certain diseases. We use a double penalty model to capture CNVs' association with both the intensities and the disease trait. We validate its performance in simulated datasets and a data example on platinum resistance and CNV in ovarian cancer genome.
Collapse
Affiliation(s)
- Yichen Cheng
- Institute for Insight, Georgia State University, Atlanta, Georgia, USA
| | - James Y. Dai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A
| | - Xiaoyu Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A
| |
Collapse
|
17
|
Clinical Targeted Next-Generation Sequencing Shows Increased Mutational Load in Endometrioid-type Endometrial Adenocarcinoma With Deficient DNA Mismatch Repair. Int J Gynecol Pathol 2018; 37:581-589. [DOI: 10.1097/pgp.0000000000000459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Ji JX, Wang YK, Cochrane DR, Huntsman DG. Clear cell carcinomas of the ovary and kidney: clarity through genomics. J Pathol 2018; 244:550-564. [PMID: 29344971 DOI: 10.1002/path.5037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
Clear cell ovarian carcinoma (CCOC) and clear cell renal cell carcinoma (ccRCC) both feature clear cytoplasm, owing to the accumulation of cytoplasmic glycogen. Genomic studies have demonstrated several mutational similarities between these two diseases, including frequent alterations in the chromatin remodelling SWI-SNF and cellular proliferation phosphoinositide 3-kinase-mammalian target of rapamycin pathways, as well as a shared hypoxia-like mRNA expression signature. Although many targeted treatment options have been approved for advanced-stage ccRCC, CCOC patients are still treated with conventional platinum and taxane chemotherapy, to which they are resistant. To determine the extent of similarity between these malignancies, we performed unsupervised clustering of mRNA expression data from these cancers. This review highlights the similarities and differences between these two clear cell carcinomas to facilitate knowledge translation within future research efforts. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yi Kan Wang
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| |
Collapse
|
19
|
Larson NB, Fogarty ZC, Larson MC, Kalli KR, Lawrenson K, Gayther S, Fridley BL, Goode EL, Winham SJ. An integrative approach to assess X-chromosome inactivation using allele-specific expression with applications to epithelial ovarian cancer. Genet Epidemiol 2017; 41:898-914. [PMID: 29119601 PMCID: PMC5726546 DOI: 10.1002/gepi.22091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
X-chromosome inactivation (XCI) epigenetically silences transcription of an X chromosome in females; patterns of XCI are thought to be aberrant in women's cancers, but are understudied due to statistical challenges. We develop a two-stage statistical framework to assess skewed XCI and evaluate gene-level patterns of XCI for an individual sample by integration of RNA sequence, copy number alteration, and genotype data. Our method relies on allele-specific expression (ASE) to directly measure XCI and does not rely on male samples or paired normal tissue for comparison. We model ASE using a two-component mixture of beta distributions, allowing estimation for a given sample of the degree of skewness (based on a composite likelihood ratio test) and the posterior probability that a given gene escapes XCI (using a Bayesian beta-binomial mixture model). To illustrate the utility of our approach, we applied these methods to data from tumors of ovarian cancer patients. Among 99 patients, 45 tumors were informative for analysis and showed evidence of XCI skewed toward a particular parental chromosome. For 397 X-linked genes, we observed tumor XCI patterns largely consistent with previously identified consensus states based on multiple normal tissue types. However, 37 genes differed in XCI state between ovarian tumors and the consensus state; 17 genes aberrantly escaped XCI in ovarian tumors (including many oncogenes), whereas 20 genes were unexpectedly inactivated in ovarian tumors (including many tumor suppressor genes). These results provide evidence of the importance of XCI in ovarian cancer and demonstrate the utility of our two-stage analysis.
Collapse
MESH Headings
- Adult
- Alleles
- Bayes Theorem
- Carcinoma, Ovarian Epithelial
- Chromosomes, Human, X
- Female
- Genes, X-Linked
- Genotype
- Humans
- Models, Genetic
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Polymorphism, Single Nucleotide
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/isolation & purification
- RNA, Neoplasm/metabolism
- Sequence Analysis, RNA
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C. Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Kate Lawrenson
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L. Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
da Silva RF, Cardozo DM, Rodrigues GOL, Souza-Araújo CND, Migita NA, Andrade LALDA, Derchain S, Yunes JA, Guimarães F. CAISMOV24, a new human low-grade serous ovarian carcinoma cell line. BMC Cancer 2017; 17:756. [PMID: 29132324 PMCID: PMC5683553 DOI: 10.1186/s12885-017-3716-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The spontaneous immortalization of primary malignant cells is frequently assigned to their genetic instability during in vitro culturing. In this study, the new epithelial ovarian cancer cell line CAISMOV24 was described and compared with its original low-grade serous ovarian carcinoma. METHODS The in vitro culture was established with cells isolated from ascites of a 60-year-old female patient with recurrent ovarian cancer. The CAISMOV24 line was assessed for cell growth, production of soluble biomarkers, expression of surface molecules and screened for typical mutations found in serous ovarian carcinoma. Additionally, comparative genomic hybridization was employed to compare genomic alterations between the CAISMOV24 cell line and its primary malignant cells. RESULTS CAISMOV24 has been in continuous culture for more than 30 months and more than 100 in vitro passages. The cell surface molecules EpCAM, PVR and CD73 are overexpressed on CAISMOV24 cells compared to the primary malignant cells. CAISMOV24 continues to produce CA125 and HE4 in vitro. Although the cell line had developed alongside the accumulation of genomic alterations (28 CNV in primary cells and 37 CNV in CAISMOV24), most of them were related to CNVs already present in primary malignant cells. CAISMOV24 cell line harbored KRAS mutation with wild type TP53, therefore it is characterized as low-grade serous carcinoma. CONCLUSION Our results corroborate with the idea that genomic alterations, depicted by CNVs, can be used for subtyping epithelial ovarian carcinomas. Additionally, CAISMOV24 cell line was characterized as a low-grade serous ovarian carcinoma, which still resembles its primary malignant cells.
Collapse
Affiliation(s)
| | | | - Gisele Olinto Libanio Rodrigues
- Instituto de Biologia, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | | | - Natacha Azussa Migita
- Instituto de Biologia, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | | | - Sophie Derchain
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Women’s Hospital “Professor Doutor José Aristodemo Pinotti” – CAISM, University of Campinas, Rua Alexander Fleming 101, Campinas, SP 13083-881 Brazil
| | - José Andrés Yunes
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | - Fernando Guimarães
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Women’s Hospital “Professor Doutor José Aristodemo Pinotti” – CAISM, University of Campinas, Rua Alexander Fleming 101, Campinas, SP 13083-881 Brazil
| |
Collapse
|
21
|
Li L, Bai H, Yang J, Cao D, Shen K. Genome-wide DNA copy number analysis in clonally expanded human ovarian cancer cells with distinct invasive/migratory capacities. Oncotarget 2017; 8:15136-15148. [PMID: 28122348 PMCID: PMC5362473 DOI: 10.18632/oncotarget.14767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer has the worst prognosis of any gynecological malignancy, and generally presents with metastasis at advanced stages. Copy number variation (CNV) frequently contributes to the alteration of oncogenic drivers. In this study, we sought to identify genetic targets in heterogeneous clones from human ovarian cancers cells. We used array-based technology to systematically assess all the genes with CNVs in cell models clonally expanded from A2780 and SKOV3 ovarian cancer cell lines with distinct highly and minimally invasive/migratory capacities. We found that copy number alterations differed between matched highly and minimally invasive/migratory subclones, differentially affecting specific functional processes including immune response processes, DNA damage repair, cell cycle and cell proliferation. We also identified seven genes as strong candidates, including DDB1, ERCC1, ERCC2, PRPF19, BCAT1, CDKN1B and MARK4, by integrating the above data with gene expression and clinical outcome data. Thus, by determining the molecular signatures of heterogeneous invasive/migratory ovarian cancer cells, we identified genes that could be specifically targeted for the treatment and prognosis of advanced ovarian cancers.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Exome Sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key Chromosomal Regions and Mutation Gene Networks. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2246-2258. [PMID: 28888422 DOI: 10.1016/j.ajpath.2017.06.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Previous studies have reported genome-wide mutation profile analyses in ovarian clear cell carcinomas (OCCCs). This study aims to identify specific novel molecular alterations by combined analyses of somatic mutation and copy number variation. We performed whole exome sequencing of 39 OCCC samples with 16 matching blood tissue samples. Four hundred twenty-six genes had recurrent somatic mutations. Among the 39 samples, ARID1A (62%) and PIK3CA (51%) were frequently mutated, as were genes such as KRAS (10%), PPP2R1A (10%), and PTEN (5%), that have been reported in previous OCCC studies. We also detected mutations in MLL3 (15%), ARID1B (10%), and PIK3R1 (8%), which are associations not previously reported. Gene interaction analysis and functional assessment revealed that mutated genes were clustered into groups pertaining to chromatin remodeling, cell proliferation, DNA repair and cell cycle checkpointing, and cytoskeletal organization. Copy number variation analysis identified frequent amplification in chr8q (64%), chr20q (54%), and chr17q (46%) loci as well as deletion in chr19p (41%), chr13q (28%), chr9q (21%), and chr18q (21%) loci. Integration of the analyses uncovered that frequently mutated or amplified/deleted genes were involved in the KRAS/phosphatidylinositol 3-kinase (82%) and MYC/retinoblastoma (75%) pathways as well as the critical chromatin remodeling complex switch/sucrose nonfermentable (85%). The individual and integrated analyses contribute details about the OCCC genomic landscape, which could lead to enhanced diagnostics and therapeutic options.
Collapse
|
23
|
Wang C, Winterhoff BJ, Kalli KR, Block MS, Armasu SM, Larson MC, Chen HW, Keeney GL, Hartmann LC, Shridhar V, Konecny GE, Goode EL, Fridley BL. Expression signature distinguishing two tumour transcriptome classes associated with progression-free survival among rare histological types of epithelial ovarian cancer. Br J Cancer 2016; 114:1412-20. [PMID: 27253175 PMCID: PMC4984456 DOI: 10.1038/bjc.2016.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/14/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The mechanisms of recurrence have been under-studied in rare histologies of invasive epithelial ovarian cancer (EOC) (endometrioid, clear cell, mucinous, and low-grade serous). We hypothesised the existence of an expression signature predictive of outcome in the rarer histologies. METHODS In split discovery and validation analysis of 131 Mayo Clinic EOC cases, we used clustering to determine clinically relevant transcriptome classes using microarray gene expression measurements. The signature was validated in 967 EOC tumours (91 rare histological subtypes) with recurrence information. RESULTS We found two validated transcriptome classes associated with progression-free survival (PFS) in the Mayo Clinic EOC cases (P=8.24 × 10(-3)). This signature was further validated in the public expression data sets involving the rare EOC histologies, where these two classes were also predictive of PFS (P=1.43 × 10(-3)). In contrast, the signatures were not predictive of PFS in the high-grade serous EOC cases. Moreover, genes upregulated in Class-1 (with better outcome) were showed enrichment in steroid hormone biosynthesis (false discovery rate, FDR=0.005%) and WNT signalling pathway (FDR=1.46%); genes upregulated in Class-2 were enriched in cell cycle (FDR=0.86%) and toll-like receptor pathways (FDR=2.37%). CONCLUSIONS These findings provide important biological insights into the rarer EOC histologies that may aid in the development of targeted treatment options for the rarer histologies.
Collapse
Affiliation(s)
- Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Boris J Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kimberly R Kalli
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew S Block
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Hsiao-Wang Chen
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary L Keeney
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lynn C Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gottfried E Konecny
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Brooke L Fridley
- Department of Biostatistics, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
WWOX CNV-67048 Functions as a Risk Factor for Epithelial Ovarian Cancer in Chinese Women by Negatively Interacting with Oral Contraceptive Use. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6594039. [PMID: 27190995 PMCID: PMC4842385 DOI: 10.1155/2016/6594039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022]
Abstract
Copy number variations (CNVs) have attracted increasing evidences to represent their roles as cancer susceptibility regulators. However, little is known about the role of CNV in epithelia ovarian cancer (EOC). Recently, the CNV-67048 of WW domain-containing oxidoreductase (WWOX) was reported to alter cancer risks. Considering that WWOX also plays a role in EOC, we hypothesized that the CNV-67048 was associated with EOC risk. In a case-control study of 549 EOC patients and 571 age (±5 years) matched cancer-free controls, we found that the low copy number of CNV-67048 (1-copy and 0-copy) conferred a significantly increased risk of EOC (OR = 1.346, 95% CI = 1.037–1.747) and it determined the risk by means of copy number-dependent dosage effect (P = 0.009). Data from TCGA also confirmed the abovementioned association as the frequency of low copies in EOC group was 3.68 times more than that in healthy group (P = 0.023). The CNV also negatively interacted with oral contraceptive use on EOC risk (P = 0.042). Functional analyses further showed a lower mRNA level of WWOX in tissues with the 0-copy or 1-copy than that in those with the 2-copy (P = 0.045). Our data suggested the CNV-67048 to be a risk factor of EOC in Chinese women.
Collapse
|
25
|
Bai H, Cao D, Yang J, Li M, Zhang Z, Shen K. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy. J Cell Mol Med 2016; 20:581-93. [PMID: 26800494 PMCID: PMC5125785 DOI: 10.1111/jcmm.12771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghui Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6:19943. [PMID: 26887977 PMCID: PMC4757891 DOI: 10.1038/srep19943] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor—Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.
Collapse
|
27
|
Potential targets for ovarian clear cell carcinoma: a review of updates and future perspectives. Cancer Cell Int 2015; 15:117. [PMID: 26675567 PMCID: PMC4678619 DOI: 10.1186/s12935-015-0267-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022] Open
Abstract
Advances in surgical and medical treatments for ovarian cancer have improved prognoses. Platinum drugs in particular are pivotal for the medical treatment of ovarian cancer. However, previous studies have revealed that some histological subtypes, such as clear cell carcinoma, are resistant to medical treatment, including that with platinum drugs. Consequently, the clinical prognosis of advanced clear cell carcinoma is remarkably inferior, primarily because of its chemoresistant behavior. The prevalence of clear cell carcinoma is approximately 5 % in the West, but in Japan, its prevalence is particularly high, at approximately 25 %. Current medical treatments for advanced clear cell carcinoma are difficult to administer, and they have poor efficacy, warranting the development of novel target-based therapies. In this review, we describe medical treatments for clear cell carcinoma and discuss future prospects for therapy. In particular, we focus on the mechanism of platinum resistance in clear cell carcinoma, including the role of annexin A4, one of the most investigated factors of platinum resistance, as well as the mutant genes and overexpressed proteins such as VEGF, PI3K/AKT/mTOR signaling pathway, ARID1A, hepatocyte nuclear factor-1β, ZNF217. We also review targeted molecular therapeutics for epithelial ovarian cancer and discuss their role in clear cell carcinoma treatment. We review the drugs targeting angiogenesis (bevacizumab, sorafenib, and pazopanib), growth factors (gefitinib, erlotinib, lapatinib, trastuzumab, and AMG479), and signaling pathways (temsirolimus, dasatinib, and imatinib), and other drugs (oregovomab, volociximab, and iniparib). This current review summarizes and discusses the clinical significance of these factors in ovarian clear cell carcinoma as well as their potential mechanisms of action. It may provide new integrative understanding for future studies on their exact role in ovarian clear cell carcinoma.
Collapse
|
28
|
Mitra AK, Davis DA, Tomar S, Roy L, Gurler H, Xie J, Lantvit DD, Cardenas H, Fang F, Liu Y, Loughran E, Yang J, Sharon Stack M, Emerson RE, Cowden Dahl KD, V Barbolina M, Nephew KP, Matei D, Burdette JE. In vivo tumor growth of high-grade serous ovarian cancer cell lines. Gynecol Oncol 2015; 138:372-7. [PMID: 26050922 DOI: 10.1016/j.ygyno.2015.05.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community.
Collapse
Affiliation(s)
- Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Indiana University, Bloomington, IN, United States
| | - David A Davis
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| | - Sunil Tomar
- Medical Sciences Program, Indiana University School of Medicine, Indiana University, Bloomington, IN, United States
| | - Lynn Roy
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend; Harper Cancer Research Institute, Notre Dame, IN
| | - Hilal Gurler
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Jia Xie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| | - Horacio Cardenas
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fang Fang
- Medical Sciences Program, Indiana University School of Medicine, Indiana University, Bloomington, IN, United States
| | - Yueying Liu
- Harper Cancer Research Institute, Notre Dame, IN; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Elizabeth Loughran
- Harper Cancer Research Institute, Notre Dame, IN; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Jing Yang
- Harper Cancer Research Institute, Notre Dame, IN; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - M Sharon Stack
- Harper Cancer Research Institute, Notre Dame, IN; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Robert E Emerson
- Department of Pathology Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karen D Cowden Dahl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend; Harper Cancer Research Institute, Notre Dame, IN; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University School of Medicine, Indiana University, Bloomington, IN, United States; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniela Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Uehara Y, Oda K, Ikeda Y, Koso T, Tsuji S, Yamamoto S, Asada K, Sone K, Kurikawa R, Makii C, Hagiwara O, Tanikawa M, Maeda D, Hasegawa K, Nakagawa S, Wada-Hiraike O, Kawana K, Fukayama M, Fujiwara K, Yano T, Osuga Y, Fujii T, Aburatani H. Integrated copy number and expression analysis identifies profiles of whole-arm chromosomal alterations and subgroups with favorable outcome in ovarian clear cell carcinomas. PLoS One 2015; 10:e0128066. [PMID: 26043110 PMCID: PMC4456367 DOI: 10.1371/journal.pone.0128066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/23/2015] [Indexed: 12/11/2022] Open
Abstract
Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis.
Collapse
Affiliation(s)
- Yuriko Uehara
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Takahiro Koso
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Shingo Tsuji
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kayo Asada
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Reiko Kurikawa
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Chinami Makii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Otoe Hagiwara
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Daichi Maeda
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Obstetrics and Gynecology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shunsuke Nakagawa
- Department of Obstetrics and Gynecology, Teikyo University International, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | | | - Keiichi Fujiwara
- Department of Obstetrics and Gynecology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Cobb LP, Gaillard S, Wang Y, Shih IM, Secord AA. Adenocarcinoma of Mullerian origin: review of pathogenesis, molecular biology, and emerging treatment paradigms. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2015; 2:1. [PMID: 27231561 PMCID: PMC4880836 DOI: 10.1186/s40661-015-0008-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 11/10/2022]
Abstract
Traditionally, epithelial ovarian, tubal, and peritoneal cancers have been viewed as separate entities with disparate origins, pathogenesis, clinical features, and outcomes. Additionally, previous classification systems for ovarian cancer have proposed two primary histologic groups that encompass the standard histologic subtypes. Recent data suggest that these groupings no longer accurately reflect our knowledge surrounding these cancers. In this review, we propose that epithelial ovarian, tubal, and peritoneal carcinomas represent a spectrum of disease that originates in the Mullerian compartment. We will discuss the incidence, classification, origin, molecular determinants, and pathologic analysis of these cancers that support the conclusion they should be collectively referred to as adenocarcinomas of Mullerian origin. As our understanding of the molecular and pathologic profiling of adenocarcinomas of Mullerian origin advances, we anticipate treatment paradigms will shift towards genomic driven therapeutic interventions.
Collapse
Affiliation(s)
- Lauren Patterson Cobb
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710 USA
| | - Stephanie Gaillard
- Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Yihong Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
31
|
Zhou J, Yong WP, Yap CS, Vijayaraghavan A, Sinha RA, Singh BK, Xiu S, Manesh S, Ngo A, Lim A, Ang C, Xie C, Wong FY, Lin SJ, Wan WK, Tan IB, Flotow H, Tan P, Lim KH, Yen PM, Goh LK. An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis 2015; 36:441-51. [PMID: 25742747 DOI: 10.1093/carcin/bgv014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/30/2015] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is the second leading cause of global cancer mortality worldwide. However, the molecular mechanism underlying its carcinogenesis and drug resistance is not well understood. To identify novel functionally important genes that were differentially expressed due to combinations of genetic and epigenetic changes, we analyzed datasets containing genome-wide mRNA expression, DNA copy number alterations and DNA methylation status from 154 primary GC samples and 47 matched non-neoplastic mucosa tissues from Asian patients. We used concepts of 'within' and 'between' statistical analysis to compare the difference between tumors and controls within each platform, and assessed the correlations between platforms. This 'multi-regulated gene (MRG)' analysis identified 126 differentially expressed genes that underwent a combination of copy number and DNA methylation changes. Most genes were located at genomic loci associated with GC. Statistical enrichment analysis showed that MRGs were enriched for cancer, GC and drug response. We analysed several MRGs that previously had not been associated with GC. Knockdown of DDX27, TH1L or IDH3G sensitized cells to epirubicin or cisplatin, and knockdown of RAI14 reduced cell proliferation. Further studies showed that overexpression of DDX27 reduced epirubicin-induced DNA damage and apoptosis. Levels of DDX27 mRNA and protein were increased in early-stage gastric tumors, and may be a potential diagnostic and prognostic marker for GC. In summary, we used an integrative bioinformatics strategy to identify novel genes that are altered in GC and regulate resistance of GC cells to drugs in vitro.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Wei-Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Chui Sun Yap
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Aadhitthya Vijayaraghavan
- Centre for Quantitative Medicine, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Rohit Anthony Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Sam Xiu
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Anna Ngo
- Experimental Therapeutics Centre, Singapore, Singapore
| | - Andrea Lim
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Carolyn Ang
- Laboratory of Computational Biology, Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Chen Xie
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | | | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore, Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Horst Flotow
- Experimental Therapeutics Centre, Singapore, Singapore
| | - Patrick Tan
- Laboratory of Genomic Oncology, Cancer and Stem Cell Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore, Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Genome Institute of Singapore, Singapore
| | - Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore, Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA,
| | - Liang Kee Goh
- Centre for Quantitative Medicine, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore; Laboratory of Computational Biology, Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore, Department of Medical Oncology, National Cancer Centre, Singapore, Singapore, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Stefanou DT, Bamias A, Episkopou H, Kyrtopoulos SA, Likka M, Kalampokas T, Photiou S, Gavalas N, Sfikakis PP, Dimopoulos MA, Souliotis VL. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer. PLoS One 2015; 10:e0117654. [PMID: 25659114 PMCID: PMC4320060 DOI: 10.1371/journal.pone.0117654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023] Open
Abstract
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Dimitra T. Stefanou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Hara Episkopou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, 1200, Belgium
| | - Soterios A. Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Likka
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Theodore Kalampokas
- Second Department of Obstetrics & Gynaecology, Athens University Medical School, 11528 Athens, Greece
| | - Stylianos Photiou
- Second Department of Obstetrics & Gynaecology, Athens University Medical School, 11528 Athens, Greece
| | - Nikos Gavalas
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Petros P. Sfikakis
- First Department of Propedeutic Medicine, Athens University Medical School, 11527 Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Vassilis L. Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- * E-mail:
| |
Collapse
|
33
|
Kan CWS, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2014; 54:1-19. [PMID: 25280227 DOI: 10.1002/gcc.22221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer death in women worldwide. Serous epithelial ovarian cancer (SEOC) is the most common and aggressive histological subtype. Widespread genomic alterations go hand-in-hand with aberrant DNA damage signaling and are a hallmark of high-grade SEOC. MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that are nonrandomly distributed in the genome. They are frequently located in chromosomal regions susceptible to copy number variation (CNV) associated with malignancy that can influence their expression. Widespread changes in miRNA expression have been reported in multiple cancer types including ovarian cancer. This review examines CNV and single nucleotide polymorphisms, two common types of genomic alterations that occur in ovarian cancer, in the context of their influence on the expression of miRNA and the ability of miRNA to bind to and regulate their target genes. This includes genes encoding proteins involved in DNA repair and the maintenance of genomic stability. Improved understanding of mechanisms of miRNA dysregulation and the role of miRNA in ovarian cancer will provide further insight into the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Casina W S Kan
- Hormones and Cancer Group, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
| | | | | | | |
Collapse
|
34
|
Li X, Chew SH, Chay WY, Lim-Tan SK, Goh LK. Optimizing Ventana chromogenic dual in-situ hybridization for mucinous epithelial ovarian cancer. BMC Res Notes 2013; 6:562. [PMID: 24373486 PMCID: PMC3892083 DOI: 10.1186/1756-0500-6-562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background Dual in-situ hybridization (DISH) assay is a relatively new assay for evaluating Human Epidermal Growth Factor Receptor 2 (HER2) genomic amplification. Optimization protocol for the assay is not yet well established, especially for archival tissues. Although there is a recommended nominal protocol, it is not suited for formalin-fixed and paraffin-embedded (FFPE) samples that were archived for long periods. Findings In a study on local population of mucinous epithelial ovarian cancer, we developed a series of optimization protocols based on the age of samples to improve success of the DISH assay. A decision workflow was generated to facilitate individualization of further optimization protocols. The optimizations were evaluated on 92 whole tissue sections of FFPE mucinous ovarian tumors dating from 1990 to 2011. Overall, 79 samples were successfully assayed for DISH using the series of optimization protocols. We found samples older than 1 year required further optimization beyond the nominal protocol recommended. Thirteen samples were not further assayed after first DISH assay due to inadequately preserved nuclear morphology with no ISH signals throughout the tissue section. Conclusion The study revealed age of samples and storage conditions were major factors in successful DISH assays. Samples that were ten years or less in age, and archived in-house were successfully optimized, whereas older samples, which were also archived off-site, have a higher frequency of unsuccessful optimizations. The study provides practical and important guidelines for the new DISH assay which can facilitate successful HER2 evaluation in ovarian cancers and possibly other cancers as well.
Collapse
Affiliation(s)
| | | | | | | | - Liang-Kee Goh
- Cancer & Stem Cell Biology, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
Chay WY, Chew SH, Ong WS, Busmanis I, Li X, Thung S, Ngo L, Lim SL, Lim YK, Chia YN, Koh E, Pang C, Soh LT, Wang J, Ho TH, Tay SK, Lim-Tan SK, Lim KH, Chia JWK, Goh LK. HER2 amplification and clinicopathological characteristics in a large Asian cohort of rare mucinous ovarian cancer. PLoS One 2013; 8:e61565. [PMID: 23620766 PMCID: PMC3631219 DOI: 10.1371/journal.pone.0061565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Mucinous epithelial ovarian cancer has a poor prognosis in the advanced stages and responds poorly to conventional chemotherapy. We aim to elucidate the clinicopathological factors and incidence of HER2 expression of this cancer in a large Asian retrospective cohort from Singapore. Of a total of 133 cases, the median age at diagnosis was 48.3 years (range, 15.8–89.0 years), comparatively younger than western cohorts. Most were Chinese (71%), followed by Malays (16%), others (9.0%), and Indians (5%). 24% were noted to have a significant family history of malignancy of which breast and gastrointestinal cancers the most prominent. Majority of the patients (80%) had stage I disease at diagnosis. Information on HER2 status was available in 113 cases (85%). Of these, 31 cases (27.4%) were HER2+, higher than 18.8% reported in western population. HER2 positivity appeared to be lower among Chinese and higher among Malays patients (p = 0.052). With the current standard of care, there was no discernible impact of HER2 status on overall survival. (HR = 1.79; 95% CI, 0.66–4.85; p = 0.249). On the other hand, positive family history of cancer, presence of lymphovascular invasion, and ovarian surface involvements were significantly associated with inferior overall survival on univariate and continued to be statistically significant after adjustment for stage. While these clinical factors identify high risk patients, it is promising that the finding of a high incidence of HER2 in our Asian population may allow development of a HER2 targeted therapy to improve the management of mucinous ovarian cancers.
Collapse
Affiliation(s)
- Wen-Yee Chay
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- * E-mail: (WYC); (LG)
| | - Sung-Hock Chew
- Department of Pathology, KK Women and Children's' Hospital, Singapore, Singapore
| | - Whee-Sze Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore, Singapore
| | - Inny Busmanis
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Xinyun Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sharyl Thung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lynette Ngo
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Sheow- Lei Lim
- Department of Gynecological Oncology, KK Women and Children's' Hospital, Singapore, Singapore
| | - Yong-Kuei Lim
- Department of Gynecological Oncology, KK Women and Children's' Hospital, Singapore, Singapore
| | - Yin-Nin Chia
- Department of Gynecological Oncology, KK Women and Children's' Hospital, Singapore, Singapore
| | - Elisa Koh
- Department of Obstetrics and Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Cindy Pang
- Department of Obstetrics and Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Lay-Tin Soh
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Jin Wang
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Tew-Hong Ho
- Department of Obstetrics and Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Sun-Kuie Tay
- Department of Obstetrics and Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Soo-Kim Lim-Tan
- Department of Pathology, KK Women and Children's' Hospital, Singapore, Singapore
| | - Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Liang-Kee Goh
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- * E-mail: (WYC); (LG)
| |
Collapse
|