1
|
Wang Y, Zhang C, Zhao X, Qiu Y, Wang X, Zhao C, Qi Y, Wan Q, Chen L. The nuclear pore protein Nup2 is essential for growth and development, stress response, pathogenicity and deoxynivalenol biosynthesis in Fusarium graminearum. PEST MANAGEMENT SCIENCE 2025; 81:44-54. [PMID: 39253892 DOI: 10.1002/ps.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Wheat is an important grain crop that has been under serious threat from Fusarium graminearum. Nup2, a member of the nuclear pore complex, plays an important role in regulating eukaryotic nuclear protein transport and participates in gene regulation. Dissecting the function of nuclear pore proteins in pathogenic fungi may provide effective targets for novel fungicides. RESULTS Mutants exhibited nutritional growth defects, asexual/sexual developmental abnormalities. Deficiency of FgNup2 resulted in increased resistance of Fusarium graminearum to cell wall disruptors and increased sensitivity to metal ions. Pathogenicity analyses showed that the mutant was significantly less virulent on flowering wheat ears, consistent with the observed decrease in deoxynivalenol (DON) production. Furthermore, we showed that FgNup2 interacts synergistically with FgTri6, a transcription factor of the TRI family, to regulate the expression of toxin-producing genes, which, in turn, affects the biosynthesis of DON and related toxins. CONCLUSION This study revealed that FgNup2 plays important roles in the growth and development, cell wall integrity, stress response, pathogenicity, and DON synthesis of F. graminearum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxuan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengqi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaozhen Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuxin Qiu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chenzhong Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongxia Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiong Wan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Baran B, Ölmez F, Çapa B, Dikilitas M. Defense Pathways of Wheat Plants Inoculated with Zymoseptoria tritici under NaCl Stress Conditions: An Overview. Life (Basel) 2024; 14:648. [PMID: 38792668 PMCID: PMC11122936 DOI: 10.3390/life14050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Due to being sessile, plants develop a broad range of defense pathways when they face abiotic or biotic stress factors. Although plants are subjected to more than one type of stress at a time in nature, the combined effects of either multiple stresses of one kind (abiotic or biotic) or more kinds (abiotic and biotic) have now been realized in agricultural lands due to increases in global warming and environmental pollution, along with population increases. Soil-borne pathogens, or pathogens infecting aerial parts, can have devastating effects on plants when combined with other stressors. Obtaining yields or crops from sensitive or moderately resistant plants could be impossible, and it could be very difficult from resistant plants. The mechanisms of combined stress in many plants have previously been studied and elucidated. Recent studies proposed new defense pathways and mechanisms through signaling cascades. In light of these mechanisms, it is now time to develop appropriate strategies for crop protection under multiple stress conditions. This may involve using disease-resistant or stress-tolerant plant varieties, implementing proper irrigation and drainage practices, and improving soil quality. However, generation of both stress-tolerant and disease-resistant crop plants is of crucial importance. The establishment of a database and understanding of the defense mechanisms under combined stress conditions would be meaningful for the development of resistant and tolerant plants. It is clear that leaf pathogens show great tolerance to salinity stress and result in pathogenicity in crop plants. We noticed that regulation of the stomata through biochemical applications and some effort with the upregulation of the minor gene expressions indirectly involved with the defense mechanisms could be a great way to increase the defense metabolites without interfering with quality parameters. In this review, we selected wheat as a model plant and Zymoseptoria tritici as a model leaf pathogen to evaluate the defense mechanisms under saline conditions through physiological, biochemical, and molecular pathways and suggested various ways to generate tolerant and resistant cereal plants.
Collapse
Affiliation(s)
- Behzat Baran
- Plant Protection Research Institute, Sur, Diyarbakır 21110, Türkiye;
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agriculture, Sivas University of Science and Technology, Sivas 58010, Türkiye;
| | - Beritan Çapa
- Department of Plant Protection Şanliurfa, Faculty of Agriculture, Harran University, Sanliurfa 63000, Türkiye;
| | - Murat Dikilitas
- Department of Plant Protection Şanliurfa, Faculty of Agriculture, Harran University, Sanliurfa 63000, Türkiye;
| |
Collapse
|
3
|
Veres T, Kerestély M, Kovács BM, Keresztes D, Schulc K, Seitz E, Vassy Z, Veres DV, Csermely P. Cellular forgetting, desensitisation, stress and ageing in signalling networks. When do cells refuse to learn more? Cell Mol Life Sci 2024; 81:97. [PMID: 38372750 PMCID: PMC10876757 DOI: 10.1007/s00018-024-05112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.
Collapse
Affiliation(s)
- Tamás Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Erik Seitz
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Vassy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Turbine Ltd, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Biologia futura: combinatorial stress responses in fungi. Biol Futur 2022; 73:207-217. [DOI: 10.1007/s42977-022-00121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
AbstractIn the ever-changing fungal environment, fungi have to cope with a wide array of very different stresses. These stresses frequently act in combination rather than independently, i.e., they quickly follow one another or occur concomitantly. Combinatorial stress response studies revealed that the response of fungi to a stressor is highly dependent on the simultaneous action of other stressors or even on earlier stresses to which the fungi adapted. Several important phenomena were discovered, such as stress pathway interference, acquired stress tolerance, stress response memory or stress cross-protection/sensitization, which cannot be interpreted when we study the consequences of a single stressor alone. Due to the interactions between stressors and stress responses, a stress response that develops under a combined stress is not the simple summation of stress responses observed during single stress treatments. Based on the knowledge collected from single stress treatment experiments, we cannot predict how fungi will respond to a certain combination of stresses or even whether this combination will be more harmful than single stress treatments. This uncertainty warns us that if we want to understand how fungi adapt to a certain habitat (e.g., to the human body) to find a point of weakness in this adaptation, we must understand how the fungi cope with combinations of stresses, rather than with single stressors.
Collapse
|
6
|
Celińska E. "Fight-flight-or-freeze" - how Yarrowia lipolytica responds to stress at molecular level? Appl Microbiol Biotechnol 2022; 106:3369-3395. [PMID: 35488934 PMCID: PMC9151528 DOI: 10.1007/s00253-022-11934-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Yarrowia lipolytica is a popular yeast species employed in multiple biotechnological production processes. High resistance to extreme environmental conditions or metabolic burden triggered by synthetically forced over-synthesis of a target metabolite has its practical consequences. The proud status of an “industrial workhorse” that Y. lipolytica has gained is directly related to such a quality of this species. With the increasing amount of knowledge coming from detailed functional studies and comprehensive omics analyses, it is now possible to start painting the landscape of the molecular background behind stress response and adaptation in Y. lipolytica. This review summarizes the current state-of-art of a global effort in revealing how Y. lipolytica responds to both environmental threats and the intrinsic burden caused by the overproduction of recombinant secretory proteins at the molecular level. Detailed lists of genes, proteins, molecules, and biological processes deregulated upon exposure to external stress factors or affected by over-synthesis of heterologous proteins are provided. Specificities and universalities of Y. lipolytica cellular response to different extrinsic and intrinsic threats are highlighted. Key points • Y. lipolytica as an industrial workhorse is subjected to multiple stress factors. • Cellular responses together with involved genes, proteins, and molecules are reviewed. • Native stress response mechanisms are studied and inspire engineering strategies.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland.
| |
Collapse
|
7
|
Li T, Kim D, Lee J. NADPH Oxidase Gene, FgNoxD, Plays a Critical Role in Development and Virulence in Fusarium graminearum. Front Microbiol 2022; 13:822682. [PMID: 35308369 PMCID: PMC8928025 DOI: 10.3389/fmicb.2022.822682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
NADPH oxidase is an enzyme that generates reactive oxygen species from oxygen and NADPH and is highly conserved in eukaryotes. In Fusarium graminearum, a series of different Nox enzymes have been identified. NoxA is involved in sexual development and ascospore production and, like NoxB, also contributes to pathogenicity. Both NoxA and NoxB are regulated by the subunit NoxR, whereas NoxC is usually self-regulated by EF-hand motifs found on the enzyme. In this study, we characterized another NADPH oxidase in F. graminearum, FgNoxD. In the FgNoxD deletion mutant, vegetative growth and conidia production were reduced, while sexual development was totally abolished. The FgNoxD deletion mutant also showed reduced resistance to cell wall perturbing agents; cell membrane inhibitors; and osmotic, fungicide, cold, and extracellular oxidative stress, when compared to the wild type. Moreover, in comparison to the wild type, the FgNoxD deletion mutant exhibited reduced virulence against the host plant. The FgNoxD deletion mutant produced less deoxynivalenol than the wild type, and the Tri5 and Tri6 gene expression was also downregulated. In conclusion, our findings show that FgNoxD is involved in the survival against various stresses, conidiation, sexual development, and virulence, highlighting this enzyme as a new target to control the disease caused by F. graminearum.
Collapse
Affiliation(s)
- Taiying Li
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Dohyun Kim
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, South Korea
| |
Collapse
|
8
|
RTG Signaling Sustains Mitochondrial Respiratory Capacity in HOG1-Dependent Osmoadaptation. Microorganisms 2021; 9:microorganisms9091894. [PMID: 34576788 PMCID: PMC8466848 DOI: 10.3390/microorganisms9091894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial RTG-dependent retrograde signaling, whose regulators have been characterized in Saccharomyces cerevisiae, plays a recognized role under various environmental stresses. Of special significance, the activity of the transcriptional complex Rtg1/3 has been shown to be modulated by Hog1, the master regulator of the high osmolarity glycerol pathway, in response to osmotic stress. The present work focuses on the role of RTG signaling in salt-induced osmotic stress and its interaction with HOG1. Wild-type and mutant cells, lacking HOG1 and/or RTG genes, are compared with respect to cell growth features, retrograde signaling activation and mitochondrial function in the presence and in the absence of high osmostress. We show that RTG2, the main upstream regulator of the RTG pathway, contributes to osmoadaptation in an HOG1-dependent manner and that, with RTG3, it is notably involved in a late phase of growth. Our data demonstrate that impairment of RTG signaling causes a decrease in mitochondrial respiratory capacity exclusively under osmostress. Overall, these results suggest that HOG1 and the RTG pathway may interact sequentially in the stress signaling cascade and that the RTG pathway may play a role in inter-organellar metabolic communication for osmoadaptation.
Collapse
|
9
|
Liu Y, Gong X, Li M, Si H, Zhou Q, Liu X, Fan Y, Zhang X, Han J, Gu S, Dong J. Effect of Osmotic Stress on the Growth, Development and Pathogenicity of Setosphaeria turcica. Front Microbiol 2021; 12:706349. [PMID: 34367108 PMCID: PMC8342955 DOI: 10.3389/fmicb.2021.706349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Osmotic stress is a severe condition frequently encountered by microorganisms; however, there is limited knowledge on the influence of hyperosmotic stress on the growth, development and pathogenicity of phytopathogenic fungi. Here, three osmotic conditions (0.4 M NaCl, 0.4 M KCl, and 0.6 M sorbitol supplemented in potato dextrose agar medium) were used to identify the effect of osmotic stress on the growth, development and pathogenicity of Setosphaeria turcica which is a plant pathogenic fungus and causes northern corn leaf blight disease in maize, sorghum, and related grasses. In osmotic stress, the growth rate of mycelium was decreased, and the number of vesicular structures and flocculent secretion outside the hypha cell wall were significantly increased. The qRT-PCR results showed that the osmotic stress quickly activated the HOG-MAPK pathway, up-regulated the expression of the downstream genes, and these genes were most highly expressed within 30 min of exposure to osmotic stress. Furthermore, the germination rate and the yield of conidia were significantly higher under osmotic stress than in the control. A pathogenicity analysis confirmed that pathogenicity of the conidia which were cultured under osmotic stress was significantly enhanced. By analyzing the knock-out mutants of an osmotic stress responsed gene StFPS1, an aquaglyceroporin downstream of the HOG-MAPK pathway, we found that StFPS1 was involved in the formation of appressorium and penetration peg, which affected the penetration ability of S. turcica. In summary, our work explained the correlation between osmotic stress and growth, development, and pathogenicity in S. turcica.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Xiaodong Gong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Moxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Helong Si
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Qihui Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Xingchen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Yu Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Xiaoyu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Jianmin Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Shouqin Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Khammash MH. Perfect adaptation in biology. Cell Syst 2021; 12:509-521. [PMID: 34139163 DOI: 10.1016/j.cels.2021.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
A distinctive feature of many biological systems is their ability to adapt to persistent stimuli or disturbances that would otherwise drive them away from a desirable steady state. The resulting stasis enables organisms to function reliably while being subjected to very different external environments. This perspective concerns a stringent type of biological adaptation, robust perfect adaptation (RPA), that is resilient to certain network and parameter perturbations. As in engineered control systems, RPA requires that the regulating network satisfy certain structural constraints that cannot be avoided. We elucidate these ideas using biological examples from systems and synthetic biology. We then argue that understanding the structural constraints underlying RPA allows us to look past implementation details and offers a compelling means to unravel regulatory biological complexity.
Collapse
Affiliation(s)
- Mustafa H Khammash
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
11
|
Saldaña C, Villava C, Ramírez-Villarreal J, Morales-Tlalpan V, Campos-Guillen J, Chávez-Servín J, García-Gasca T. Rapid and reversible cell volume changes in response to osmotic stress in yeast. Braz J Microbiol 2021; 52:895-903. [PMID: 33476034 DOI: 10.1007/s42770-021-00427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae has evolved diverse mechanisms to osmotic changes: the cell wall, ion and water transport systems, and signaling cascades. At the present time, little is known about the mechanisms involved in short-term responses of osmotic stress in yeast or their physiological state during this process. We conducted studies of flow cytometry, wet weight measurements, and electron microscopy to evaluate the modifications in cell volume and the cell wall induced by osmotic stress. In response to osmotic challenges, we show very fast and drastic changes in cell volume (up to 60%), which were completed in less than eight seconds. This dramatic change was completely reversible approximately 16 s after returning to an isosmotic solution. Cell volume changes were also accompanied by adaptations in yeast metabolism observed as a reduction by 50% in the respiratory rate, measured as oxygen consumption. This effect was also fully reversible upon returning to an isosmotic solution. It is noteworthy that we observed a significant recovery in oxygen consumption during the first 10 min of the osmotic shock. The rapid adjustment of the cellular volume may represent an evolutionary advantage, allowing greater flexibility for survival.
Collapse
Affiliation(s)
- Carlos Saldaña
- Laboratorio de Biofísica de Membranas, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Querétaro, Mexico. .,Facultad de Ciencias Naturales-Campus Aeropuerto, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| | - Casandra Villava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Cd, México, Mexico
| | - Jimena Ramírez-Villarreal
- Laboratorio de Biofísica de Membranas, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Querétaro, Mexico.,Facultad de Ciencias Naturales-Campus Aeropuerto, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Verónica Morales-Tlalpan
- Laboratorio de Biofísica de Membranas, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Querétaro, Mexico.,Facultad de Ciencias Naturales-Campus Aeropuerto, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | - Jorge Chávez-Servín
- Facultad de Ciencias Naturales. Campus Juriquilla, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales. Campus Juriquilla, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
12
|
Learning of Signaling Networks: Molecular Mechanisms. Trends Biochem Sci 2020; 45:284-294. [PMID: 32008897 DOI: 10.1016/j.tibs.2019.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
Molecular processes of neuronal learning have been well described. However, learning mechanisms of non-neuronal cells are not yet fully understood at the molecular level. Here, we discuss molecular mechanisms of cellular learning, including conformational memory of intrinsically disordered proteins (IDPs) and prions, signaling cascades, protein translocation, RNAs [miRNA and long noncoding RNA (lncRNA)], and chromatin memory. We hypothesize that these processes constitute the learning of signaling networks and correspond to a generalized Hebbian learning process of single, non-neuronal cells, and we discuss how cellular learning may open novel directions in drug design and inspire new artificial intelligence methods.
Collapse
|
13
|
Brown AJP, Larcombe DE, Pradhan A. Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal Biol 2020; 124:475-481. [PMID: 32389310 PMCID: PMC7232023 DOI: 10.1016/j.funbio.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental Responses (CERs) that include the induction of a core set of stress genes in response to diverse environmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one type of stress can provide protection against subsequent exposure to a second type of stress. CERs have probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses (“adaptive prediction”). CERs have been observed in other evolutionarily divergent fungi but, interestingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has evolved a CER that reflects the environmental challenges it faces in host niches. We review Core Environmental Responses (CERs) in domesticated and pathogenic yeasts. CERs probably evolved through the accumulation of protective anticipatory responses. Evolutionarily diverse yeasts display CERs, but the pathogen, Candida albicans, does not. C. albicans has evolved an alternative CER that protects against immune clearance. This has implications for the investigation of CERs in other fungi.
Collapse
Affiliation(s)
- Alistair J P Brown
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Daniel E Larcombe
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
14
|
Uschner F, Klipp E. Signaling pathways in context. Curr Opin Biotechnol 2019; 58:155-160. [PMID: 30974381 DOI: 10.1016/j.copbio.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/17/2023]
Abstract
The last decade has seen a rise in the development of methods and models to analyze cellular networks on all levels. The applications of this knowledge are, however, often confined to specifics of the network in concrete conditions and leveraging it is hampered by the lack of information about this context and its implications on the system. While not all cellular networks have been deciphered yet, even for well-studied networks their versatility in different contexts is barely considered. Here, we focus on challenges and potentials when integrating signaling networks into their encompassing structures. We highlight three different consequences of this process: a) its fundamental importance for whole-cell and large-scale models, b) significant changes in contextual behavior imposed on entire systems by genetic variations, and c) species-specific conservation or divergence of signaling motifs can give important clues on how to handle cellular context. While important studies have been conducted on these topics to some extent, an increased focus on developing and exploiting solutions for integrative contextualization should turn out as a fruitful path for both theoretical and experimental research.
Collapse
Affiliation(s)
- Friedemann Uschner
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
15
|
Krishnan J, Floros I. Adaptive information processing of network modules to dynamic and spatial stimuli. BMC SYSTEMS BIOLOGY 2019; 13:32. [PMID: 30866946 PMCID: PMC6417070 DOI: 10.1186/s12918-019-0703-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adaptation and homeostasis are basic features of information processing in cells and seen in a broad range of contexts. Much of the current understanding of adaptation in network modules/motifs is based on their response to simple stimuli. Recently, there have also been studies of adaptation in dynamic stimuli. However a broader synthesis of how different circuits of adaptation function, and which circuits enable a broader adaptive behaviour in classes of more complex and spatial stimuli is largely missing. RESULTS We study the response of a variety of adaptive circuits to time-varying stimuli such as ramps, periodic stimuli and static and dynamic spatial stimuli. We find that a variety of responses can be seen in ramp stimuli, making this a basis for discriminating between even similar circuits. We also find that a number of circuits adapt exactly to ramp stimuli, and dissect these circuits to pinpoint what characteristics (architecture, feedback, biochemical aspects, information processing ingredients) allow for this. These circuits include incoherent feedforward motifs, inflow-outflow motifs and transcritical circuits. We find that changes in location in such circuits where a signal acts can result in non-adaptive behaviour in ramps, even though the location was associated with exact adaptation in step stimuli. We also demonstrate that certain augmentations of basic inflow-outflow motifs can alter the behaviour of the circuit from exact adaptation to non-adaptive behaviour. When subject to periodic stimuli, some circuits (inflow-outflow motifs and transcritical circuits) are able to maintain an average output independent of the characteristics of the input. We build on this to examine the response of adaptive circuits to static and dynamic spatial stimuli. We demonstrate how certain circuits can exhibit a graded response in spatial static stimuli with an exact maintenance of the spatial mean-value. Distinct features which emerge from the consideration of dynamic spatial stimuli are also discussed. Finally, we also build on these results to show how different circuits which show any combination of presence or absence of exact adaptation in ramps, exact mainenance of time average output in periodic stimuli and exact maintenance of spatial average of output in static spatial stimuli may be realized. CONCLUSIONS By studying a range of network circuits/motifs on one hand and a range of stimuli on the other, we isolate characteristics of these circuits (structural) which enable different degrees of exact adaptive and homeostatic behaviour in such stimuli, how they may be combined, and also identify cases associated with non-homeostatic behaviour. We also reveal constraints associated with locations where signals may act to enable homeostatic behaviour and constraints associated with augmentations of circuits. This consideration of multiple experimentally/naturally relevant stimuli along with circuits of adaptation of relevance in natural and engineered biology, provides a platform for deepening our understanding of adaptive and homeostatic behaviour in natural systems, bridging the gap between models of adaptation and experiments and in engineering homeostatic synthetic circuits.
Collapse
Affiliation(s)
- J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Ioannis Floros
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.,National Centre of Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
16
|
Kastora SL, Herrero‐de‐Dios C, Avelar GM, Munro CA, Brown AJP. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans. Mol Microbiol 2017; 105:620-636. [PMID: 28574606 PMCID: PMC5575477 DOI: 10.1111/mmi.13722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
Abstract
The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host-imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these 'non-standard' growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source-conditional manner. SFP1 is induced in stressed glucose-grown cells, whereas RTG3 is upregulated in stressed lactate-grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source-dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation.
Collapse
Affiliation(s)
- Stavroula L. Kastora
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Carmen Herrero‐de‐Dios
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Gabriela M. Avelar
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Carol A. Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| |
Collapse
|
17
|
Qi W, Zhang WT, Lu FP. Carbon metabolism and transcriptional variation in response to salt stress in the genome shuffled Candida versatilis and a wild-type salt tolerant yeast strain. RSC Adv 2017. [DOI: 10.1039/c6ra25188a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The carbon metabolism and molecular mechanisms of adaptation response when exposed to conditions causing osmotic stress in strains of a wild-type of Candida versatilis (WT) and S3–5 were investigated.
Collapse
Affiliation(s)
- Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| | - Wen-Tao Zhang
- Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| | - Fu-Ping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| |
Collapse
|
18
|
Rodrigues LNDS, Brito WDA, Parente AFA, Weber SS, Bailão AM, Casaletti L, Borges CL, Soares CMDA. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics. Fungal Genet Biol 2016; 95:13-23. [DOI: 10.1016/j.fgb.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
|
19
|
Martínez-Villarreal R, Garza-Romero TS, Moreno-Medina VR, Hernández-Delgado S, Mayek-Pérez N. [Biochemical basis of tolerance to osmotic stress in phytopathogenic fungus: The case of Macrophomina phaseolina (Tassi) Goid.]. Rev Argent Microbiol 2016; 48:347-357. [PMID: 28341024 DOI: 10.1016/j.ram.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/09/2016] [Accepted: 05/10/2016] [Indexed: 01/21/2023] Open
Abstract
Fungus Macrophomina phaseolina (Tassi) Goid. is the causative agent of charcoal rot disease which causes significant yield losses in major crops such as maize, sorghum, soybean and common beans in Mexico. This fungus is a facultative parasite which shows broad ability to adapt itself to stressed environments where water deficits and/or high temperature stresses commonly occur. These environmental conditions are common for most cultivable lands throughout Mexico. Here we describe some basic facts related to the etiology and epidemiology of the fungus as well as to the importance of responses to stressed environments, particularly to water deficits, based on morphology and growth traits, as well as on physiology, biochemistry and pathogenicity of fungus M. phaseolina. To conclude, we show some perspectives related to future research into the genus, which emphasize the increasing need to improve the knowledge based on the application of both traditional and biotechnological tools in order to elucidate the mechanisms of resistance to environmental stress which can be extrapolated to other useful organisms to man.
Collapse
Affiliation(s)
| | - Tamar S Garza-Romero
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| | - Víctor R Moreno-Medina
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| | | | | |
Collapse
|
20
|
|
21
|
Rose RE, Pazos MA, Curcio MJ, Fabris D. Global Epitranscriptomics Profiling of RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the Epitranscriptomics of Stress Response. Mol Cell Proteomics 2016; 15:932-44. [PMID: 26733207 DOI: 10.1074/mcp.m115.054718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 02/01/2023] Open
Abstract
The simultaneous detection of all the post-transcriptional modifications (PTMs) that decorate cellular RNA can provide comprehensive information on the effects of changing environmental conditions on the entire epitranscriptome. To capture this type of information, we performed the analysis of ribonucleotide mixtures produced by hydrolysis of total RNA extracts from S. cerevisiae that was grown under hyperosmotic and heat shock conditions. Their global PTM profiles clearly indicated that the cellular responses to these types of stresses involved profound changes in the production of specific PTMs. The observed changes involved not only up-/down-regulation of typical PTMs, but also the outright induction of new ones that were absent under normal conditions, or the elimination of others that were normally present. Pointing toward the broad involvement of different classes of RNAs, many of the newly observed PTMs differed from those engaged in the known tRNA-based mechanism of translational recoding, which is induced by oxidative stress. Some of the expression effects were stress-specific, whereas others were not, thus suggesting that RNA PTMs may perform multifaceted activities in stress response, which are subjected to distinctive regulatory pathways. To explore their signaling networks, we implemented a strategy based on the systematic deletion of genes that connect established response genes with PTM biogenetic enzymes in a putative interactomic map. The results clearly identified PTMs that were under direct HOG control, a well-known protein kinase pathway involved in stress response in eukaryotes. Activation of this signaling pathway has been shown to result in the stabilization of numerous mRNAs and the induction of selected lncRNAs involved in chromatin remodeling. The fact that PTMs are capable of altering the activity of the parent RNAs suggest their possible participation in feedback mechanisms aimed at modulating the regulatory functions of such RNAs. This tantalizing hypothesis will be the object of future studies.
Collapse
Affiliation(s)
- Rebecca E Rose
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222
| | - Manuel A Pazos
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222
| | - M Joan Curcio
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222; ‖Laboratory of Molecular Genetics, Wadsworth Center, Albany, New York 12208
| | - Daniele Fabris
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222;
| |
Collapse
|
22
|
Abstract
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock.
Collapse
|
23
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Implementation of integral feedback control in biological systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:301-16. [DOI: 10.1002/wsbm.1307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Sharad Bhartiya
- Department of Chemical Engineering; IIT Bombay; Mumbai India
| | - K. V. Venkatesh
- Department of Chemical Engineering; IIT Bombay; Mumbai India
| |
Collapse
|
24
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
25
|
Brown AJP, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou ER, Childers DS, Shahana S, Leach MD. Stress adaptation in a pathogenic fungus. ACTA ACUST UNITED AC 2014; 217:144-55. [PMID: 24353214 PMCID: PMC3867497 DOI: 10.1242/jeb.088930] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus–host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor.
Collapse
Affiliation(s)
- Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. mBio 2014; 5:e01334-14. [PMID: 25028425 PMCID: PMC4161263 DOI: 10.1128/mbio.01334-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills C. albicans synergistically in vitro. We also show that the high fungicidal activity of human neutrophils is dependent on the combinatorial effects of the oxidative burst and cationic fluxes, as their pharmacological attenuation with apocynin or glibenclamide reduced phagocytic potency to a similar extent. The mechanistic basis for the extreme potency of combinatorial cationic plus oxidative stress—a phenomenon we term stress pathway interference—lies with the inhibition of hydrogen peroxide detoxification by the cations. In C. albicans this causes the intracellular accumulation of ROS, the inhibition of Cap1 (a transcriptional activator that normally drives the transcriptional response to oxidative stress), and altered readouts of the stress-activated protein kinase Hog1. This leads to a loss of oxidative and cationic stress transcriptional outputs, a precipitous collapse in stress adaptation, and cell death. This stress pathway interference can be suppressed by ectopic catalase (Cat1) expression, which inhibits the intracellular accumulation of ROS and the synergistic killing of C. albicans cells by combinatorial cationic plus oxidative stress. Stress pathway interference represents a powerful fungicidal mechanism employed by the host that suggests novel approaches to potentiate antifungal therapy. The immune system combats infection via phagocytic cells that recognize and kill pathogenic microbes. Human neutrophils combat Candida infections by killing this fungus with a potent mix of chemicals that includes reactive oxygen species (ROS) and cations. Yet, Candida albicans is relatively resistant to these stresses in vitro. We show that it is the combination of oxidative plus cationic stresses that kills yeasts so effectively, and we define the molecular mechanisms that underlie this potency. Cations inhibit catalase. This leads to the accumulation of intracellular ROS and inhibits the transcription factor Cap1, which is critical for the oxidative stress response in C. albicans. This triggers a dramatic collapse in fungal stress adaptation and cell death. Blocking either the oxidative burst or cationic fluxes in human neutrophils significantly reduces their ability to kill this fungal pathogen, indicating that combinatorial stress is pivotal to immune surveillance.
Collapse
|
27
|
Patel AK, Bhartiya S, Venkatesh KV. Analysis of osmoadaptation system in budding yeast suggests that regulated degradation of glycerol synthesis enzyme is key to near-perfect adaptation. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:141-54. [PMID: 24799959 PMCID: PMC4009077 DOI: 10.1007/s11693-013-9126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 02/02/2023]
Abstract
In order to maintain its turgor pressure at a desired homeostatic level, budding yeast, Saccharomyces cerevisiae responds to the external variation of the osmotic pressure by varying its internal osmotic pressure through regulation of synthesis and transport of the intracellular glycerol. Hog1PP (dually phosphorylated Hog1), a final effector in the signalling pathway of the hyper osmotic stress, regulates the glycerol synthesis both at transcriptional and non-transcriptional stages. It is known that for a step-change in salt concentration leading to moderate osmotic shock, Hog1PP activity shows a transient response before it returns to the vicinity of pre-stimulus level. It is believed that an integrating process in a negative feedback loop can be a design strategy to yield such an adaptive response. Several negative feedback loops have been identified in the osmoadaptation system in yeast. However, the precise location of the integrating process in the osmoadaptation system which includes signalling, gene regulation, metabolism and biophysical modules is unclear. To address this issue, we developed a reduced model which captures various experimental observations of the osmoadaptation behaviour of wild type and mutant strains. Dynamic simulations and steady state analysis suggested that known information about the osmoadaptation system of budding yeast does not necessarily give a perfect integrating process through the known feedback loops of Hog1PP. On the other hand, regulation of glycerol synthesising enzyme degradation can result in a near integrating process leading to a near-perfect adaptation.
Collapse
Affiliation(s)
- Anilkumar K. Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076 India
| | - Sharad Bhartiya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076 India
| | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076 India
| |
Collapse
|
28
|
Castelhano Santos N, Pereira MO, Lourenço A. Pathogenicity phenomena in three model systems: from network mining to emerging system-level properties. Brief Bioinform 2013; 16:169-82. [PMID: 24106130 DOI: 10.1093/bib/bbt071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Understanding the interconnections of microbial pathogenicity phenomena, such as biofilm formation, quorum sensing and antimicrobial resistance, is a tremendous open challenge for biomedical research. Progress made by wet-lab researchers and bioinformaticians in understanding the underlying regulatory phenomena has been significant, with converging evidence from multiple high-throughput technologies. Notably, network reconstructions are already of considerable size and quality, tackling both intracellular regulation and signal mediation in microbial infection. Therefore, it stands to reason that in silico investigations would play a more active part in this research. Drug target identification and drug repurposing could take much advantage of the ability to simulate pathogen regulatory systems, host-pathogen interactions and pathogen cross-talking. Here, we review the bioinformatics resources and tools available for the study of the gram-negative bacterium Pseudomonas aeruginosa, the gram-positive bacterium Staphylococcus aureus and the fungal species Candida albicans. The choice of these three microorganisms fits the rationale of the review converging into pathogens of great clinical importance, which thrive in biofilm consortia and manifest growing antimicrobial resistance.
Collapse
|