1
|
Zhou ZX, Ma XF, Xiong WH, Ren Z, Jiang M, Deng NH, Zhou BB, Liu HT, Zhou K, Hu HJ, Tang HF, Zheng H, Jiang ZS. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis 2024; 390:117430. [PMID: 38301602 DOI: 10.1016/j.atherosclerosis.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND AIMS Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Bo-Bin Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Fang Tang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - He Zheng
- Department of Hepatobiliary Surgery, The Central Hospital of Shaoyang City and The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang City, 422000, PR China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
3
|
LI HUI, LUO KAIJUN, HOU JUAN. Inhibitory effect of Puerariae radix flavones on platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells via PI3K and ERK pathways. Exp Ther Med 2015; 9:257-261. [PMID: 25452812 PMCID: PMC4247288 DOI: 10.3892/etm.2014.2074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) results in intimal thickening of the aorta, which may lead to arteriosclerosis. Therefore, VSMC antiproliferative agents may be efficient in the prevention and treatment of arteriosclerosis. Puerariae radix (PR) is the dried root of Pueraria lobata Ohwi or Pueraria thomsonii Benth. Flavones are the main components of PR and have been shown to have a protective effect on vascular disorders in traditional Chinese medicine treatments. However, the underlying molecular mechanism remains unclear. The aim of the present study was to explore the effect of PR flavone (PRF) on platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation. PDGF-BB (25 ng/ml) and different doses of PRF (10, 50, 100 and 200 ng/ml) were used to treat VSMCs. The results revealed that PRF notably inhibited the PDGF-BB-induced VSMC proliferation and induced a cell cycle arrest at growth 1 phase of the cell cycle. In addition, cell cycle-associated proteins, including cyclin D1, proliferating cell nuclear antigen and cyclin-dependent kinase 4, were found to be downregulated. Furthermore, PRF inhibited the PDGF-BB-stimulated downregulation of VSMC markers, including α-smooth muscle actin, desmin and smoothelin. PDGF-BB upregulated the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK), which are associated with cell proliferation; however, these were decreased following PRF treatment. These observations indicated that PRF had a suppressive effect on PDGF-BB-induced VSMC proliferation by inhibiting PI3K and ERK pathways.
Collapse
Affiliation(s)
- HUI LI
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - KAIJUN LUO
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - JUAN HOU
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|