1
|
Sonawane S, Všianský V, Brázdil M. MicroRNA-mediated regulation of neurotransmitter receptors in epilepsy: A systematic review. Epilepsy Behav 2024; 158:109912. [PMID: 38924965 DOI: 10.1016/j.yebeh.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pathogenesis of epilepsy involves dysregulation of the neurotransmitter system contributing to hyper-excitability of neuronal cells. MicroRNA (miRNAs) are small non-coding RNAs known to play a crucial role in post-transcriptional regulation of gene expression. METHODS The present review was prepared following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, employing a comprehensive search strategy to identify and extract data from published research articles. Keywords suchas epilepsy, micro RNA (micro RNAs, miRNA, miRNAs, miR), neurotransmitters (specific names), and neurotransmitter receptors (specific names) were used to construct the query. RESULTS A total of 724 articles were identified using the keywords epilepsy, microRNA along with select neurotransmitter and neurotransmitter receptor names. After exclusions, the final selection consisted of 17 studies, most of which centered on glutamate and gamma-aminobutyric acid (GABA) receptors. Singular studies also investigated miRNAs affecting cholinergic, purinergic, and glycine receptors. CONCLUSION This review offers a concise overview of the current knowledge on miRNA-mediated regulation of neurotransmitter receptors in epilepsy and highlights their potential for future clinical application.
Collapse
Affiliation(s)
- Shivani Sonawane
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic
| | - Vít Všianský
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Member of the ERN EpiCARE, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Otis C, Cristofanilli KA, Frezier M, Delsart A, Martel-Pelletier J, Pelletier JP, Beaudry F, Lussier B, Boyer A, Troncy E. Predictive and concurrent validity of pain sensitivity phenotype, neuropeptidomics and neuroepigenetics in the MI-RAT osteoarthritic surgical model in rats. Front Cell Dev Biol 2024; 12:1400650. [PMID: 39175874 PMCID: PMC11338919 DOI: 10.3389/fcell.2024.1400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background Micro-RNAs could provide great insights about the neuropathological mechanisms associated with osteoarthritis (OA) pain processing. Using the validated Montreal Induction of Rat Arthritis Testing (MI-RAT) model, this study aimed to characterize neuroepigenetic markers susceptible to correlate with innovative pain functional phenotype and targeted neuropeptide alterations. Methods Functional biomechanical, somatosensory sensitization (peripheral-via tactile paw withdrawal threshold; central-via response to mechanical temporal summation), and diffuse noxious inhibitory control (via conditioned pain modulation) alterations were assessed sequentially in OA (n = 12) and Naïve (n = 12) rats. Joint structural, targeted spinal neuropeptides and differential expression of spinal cord micro-RNAs analyses were conducted at the sacrifice (day (D) 56). Results The MI-RAT model caused important structural damages (reaching 35.77% of cartilage surface) compared to the Naïve group (P < 0.001). This was concomitantly associated with nociceptive sensitization: ipsilateral weight shift to the contralateral hind limb (asymmetry index) from -55.61% ± 8.50% (D7) to -26.29% ± 8.50% (D35) (P < 0.0001); mechanical pain hypersensitivity was present as soon as D7 and persisting until D56 (P < 0.008); central sensitization was evident at D21 (P = 0.038); pain endogenous inhibitory control was distinguished with higher conditioned pain modulation rate (P < 0.05) at D7, D21, and D35 as a reflect of filtrated pain perception. Somatosensory profile alterations of OA rats were translated in a persistent elevation of pro-nociceptive neuropeptides substance P and bradykinin, along with an increased expression of spinal miR-181b (P = 0.029) at D56. Conclusion The MI-RAT OA model is associated, not only with structural lesions and static weight-bearing alterations, but also with a somatosensory profile that encompasses pain centralized sensitization, associated to active endogenous inhibitory/facilitatory controls, and corresponding neuropeptidomic and neuroepigenetic alterations. This preliminary neuroepigenetic research confirms the crucial role of pain endogenous inhibitory control in the development of OA chronic pain (not only hypersensitivity) and validates the MI-RAT model for its study.
Collapse
Affiliation(s)
- Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Katrine-Ann Cristofanilli
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Johanne Martel-Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Jean-Pierre Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
4
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
5
|
Jiang MJ, Li J, Luo CH, Zhu C, Chen ZJ, Bai W, Hu TY, Feng CH, Li C, Mo ZX. Rhynchophylline inhibits methamphetamine dependence via modulating the miR-181a-5p/GABRA1 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116635. [PMID: 37182675 DOI: 10.1016/j.jep.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a plant species that is routinely devoted in traditional Chinese medicine to treat central nervous system disorders. Rhynchophylline (Rhy), a predominant alkaloid isolated from Uncaria rhynchophylla (Miq.) Miq. ex Havil., has been demonstrated to reverse methamphetamine-induced (METH-induced) conditioned place preference (CPP) effects in mice, rats and zebrafish. The precise mechanism is still poorly understood, thus further research is necessary. AIM OF STUDY This study aimed to investigate the role of miRNAs in the inhibitory effect of Rhy on METH dependence. MATERIALS AND METHODS A rat CPP paradigm and a PC12 cell addiction model were established. Microarray assays were used to screen and identify the candidate miRNA. Behavioral assessment, real-time PCR, dual-luciferase reporter assay, western blotting, stereotaxic injection of antagomir/agomir and cell transfection experiments were performed to elucidate the effect of the candidate miRNA and intervention mechanism of Rhy on METH dependence. RESULTS Rhy successfully reversed METH-induced CPP effect and the upregulated miR-181a-5p expression in METH-dependent rat hippocampus and PC12 cells. Moreover, suppression of miR-181a-5p by antagomir 181a reversed METH-induced CPP effect. Meanwhile, overexpression of miR-181a-5p by agomir 181a in combination with low-dose METH (0.5 mg/kg) elicited a significant CPP effect, which was blocked by Rhy through inhibiting miR-181a-5p. Finally, the result demonstrated that miR-181a-5p exerted its regulatory role by targeting γ-aminobutyric acid A receptor α1 (GABRA1) both in vivo and in vitro. CONCLUSION This finding reveals that Rhy inhibits METH dependence via modulating the miR-181a-5p/GABRA1 axis, which may be a promising target for treatment of METH dependence.
Collapse
Affiliation(s)
- Ming-Jin Jiang
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Hua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chen Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Zhi-Jie Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Bai
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Tian-Yu Hu
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Chuan-Hua Feng
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Zhi-Xian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Sharma P, Sharma BS, Raval H, Singh V. Endocytosis of GABA receptor: Signaling in nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:125-139. [PMID: 36813355 DOI: 10.1016/bs.pmbts.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
GABA (ᵞ-aminobutyric acid), is the principal neurotransmitter known for its inhibitory role in chemical synapses. Being localized primarily in the central nervous system (CNS) it maintains a balance between excitatory (regulated by another neurotransmitter, glutamate) and inhibitory impulses. GABA acts by binding to their specific receptors GABAA and GABAB when released into the post-synaptic nerve terminal. Both of these receptors are responsible for fast and slow inhibition of neurotransmission, respectively. GABAA is a ligand-gated ionopore receptor which opens the Cl- ion channel and decreases the resting potential of the membrane resulting into inhibition of the synapse. On the other hand, GABAB is a metabotropic receptor which increases the K+ ion levels preventing Ca+ ion release inhibiting the release of other neurotransmitters into the presynaptic membrane. The internalization and trafficking of these receptors is also conducted through distinct pathways and mechanism, discussed in detail in the chapter. Without the desired levels of GABA in the body, the psychological and neurological states of brain get hard to maintain. Various neurodegenerative diseases/disorders have been associated to low levels of GABA, such as anxiety, mood disorders, fear, schizophrenia, hungtington's chorea, seizures, epilepsy, etc. The allosteric sites present on GABA receptors have been proved to be potent drug targets to pacify the pathological states of these brain related disorders to an extent. Further in depth studies focussing on the subtypes of GABA receptors and their comprehensive mechanism are required to explore new drug targets and therapeutic avenues for effectual management of GABA related neurological diseases.
Collapse
Affiliation(s)
- Preeti Sharma
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Hardik Raval
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
7
|
Chen F, Xu Y, Shi K, Zhang Z, Xie Z, Wu H, Ma Y, Zhou Y, Chen C, Yang J, Wang Y, Robbins TW, Wang K, Yu J. Multi-omics study reveals associations among neurotransmitter, extracellular vesicle-derived microRNA and psychiatric comorbidities during heroin and methamphetamine withdrawal. Biomed Pharmacother 2022; 155:113685. [PMID: 36137407 DOI: 10.1016/j.biopha.2022.113685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
Despite decades of research in the field of substance withdrawal, molecular biomarkers and related mechanistic study have generally been lacking. In addition to known neurotransmitters, circulating miRNAs are found in small vesicles known as exosomes within blood that have diagnostic potential and are known to contribute to psychiatric disorders. The aim of this work was to characterize the changes in neurotransmitter and exosomal miRNA profiles during heroin and methamphetamine withdrawal using a cross-sectional study design, and to determine their associations to psychiatric comorbidities in a large group of patients with substance use disorders (SUDs). Using weighted gene co-expression network analysis, a series of known, conserved, and novel exosomal miRNAs were identified as being associated with the severity of anxiety and depression, as well as the concentrations of neurotransmitters GABA, choline, and serotonin. Bioinformatics analyses established that the differences in the miRNA profile target signaling pathways are significantly associated with developmental and intellectual abnormalities. Notably, a set of dysregulated miRNA signatures including hsa-mia-451a and hsa-mir-21a resulted in an AUC of 0.966 and 0.861, respectively, for predicting the patients with SUDs. Furthermore, hsa-miR-744a-5p was positively correlated with serotonin, and its important role in maintaining neuronal development and function was revealed using an in vitro human induced pluripotent stem cells derived neuronal model. Our results suggest that the miRNA content of circulating exosomes represent a biomolecular "fingerprint" of the progression of substance withdrawal and may uncover the putative mechanism of how these exosomal miRNAs contribute to psychiatric symptoms.
Collapse
Affiliation(s)
- Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Kunming University of Science and Technology
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Kai Shi
- College of Science, Guilin University of Technology, Guilin 541004, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Yunnan University, Yunnan, China
| | - Zhenrong Xie
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hongjin Wu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuru Ma
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong Zhou
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Cheng Chen
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiqing Yang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, China
| | - Trevor W Robbins
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Yunnan University, Yunnan, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
8
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
9
|
Pushparaj S, Zhu Z, Huang C, More S, Liang Y, Lin K, Vaddadi K, Liu L. Regulation of influenza A virus infection by Lnc-PINK1-2:5. J Cell Mol Med 2022; 26:2285-2298. [PMID: 35201667 PMCID: PMC8995437 DOI: 10.1111/jcmm.17249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza virus causes approximately 291,000 to 646,000 human deaths worldwide annually. It is also a disease of zoonotic importance, affecting animals such as pigs, horses, and birds. Even though vaccination is being used to prevent influenza virus infection, there are limited options available to treat the disease. Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not translate into proteins. They play important roles in the physiological and pathological processes. In this study, we identified a novel transcript, Lnc‐PINK1‐2:5 that was upregulated by influenza virus. This lncRNA was predominantly located in the nucleus and was not affected by type I interferons. Overexpression of Lnc‐PINK1‐2:5 reduced the influenza viral mRNA and protein levels in cells as well as titres in culture media. Knockdown of Lnc‐PINK1‐2:5 using CRISPR interference enhanced the virus replication. Antiviral activity of Lnc‐PINK1‐2:5 was independent of influenza virus strains. RNA sequencing analysis revealed that Lnc‐PINK1‐2:5 upregulated thioredoxin interacting protein (TXNIP) during influenza virus infection. Overexpression of TXNIP reduced influenza virus infection, suggesting that TXNIP is an antiviral gene. Knockdown of TXNIP abolished the Lnc‐PINK1‐2:5‐mediated increase in influenza virus infection. In conclusion, the newly identified Lnc‐PINK1‐2:5 isoform is an anti‐influenza lncRNA acting through the upregulation of TXNIP gene expression.
Collapse
Affiliation(s)
- Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Wang Y, Wei T, Zhao W, Ren Z, Wang Y, Zhou Y, Song X, Zhou R, Zhang X, Jiao D. MicroRNA-181a Is Involved in Methamphetamine Addiction Through the ERAD Pathway. Front Mol Neurosci 2021; 14:667725. [PMID: 34025353 PMCID: PMC8137846 DOI: 10.3389/fnmol.2021.667725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The regulation of microRNA (miRNA) is closely related to methamphetamine (METH) addiction. Past studies have reported that miR-181a is associated with METH addiction, but the mechanism pathways remain elusive. On the basis of our past studies, which reported the endoplasmic reticulum-associated protein degradation (ERAD) mediated ubiquitin protein degradation of GABAAα1, which was involved in METH addiction. The present study, using qRT-PCR and bioinformatics analysis, further revealed that miR-181a may be indirectly responsible for the METH addiction and downregulation of GABAAα1 through the regulation of ERAD.
Collapse
Affiliation(s)
- Yujing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Zixuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yiding Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Ruidong Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xiaochu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongliang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Liu C, Bordeaux A, Hettich S, Han S. MicroRNA-497-5p Functions as a Modulator of Apoptosis by Regulating Metadherin in Ovarian Cancer. Cell Transplant 2021; 29:963689719897061. [PMID: 32046519 PMCID: PMC7444230 DOI: 10.1177/0963689719897061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) has a high mortality rate among women worldwide. However, even with the advances in detection and therapeutics, the number of cases is increasing worldwide. Increasingly, microRNAs (miRNAs), including miR-497-5p, have been implicated in the progression of many cancers, but the role of miR-497-5p in OC remains unknown. The purpose of this study was to investigate the underlying molecular mechanism of miR-497-5p in OC. Herein, we find that miR-497-5p is down-regulated in OC tissues, and overexpression of miR-497-5p enhances apoptosis in OC cells. The increased apoptosis was correlated with enhanced expression of apoptosis-related proteins. MiR-497-5p directly bound the 3'-untranslated region of metadherin (MTDH), leading to the reduction of MTDH in mRNA and protein levels. Moreover, MTDH knockout promoted the apoptosis of OC cells. Taken together, we conclude that miR-497-5p contributes to cell apoptosis in OC by regulating MTDH.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, Beijing, China
| | - Anne Bordeaux
- Pathology Institute, University of Freiburg, Baden-Wuerttemberg, Germany
| | - Stanka Hettich
- Department of Obstetrics and Gynecology, University of Freiburg, Baden-Wuerttemberg, Germany
| | - Suhui Han
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Tao F, Wang F, Zhang W, Hao Y. MicroRNA-22 enhances the differentiation of mouse induced pluripotent stem cells into alveolar epithelial type II cells. Eur J Histochem 2020; 64. [PMID: 33334090 PMCID: PMC7542669 DOI: 10.4081/ejh.2020.3170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Considerable evidence has verified that microRNAs (miRNAs) play important roles in various cellular processes including differentiation. However, the regulatory roles of miRNAs involved in the differentiation of induced pluripotent stem cells (iPSC) into lung epithelial cells are still unknown. In this study, we first evaluated the current protocols to differentiate iPSC into alveolar epithelial type II (AEC II) cells, but the efficiency is low. We next identified that miR-22 can efficiently enhance the differentiation of iPSC into AEC II cells under the stimulation of proper growth factors and growing on appropriate matrix. Moreover, the AEC II cells generated from iPSC with miR-22 overexpression can proliferate and secrete lung surfactant. Here, we discovered a previously unknown interaction between miR-22 and iPSC differentiation but also provide a potential target for the effective derivation of AEC II from iPSCs for cell-based therapy.
Collapse
Affiliation(s)
- Fan Tao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan.
| | - Feng Wang
- School of Physical Education, Wuhan Business University, Wuhan.
| | - Weichen Zhang
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan .
| | - Yaming Hao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan .
| |
Collapse
|
13
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|
14
|
Huang C, Liang Y, Zeng X, Yang X, Xu D, Gou X, Sathiaseelan R, Senavirathna LK, Wang P, Liu L. Long Noncoding RNA FENDRR Exhibits Antifibrotic Activity in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:440-453. [PMID: 31697569 PMCID: PMC7110975 DOI: 10.1165/rcmb.2018-0293oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023] Open
Abstract
Abnormal activation of lung fibroblasts contributes to the initiation and progression of idiopathic pulmonary fibrosis (IPF). The objective of the present study was to investigate the role of fetal-lethal noncoding developmental regulatory RNA (FENDRR) in the activation of lung fibroblasts. Dysregulated long noncoding RNAs in IPF lungs were identified by next-generation sequencing analysis from the two online datasets. FENDRR expression in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis was determined by quantitative real-time PCR. IRP1 (iron-responsive element-binding protein 1), a protein partner of FENDRR, was identified by RNA pulldown-coupled mass spectrometric analysis and confirmed by RNA immunoprecipitation. The interaction region between FENDRR and IRP1 was determined by cross-linking immunoprecipitation. The in vivo role of FENDRR in pulmonary fibrosis was studied using adenovirus-mediated gene transfer in mice. The expression of FENDRR was downregulated in fibrotic human and mouse lungs as well as in primary lung fibroblasts isolated from bleomycin-treated mice. TGF-β1 (transforming growth factor-β1)-SMAD3 signaling inhibited FENDRR expression in lung fibroblasts. FENDRR was preferentially localized in the cytoplasm of adult lung fibroblasts and bound IRP1, suggesting its role in iron metabolism. FENDRR reduced pulmonary fibrosis by inhibiting fibroblast activation by reducing iron concentration and acting as a competing endogenous RNA of the profibrotic microRNA-214. Adenovirus-mediated FENDRR gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that FENDRR is an antifibrotic long noncoding RNA and a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xiangming Zeng
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Roshini Sathiaseelan
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Pengcheng Wang
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| |
Collapse
|
15
|
Janeczek P, Colson N, Dodd PR, Lewohl JM. Sex Differences in the Expression of the α5 Subunit of the GABA A Receptor in Alcoholics with and without Cirrhosis of the Liver. Alcohol Clin Exp Res 2020; 44:423-434. [PMID: 31840824 DOI: 10.1111/acer.14266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol exposure alters the expression of a large number of genes, resulting in neuronal adaptions and neuronal loss, but the underlying mechanisms are largely unknown. miRNAs are gene repressors that are abundant in the brain. A recent study identified ~ 35 miRNAs that are up-regulated in the prefrontal cortex of human alcoholics and predicted to target genes that are down-regulated in the same region. Although interactions between alcohol-responsive miRNAs and their target genes have been predicted, few studies have validated these predictions. METHODS We measured the expression of GABAA α5 mRNA in the prefrontal and motor cortices of human alcoholics and matched controls using real-time PCR. The expression of miR-203 was measured in a subset of these cases. The predicted interaction of miR-203 and GABRA5 was validated for miR-203 using a luciferase reporter assay. RESULTS In both frontal and motor cortices, the expression of GABAA α5 was significantly lower in cirrhotic alcoholics compared with controls. Further, the pattern of expression between the groups was significantly different between males and females. The expression of miR-203 was higher in the prefrontal cortex of cirrhotic alcoholics compared with controls and uncomplicated alcoholics. These differences were particularly marked in female cases. Cotransfection of GABRA5 with miR-203 in HEK293T cells reduced luciferase reporter activity. CONCLUSION There are sex differences in the expression of GABAA α5 and miR-203 in the brain of human alcoholics which are particularly marked in alcoholics with cirrhosis of the liver. Further, miR-203 may mediate the changes in expression of this GABAA receptor isoform that is brought about by alcohol exposure.
Collapse
Affiliation(s)
- Paulina Janeczek
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Natalie Colson
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, (PRD), The University of Queensland St Lucia campus, Brisbane, Queensland, Australia
| | - Joanne M Lewohl
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| |
Collapse
|
16
|
Ji LJ, Li F, Zhao P, Weng LP, Wei J, Yan J, Liu LN. Silencing interleukin 1α underlies a novel inhibitory role of miR-181c-5p in alleviating low-grade inflammation of rats with irritable bowel syndrome. J Cell Biochem 2019; 120:15268-15279. [PMID: 31172560 DOI: 10.1002/jcb.28794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/13/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of unknown etiology. Studies have found a close relation between IBS and microRNAs (miRNAs), but the study concerning the relationship between IBS and miR-181c-5p in IBS is still blank. Thus, this study aims to explore the role of miR-181c-5p in IBS via interleukin 1α (IL1A). Initially, microarray analysis was used to retrieve the genes related to IBS and to predict miRNAs regulating IL1A gene. IBS model was then established with abdominal withdraw reflection (AWR) and Bristol stool grading in mice measured. Afterwards, the functional role of miR-181c-5p in IBS was determined using the ectopic expression, depletion and reporter assay experiments, as well as miR-181c-5p and IL1A expression detected. Subsequently, expression of tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and IL-6 were detected to further determine the effects of miR-181c-5p and IL1A on inflammation in IBS. miR-181c-5p and IL1A might be involved in IBS. miR-181c-5p was found to be decreased while IL1A was increased in IBS rats. In addition, miR-181c-5p could target and inhibit expression of IL1A, and IBS mice exhibited elevated AWR and Bristol stool grading, namely 6 to 7 points (70.4 [38 of 54]). Moreover, with the overexpression of miR-181c-5p or silencing of IL1A, the expression of TNF-α, IL-2, and IL-6 was decreased. Collectively, this study suggested that overexpressed miR-181c-5p could silence IL1A, thus inhibiting low-grade inflammation in IBS rats. miR-181c-5p/IL1A is expected to serve as a novel target for the treatment of IBS.
Collapse
Affiliation(s)
- Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Fang Li
- Department of Gastroenterology, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Ping Zhao
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Li-Ping Weng
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Jun Wei
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Jing Yan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Li-Na Liu
- Department of Hepatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
18
|
Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells. Oncogene 2018; 37:4562-4580. [DOI: 10.1038/s41388-018-0279-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022]
|
19
|
Heffler E, Allegra A, Pioggia G, Picardi G, Musolino C, Gangemi S. MicroRNA Profiling in Asthma: Potential Biomarkers and Therapeutic Targets. Am J Respir Cell Mol Biol 2017; 57:642-650. [PMID: 28489455 DOI: 10.1165/rcmb.2016-0231tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder in which different endotypes contribute to define clinical inflammatory phenotypes. MicroRNAs (miRNAs) are a group of minute, endogenous 22-25 nt RNA elements that join to particular mRNAs to reduce translation and increase messenger RNA degradation. miRNAs operate in post-transcriptional control and regulate physiological and pathological processes in several illnesses. The purpose of this work is to review and discuss the current knowledge about the function of miRNAs in asthma, focusing particularly on their biological properties, pathophysiologic actions, and possible use as markers and treatments for asthma.
Collapse
Affiliation(s)
- Enrico Heffler
- 1 Personalized Medicine Asthma and Allergy Clinic, Humanitas Research Hospital, and.,2 Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alessandro Allegra
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Giovanni Pioggia
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and
| | - Giuseppe Picardi
- 5 Respiratory Diseases and Allergy, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Musolino
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Sebastiano Gangemi
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and.,6 School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino," Messina, Italy; and
| |
Collapse
|
20
|
Shan L, Ma D, Zhang C, Xiong W, Zhang Y. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction. Brain Res 2017; 1670:191-200. [DOI: 10.1016/j.brainres.2017.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
|
21
|
Huang C, Xiao X, Yang Y, Mishra A, Liang Y, Zeng X, Yang X, Xu D, Blackburn MR, Henke CA, Liu L. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J Biol Chem 2017; 292:16420-16439. [PMID: 28726637 DOI: 10.1074/jbc.m117.805747] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/03/2023] Open
Abstract
Aberrant proliferation and activation of lung fibroblasts contribute to the initiation and progression of idiopathic pulmonary fibrosis (IPF). However, the mechanisms responsible for the proliferation and activation of fibroblasts are not fully understood. The objective of this study was to investigate the role of miR-101 in the proliferation and activation of lung fibroblasts. miR-101 expression was determined in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis. The regulation of miR-101 and cellular signaling was investigated in pulmonary fibroblasts in vitro The role of miR-101 in pulmonary fibrosis in vivo was studied using adenovirus-mediated gene transfer in mice. The expression of miR-101 was down-regulated in fibrotic lungs from patients with IPF and bleomycin-treated mice. The down-regulation of miR-101 occurred via the E26 transformation-specific (ETS) transcription factor. miR-101 suppressed the WNT5a-induced proliferation of lung fibroblasts by inhibiting NFATc2 signaling via targeting Frizzled receptor 4/6 and the TGF-β-induced activation of lung fibroblasts by inhibition of SMAD2/3 signaling via targeting the TGF-β receptor 1. Adenovirus-mediated miR-101 gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that miR-101 is an anti-fibrotic microRNA and a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Chaoqun Huang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiao Xiao
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Ye Yang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Amorite Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Yurong Liang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiangming Zeng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiaoyun Yang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Dao Xu
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Michael R Blackburn
- the Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, Texas, and
| | - Craig A Henke
- the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lin Liu
- From the Oklahoma Center for Respiratory and Infectious Diseases and .,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
22
|
Schumann CM, Sharp FR, Ander BP, Stamova B. Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 2017; 8:4. [PMID: 28184278 PMCID: PMC5294827 DOI: 10.1186/s13229-017-0117-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate. Findings After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes. Conclusions Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA.,MIND Institute, University of California, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
23
|
Zeng X, Huang C, Senavirathna L, Wang P, Liu L. miR-27b inhibits fibroblast activation via targeting TGFβ signaling pathway. BMC Cell Biol 2017; 18:9. [PMID: 28095798 PMCID: PMC5240426 DOI: 10.1186/s12860-016-0123-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are a group of small RNAs that regulate gene expression at the posttranscriptional level. They regulate almost every aspect of cellular processes. In this study, we investigated whether miR-27b regulates pulmonary fibroblast activation. Results We found that miR-27b was down-regulated in fibrotic lungs and fibroblasts from an experimental mouse model of pulmonary fibrosis. The overexpression of miR-27b with a lentiviral vector inhibited TGFβ1-stimulated mRNA expression of collagens (COL1A1, COL3A1, and COL4A1) and alpha-smooth muscle actin, and protein expression of Col3A1 and alpha-smooth muscle actin in LL29 human pulmonary fibroblasts. miR-27b also reduced contractile activity of LL29. TGFβ receptor 1 and SMAD2 were identified as the targets of miR-27b by 3’-untranslated region luciferase reporter and western blotting assays. Conclusions Our results suggest that miR-27b is an anti-fibrotic microRNA that inhibits fibroblast activation by targeting TGFβ receptor 1 and SMAD2. This discovery may provide new targets for therapeutic interventions of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiangming Zeng
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Lakmini Senavirathna
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Pengcheng Wang
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China.
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA. .,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
24
|
Mathew DE, Larsen K, Janeczek P, Lewohl JM. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs. Mol Cell Neurosci 2016; 75:44-9. [DOI: 10.1016/j.mcn.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/20/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023] Open
|
25
|
Inhibition of miR-203 Reduces Spontaneous Recurrent Seizures in Mice. Mol Neurobiol 2016; 54:3300-3308. [PMID: 27165289 DOI: 10.1007/s12035-016-9901-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023]
Abstract
Inhibitory synaptic receptors are dysfunctional in epileptic brains, and agents that selectively target these receptors may be effective for the treatment of epilepsy. MicroRNAs interfere with the translation of target genes, including various synaptic proteins. Here, we show that miR-203 regulates glycine receptor-β (Glrb) in epilepsy models. miR-203 is upregulated in the hippocampus of epileptic mice and human epileptic brains and is predicted to target inhibitory synaptic receptors, including Glrb. In vitro transfection, target gene luciferase assays, and analysis of human samples confirmed the direct inhibition of GLRB by miR-203, and AM203, an antagomir targeting miR-203, reversed the effect of miR-203. When intranasal AM203 was administered, AM203 reached the brain and restored hippocampal GLRB levels in epileptic mice. Finally, intranasal AM203 reduced the epileptic seizure frequency of mice. Overall, this study suggests that GLRB expression in the epileptic brain is controlled by miR-203, and intranasal delivery of AM203 showed therapeutic effects in chronic epilepsy mice.
Collapse
|
26
|
MicroRNA’s impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety. Pflugers Arch 2016; 468:1061-9. [DOI: 10.1007/s00424-016-1814-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
|
27
|
Affiliation(s)
- Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA, and
| | - Alon Chen
- Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel, and the Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
28
|
Zhang L, Huang C, Guo Y, Gou X, Hinsdale M, Lloyd P, Liu L. MicroRNA-26b Modulates the NF-κB Pathway in Alveolar Macrophages by Regulating PTEN. THE JOURNAL OF IMMUNOLOGY 2015; 195:5404-14. [PMID: 26503952 DOI: 10.4049/jimmunol.1402933] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/23/2015] [Indexed: 02/06/2023]
Abstract
NF-κB is one of the best-characterized transcription factors, providing the link between early membrane-proximal signaling events and changes in many inflammatory genes. MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. In this study, we evaluated the role of miR-26b in the LPS-induced inflammatory response in bovine alveolar macrophages (bAMs). LPS stimulation of bAMs upregulated miR-26b at 1 h and downregulated it at 6 and 36 h. Overexpression of miR-26b in bAMs enhanced the LPS-induced mRNA expression of proinflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-8, and IL-10, but it directly inhibited that of IL-6. A similar trend was observed for the release of these cytokines and chemokines from bAMs. miR-26b directly bound the 3'-untranslated region of PTEN, leading to the reduction of PTEN protein in bAMs. miR-26b also enhanced the LPS-induced NF-κB signaling pathway, as revealed by increased NF-κB transcriptional activity and phosphorylation of p65, IκBα, IκB kinase, and Akt. Moreover, PTEN silencing increased the LPS-induced mRNA expression of TNF-α, IL-1β, IL-6, IL-8, and IL-10 and upregulated the NF-κB pathway. Taken together, we conclude that miR-26b participates in the inflammatory response of LPS-stimulated bAMs by modulating the NF-κB pathway through targeting PTEN.
Collapse
Affiliation(s)
- Li Zhang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Yujie Guo
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Myron Hinsdale
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 74126
| | - Pamela Lloyd
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK 74078; Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; and
| |
Collapse
|
29
|
Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, Shepherd GMG, Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 2015; 18:1265-71. [PMID: 26280760 PMCID: PMC4880671 DOI: 10.1038/nn.4084] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
Fear-inducing memories can be state dependent, meaning that they can best be retrieved if the brain states at encoding and retrieval are similar. Restricted access to such memories can present a risk for psychiatric disorders and hamper their treatment. To better understand the mechanisms underlying state-dependent fear, we used a mouse model of contextual fear conditioning. We found that heightened activity of hippocampal extrasynaptic GABAA receptors, believed to impair fear and memory, actually enabled their state-dependent encoding and retrieval. This effect required protein kinase C-βII and was influenced by miR-33, a microRNA that regulates several GABA-related proteins. In the extended hippocampal circuit, extrasynaptic GABAA receptors promoted subcortical, but impaired cortical, activation during memory encoding of context fear. Moreover, suppression of retrosplenial cortical activity, which normally impairs retrieval, had an enhancing effect on the retrieval of state-dependent fear. These mechanisms can serve as treatment targets for managing access to state-dependent memories of stressful experiences.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen J Chen
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
30
|
Jiao D, Liu Y, Li X, Liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci 2015; 9:162. [PMID: 25999814 PMCID: PMC4419710 DOI: 10.3389/fncel.2015.00162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders.
Collapse
Affiliation(s)
- Dongliang Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yao Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities New York, NY, USA
| | - Jinggen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
31
|
Zhang J, Banerjee B. Role of MicroRNA in Visceral Pain. J Neurogastroenterol Motil 2015; 21:159-71. [PMID: 25843071 PMCID: PMC4398244 DOI: 10.5056/jnm15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
The long-lasting nociceptive transmission under various visceral pain conditions involves transcriptional and/or translational alteration in neurotransmitter and receptor expression as well as modification of neuronal function, morphology and synaptic connections. Although it is largely unknown how such changes in posttranscriptional expression induce visceral pain, recent evidence strongly suggests an important role for microRNAs (miRNAs, small non-coding RNAs) in the cellular plasticity underlying chronic visceral pain. MicroRNAs are small noncoding RNA endogenously produced in our body and act as a major regulator of gene expression by either through cleavage or translational repression of the target gene. This regulation is essential for the normal physiological function but when disturbed can result in pathological conditions. Usually one miRNA has multiple targets and target mRNAs are regulated in a combinatorial fashion by multiple miRNAs. In recent years, many studies have been performed to delineate the posttranscriptional regulatory role of miRNAs in different tissues under various nociceptive stimuli. In this review, we intend to discuss the recent development in miRNA research with special emphases on miRNAs and their targets responsible for long term sensitization in chronic pain conditions. In addition, we review miRNAs expression and function data for different animal pain models and also the recent progress in research on miRNA-based therapeutic targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| |
Collapse
|
32
|
Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis 2015; 54:364-8. [DOI: 10.1016/j.bcmd.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022]
|
33
|
Saba R, Medina SJ, Booth SA. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum Mutat 2014; 35:1233-48. [PMID: 25074322 DOI: 10.1002/humu.22627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
Abstract
The involvement of SNPs in miRNA target sites remains poorly investigated in neurodegenerative disease. In addition to associations with disease risk, such genetic variations can also provide novel insight into mechanistic pathways that may be responsible for disease etiology and/or pathobiology. To identify SNPs associated specifically with degenerating neurons, we restricted our analysis to genes that are dysregulated in CA1 hippocampal neurons of mice during early, preclinical phase of Prion disease. The 125 genes chosen are also implicated in other numerous degenerative and neurological diseases and disorders and are therefore likely to be of fundamental importance. We predicted those SNPs that could increase, decrease, or have neutral effects on miRNA binding. This group of genes was more likely to possess DNA variants than were genes chosen at random. Furthermore, many of the SNPs are common within the human population, and could contribute to the growing awareness that miRNAs and associated SNPs could account for detrimental neurological states. Interestingly, SNPs that overlapped miRNA-binding sites in the 3'-UTR of GABA-receptor subunit coding genes were particularly enriched. Moreover, we demonstrated that SNP rs9291296 would strengthen miR-26a-5p binding to a highly conserved site in the 3'-UTR of gamma-aminobutyric acid receptor subunit alpha-4.
Collapse
Affiliation(s)
- Reuben Saba
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, R3E 3R2, Canada
| | | | | |
Collapse
|
34
|
Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, Mazzuferi M, Godard P, Hanon E, Fröhlich H, Kaminski RM, Foerch P, Pfeifer A. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci 2014; 55:466-79. [PMID: 25078263 PMCID: PMC4303710 DOI: 10.1007/s12031-014-0368-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/26/2014] [Indexed: 11/29/2022]
Abstract
Epilepsy affects around 50 million people worldwide, and in about 65 % of patients, the etiology of disease is unknown. MicroRNAs are small non-coding RNAs that have been suggested to play a role in the pathophysiology of epilepsy. Here, we compared microRNA expression patterns in the hippocampus using two chronic models of epilepsy characterised by recurrent spontaneous seizures (pilocarpine and self-sustained status epilepticus (SSSE)) and an acute 6-Hz seizure model. The vast majority of microRNAs deregulated in the acute model exhibited increased expression with 146 microRNAs up-regulated within 6 h after a single seizure. In contrast, in the chronic models, the number of up-regulated microRNAs was similar to the number of down-regulated microRNAs. Three microRNAs—miR-142-5p, miR-331-3p and miR-30a-5p—were commonly deregulated in all three models. However, there is a clear overlap of differentially expressed microRNAs within the chronic models with 36 and 15 microRNAs co-regulated at 24 h and at 28 days following status epilepticus, respectively. Pathway analysis revealed that the altered microRNAs are associated with inflammation, innate immunity and cell cycle regulation. Taken together, the identified microRNAs and the pathways they modulate might represent candidates for novel molecular approaches for the treatment of patients with epilepsy.
Collapse
Affiliation(s)
- Anita Kretschmann
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49:1309-26. [PMID: 24385256 DOI: 10.1007/s12035-013-8603-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Atlântica 420, 09060-000, Santo André, SP, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
miRWalk (http://mirwalk.uni-hd.de/) is a publicly available comprehensive resource, hosting the predicted as well as the experimentally validated microRNA (miRNA)-target interaction pairs. This database allows obtaining the possible miRNA-binding site predictions within the complete sequence of all known genes of three genomes (human, mouse, and rat). Moreover, it also integrates many novel features such as a comparative platform of miRNA-binding sites resulting from ten different prediction datasets, a holistic view of genetic networks of miRNA-gene pathway, and miRNA-gene-Online Mendelian Inheritance in Man disorder interactions, and unique experimentally validated information (e.g., cell lines, diseases, miRNA processing proteins). In this chapter, we describe a schematic workflow on how one can access the stored information from miRWalk and subsequently summarize its applications.
Collapse
Affiliation(s)
- Harsh Dweep
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany,
| | | | | |
Collapse
|
37
|
Li Q, Shen K, Zhao Y, Ma C, Liu J, Ma J. MiR-92b inhibitor promoted glioma cell apoptosis via targeting DKK3 and blocking the Wnt/beta-catenin signaling pathway. J Transl Med 2013; 11:302. [PMID: 24325785 PMCID: PMC4028874 DOI: 10.1186/1479-5876-11-302] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Background MiR-92b was upregulated in gliomas. However, the association of miR-92b with glioma cell apoptosis and survival remains unknown. Methods Proliferation capability of glioma cells upon tranfection with miR-92b mimics or inhibitors was detected by mutiple analyses, including MTT assays, colony formation assay. Apoptosis abilities of glioma cells were detected by flow cytometric analysis. The target of miR-92b was determined by luciferase reporter and western blot. The association of miR-92b with outcome was examined in twenty glioma patients. Results MiR-92b expression was significantly increased in high-grade gliomas compared with low-grade gliomas, and positively correlated with the degree of glioma infiltration. Over-expression of miR-92b increased cell proliferation, whereas knockdown of miR-92b decreased cell proliferation via modulating the levels of the target, Target prediction analysis and a dual luciferase reporting assay confirmed that the inhibitory protein-coding Dickkopf-3 gene (DKK3) was a direct target of miR-92b. Furthermore, miR-92b could regulate the expression of downstream genes of the Wnt/beta-catenin signaling pathway, such as Bcl2, c-myc and p-c-Jun, in glioma cells. Finally, the increased level of miR-92b expression in high-grade gliomas confers poorer overall survival. Conclusions The present data indicates that miR-92b directly regulate cell proliferation and apoptosis by targeting DKK3 and act as prognostic factors for glioma patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P R China.
| |
Collapse
|
38
|
Dweep H, Sticht C, Gretz N. In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Curr Genomics 2013; 14:127-36. [PMID: 24082822 PMCID: PMC3637677 DOI: 10.2174/1389202911314020005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3’-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.
Collapse
Affiliation(s)
- Harsh Dweep
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
39
|
miR-1279, miR-548j, miR-548m, and miR-548d-5p binding sites in CDSs of paralogous and orthologous PTPN12, MSH6, and ZEB1 Genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:902467. [PMID: 23957009 PMCID: PMC3730384 DOI: 10.1155/2013/902467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
Only PTPN12, MSH6, and ZEB1 have significant miR-1279 binding sites among paralogous genes of human tyrosine phosphatase family, DNA mismatch repair family, and zinc finger family, respectively. All miRNA binding sites are located within CDSs of studied mRNAs. Nucleotide sequences of hsa-miR-1279 binding sites with mRNAs of human PTPN12, MSH6, and ZEB1 genes encode TKEQYE, EGSSDE, and GEKPYE oligopeptides, respectively. The conservation of miRNA binding sites encoding oligopeptides has been revealed. MRNAs of many paralogs of zinc finger gene family have from 1 to 12 binding sites coding the same GEKPYE hexapeptide. MRNAs of PTPN12, MSH6, and ZEB1 orthologous genes from different animal species have binding sites for hsa-miR-1279 which consist of homologous oligonucleotides encoding similar human oligopeptides TKEQYE, EGSSDE, and GEKPYE. MiR-548j, miR-548m, and miR-548d-5p have homologous binding sites in the mRNA of PTPN12 orthologous genes which encode PRTRSC, TEATDI, and STASAT oligopeptides, respectively. All regions of miRNA are important for binding with the mRNA.
Collapse
|
40
|
Poltronieri P, D'Urso PI, Mezzolla V, D'Urso OF. Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des 2013; 81:79-84. [PMID: 22834637 DOI: 10.1111/cbdd.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MicroRNAs are aberrantly expressed in many cancers and can exert tumour-suppressive or oncogenic functions. As oncomirs promote growth of cancer cells and support survival during chemotherapy, thus microRNA-silencing therapies could be a valuable approach to be associated with anticancer drugs and chemotherapy treatments. miR-155 microRNA was found overexpressed in different types of cancer, such as leukaemias (PML, B-cell lymphomas), lung cancer and glioblastoma. GABA-A receptor downregulation was found correlated with glioma grading, with decreasing levels associated with higher grade of malignancies. A relationship between knock-down of miR-155 and re-expression of GABRA 1 protein in vivo was recently individuated. This finding has implication on the effectiveness of RNA-silencing approaches against miR-155 with the scope to control proliferation and signalling pathways regulated by GABA-A receptor. Applying microRNAs for treatment of brain tumours poses several problems, and fields to be solved are mainly the passage of the brain-blood barrier and the targeted delivery to specific cell types. Glioblastoma multiforme cells bud off microvesicles that deliver cytoplasmic contents to nearby cells. Thus, the exploitation of these mechanisms to deliver antagomir therapeutics targeting microvescicles in the brain could take the lead in the near future in the treatment for brain cancers in substitution of invasive surgical intervention.
Collapse
|
41
|
Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles. Int J Mol Med 2013; 32:25-34. [PMID: 23652807 DOI: 10.3892/ijmm.2013.1372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/08/2013] [Indexed: 11/05/2022] Open
Abstract
Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.
Collapse
|
42
|
Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol 2013; 9:e1002955. [PMID: 23505361 PMCID: PMC3591264 DOI: 10.1371/journal.pcbi.1002955] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/14/2013] [Indexed: 12/26/2022] Open
Abstract
Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks. Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples. We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer's disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks. The most fundamental and popular gene-expression experiments measure genome-wide transcription levels in two populations: perturbed and wild type, or cases and controls. The genes that show significantly different expression between the two populations (the differentially expressed genes) are useful for understanding the biology underlying the phenotype difference, and can sometimes also serve as biomarkers for classification. In contrast, genes that have similar expression to each other across all profiles (co-expressed genes) can yield clues about the functional commonality of the two populations. Differential co-expression has recently been proposed as a way to combine the benefits of these two approaches: it seeks gene groups that are co-expressed in one phenotype much more than in the other. Here we develop a new method for detecting differential co-expression and test it on case-control expression profiles of several diseases. Our algorithm improves upon the state of the art in the strength of the detected patterns and in agreement with current biological knowledge. We show that our method can predict gene regulators that are associated with the disease of interest and demonstrate that it can dissect known biological pathways into subcomponents that are not detected using standard analyses.
Collapse
Affiliation(s)
- David Amar
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Hershel Safer
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
43
|
Levänen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock ÅM. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 2013; 131:894-903. [PMID: 23333113 PMCID: PMC4013392 DOI: 10.1016/j.jaci.2012.11.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma is characterized by increased airway narrowing in response to nonspecific stimuli. The disorder is influenced by both environmental and genetic factors. Exosomes are nanosized vesicles of endosomal origin released from inflammatory and epithelial cells that have been implicated in asthma. In this study we characterized the microRNA (miRNA) content of exosomes in healthy control subjects and patients with mild intermittent asthma both at unprovoked baseline and in response to environmental challenge. OBJECTIVE To investigate alterations in bronchoalveolar lavage fluid (BALF) exosomal miRNA profiles due to asthma, and following subway air exposure. METHODS Exosomes were isolated from BALF from healthy control subjects (n = 10) and patients with mild intermittent asthma (n = 10) after subway and control exposures. Exosomal RNA was analyzed by using microarrays containing probes for 894 human miRNAs, and selected findings were validated with quantitative RT-PCR. Results were analyzed by using multivariate modeling. RESULTS The presence of miRNAs was confirmed in exosomes from BALF of both asthmatic patients and healthy control subjects. Significant differences in BALF exosomal miRNA was detected for 24 miRNAs with a subset of 16 miRNAs, including members of the let-7 and miRNA-200 families, providing robust classification of patients with mild nonsymptomatic asthma from healthy subjects with 72% cross-validated predictive power (Q(2) = 0.72). In contrast, subway exposure did not cause any significant alterations in miRNA profiles. CONCLUSION These studies demonstrate substantial differences in exosomal miRNA profiles between healthy subjects and patients with unprovoked, mild, stable asthma. These changes might be important in the inflammatory response leading to bronchial hyperresponsiveness and asthma.
Collapse
Affiliation(s)
- Bettina Levänen
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Nirav R. Bhakta
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | | | | | - Stefanie Hiltbrunner
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | | | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | - David J. Erle
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
- Lung Biology Center, University of California–San Francisco
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
44
|
Zhou Q, Verne NG. Role of microRNA in chronic visceral nociception. Pain 2012; 154:9-10. [PMID: 23159571 DOI: 10.1016/j.pain.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022]
Affiliation(s)
- QiQi Zhou
- Department of Medicine, University of Texas Medical Branch, Galveston, Texas, United States
| | | |
Collapse
|
45
|
GENDA YUUKI, ARAI MASAE, ISHIKAWA MASASHI, TANAKA SHUNSUKE, OKABE TADASHI, SAKAMOTO ATSUHIRO. microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: A TaqMan® Low Density Array study. Int J Mol Med 2012; 31:129-37. [DOI: 10.3892/ijmm.2012.1163] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/30/2012] [Indexed: 11/05/2022] Open
|