1
|
Schott J, Rakei J, Remus-Emsermann M, Johnston P, Mbedi S, Sparmann S, Hilker M, Paniagua Voirol LR. Microbial associates of the elm leaf beetle: uncovering the absence of resident bacteria and the influence of fungi on insect performance. Appl Environ Microbiol 2024; 90:e0105723. [PMID: 38179921 PMCID: PMC10807431 DOI: 10.1128/aem.01057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial symbionts play crucial roles in the biology of many insects. While bacteria have been the primary focus of research on insect-microbe symbiosis, recent studies suggest that fungal symbionts may be just as important. The elm leaf beetle (ELB, Xanthogaleruca luteola) is a serious pest species of field elm (Ulmus minor). Using culture-dependent and independent methods, we investigated the abundance and species richness of bacteria and fungi throughout various ELB life stages and generations, while concurrently analyzing microbial communities on elm leaves. No persistent bacterial community was found to be associated with the ELB or elm leaves. By contrast, fungi were persistently present in the beetle's feeding life stages and on elm leaves. Fungal community sequencing revealed a predominance of the genera Penicillium and Aspergillus in insects and on leaves. Culture-dependent surveys showed a high prevalence of two fungal colony morphotypes closely related to Penicillium lanosocoeruleum and Aspergillus flavus. Among these, the Penicillium morphotype was significantly more abundant on feeding-damaged compared with intact leaves, suggesting that the fungus thrives in the presence of the ELB. We assessed whether the detected prevalent fungal morphotypes influenced ELB's performance by rearing insects on (i) surface-sterilized leaves, (ii) leaves inoculated with Penicillium spores, and (iii) leaves inoculated with Aspergillus spores. Insects feeding on Penicillium-inoculated leaves gained more biomass and tended to lay larger egg clutches than those consuming surface-sterilized leaves or Aspergillus-inoculated leaves. Our results demonstrate that the ELB does not harbor resident bacteria and that it might benefit from associating with Penicillium fungi.IMPORTANCEOur study provides insights into the still understudied role of microbial symbionts in the biology of the elm leaf beetle (ELB), a major pest of elms. Contrary to expectations, we found no persistent bacterial symbionts associated with the ELB or elm leaves. Our research thus contributes to the growing body of knowledge that not all insects rely on bacterial symbionts. While no persistent bacterial symbionts were detectable in the ELB and elm leaf samples, our analyses revealed the persistent presence of fungi, particularly Penicillium and Aspergillus on both elm leaves and in the feeding ELB stages. Moreover, when ELB were fed with fungus-treated elm leaves, we detected a potentially beneficial effect of Penicillium on the ELB's development and fecundity. Our results highlight the significance of fungal symbionts in the biology of this insect.
Collapse
Affiliation(s)
- Johanna Schott
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - Juliette Rakei
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Museum für Naturkunde Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | |
Collapse
|
2
|
Du H, Pan J, Zhang C, Yang X, Wang C, Lin X, Li J, Liu W, Zhou H, Yu X, Mo S, Zhang G, Zhao G, Qu W, Jiang C, Tian Y, He Z, Liu Y, Li M. Analogous assembly mechanisms and functional guilds govern prokaryotic communities in mangrove ecosystems of China and South America. Microbiol Spectr 2023; 11:e0157723. [PMID: 37668400 PMCID: PMC10580968 DOI: 10.1128/spectrum.01577-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023] Open
Abstract
As an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning. Here, we analyzed 380 sediment samples from 13 and 8 representative mangrove ecosystems, respectively, in China and South America and compared their microbial features. Although the microbial community compositions exhibited strong distinctions, the community assemblage in the two locations followed analogous patterns: the assemblages of the entire community, abundant taxa, rare taxa, and generalists were predominantly driven by stochastic processes with significant distance-decay patterns, while the assembly of specialists was more likely related to the behaviors of other organisms in or surrounding the mangrove ecosystems. In addition, co-occurrence and topological network analysis of mangrove sediment microbiomes underlined the dominance of sulfate-reducing prokaryotes in both the regions. Moreover, we found that more than 70% of the keystone and hub taxa were sulfate-reducing prokaryotes, implying their important roles in maintaining the linkage and stability of the mangrove sediment microbial communities. This study fills a gap in the large-scale analysis of microbiome features covering distantly located and diverse mangrove ecosystems. Here, we propose a suggestion to the Mangrove Microbiome Initiative that 16S rRNA sequencing protocols should be standardized with a unified primer to facilitate the global-scale analysis of mangrove microbiomes and further comparisons with the reference data sets from other biomes.IMPORTANCEMangrove wetlands are important ecosystems possessing valuable ecological functions for carbon storage, species diversity maintenance, and coastline stabilization. These functions are greatly driven or supported by microorganisms that make essential contributions to biogeochemical cycles in mangrove ecosystems. The mechanisms governing the microbial community assembly, structure, and functions are vital to microbial ecology but remain unclear. Moreover, studying these mechanisms of mangrove microbiomes at a large spatial scale can provide a more comprehensive insight into their universal features and can help untangle microbial interaction patterns and microbiome functions. In this study, we compared the mangrove microbiomes in a large spatial range and found that the assembly patterns and key functional guilds of the Chinese and South American mangrove microbiomes were analogous. The entire communities exhibited significant distance-decay patterns and were strongly governed by stochastic processes, while the assemblage of specialists may be merely associated with the behaviors of the organisms in mangrove ecosystems. Furthermore, our results highlight the dominance of sulfate-reducing prokaryotes in mangrove microbiomes and their key roles in maintaining the stability of community structure and functions.
Collapse
Affiliation(s)
- Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xilan Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinhui Li
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wan Liu
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Haokui Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Guoqing Zhang
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Guoping Zhao
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Lim YZ, Poh YH, Lee KC, Pointing SB, Wainwright BJ, Tan EJ. Influence of native and exotic plant diet on the gut microbiome of the Gray's Malayan stick insect, Lonchodes brevipes. Front Microbiol 2023; 14:1199187. [PMID: 37577436 PMCID: PMC10412900 DOI: 10.3389/fmicb.2023.1199187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Herbivorous insects require an active lignocellulolytic microbiome to process their diet. Stick insects (phasmids) are common in the tropics and display a cosmopolitan host plant feeding preference. The microbiomes of social insects are vertically transmitted to offspring, while for solitary species, such as phasmids, it has been assumed that microbiomes are acquired from their diet. This study reports the characterization of the gut microbiome for the Gray's Malayan stick insect, Lonchodes brevipes, reared on native and introduced species of host plants and compared to the microbiome of the host plant and surrounding soil to gain insight into possible sources of recruitment. Clear differences in the gut microbiome occurred between insects fed on native and exotic plant diets, and the native diet displayed a more species-rich fungal microbiome. While the findings suggest that phasmids may be capable of adapting their gut microbiome to changing diets, it is uncertain whether this may lead to any change in dietary efficiency or organismal fitness. Further insight in this regard may assist conservation and management decision-making.
Collapse
Affiliation(s)
- Yan Zhen Lim
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Yan Hong Poh
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Kevin C. Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Stephen Brian Pointing
- Division of Science, Yale-NUS College, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin J. Wainwright
- Division of Science, Yale-NUS College, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Eunice Jingmei Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Shelomi M. Cytochrome P450 Genes Expressed in Phasmatodea Midguts. INSECTS 2022; 13:873. [PMID: 36292821 PMCID: PMC9603955 DOI: 10.3390/insects13100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome P450s (CYPs) are xenobiotic detoxification genes found in most eukaryotes, and linked in insects to the tolerance of plant secondary chemicals and insecticide resistance. The number and diversity of CYP clans, families, and subfamilies that an organism produces could correlate with its dietary breadth or specialization. This study examined the CYP diversity expressed in the midguts of six species of folivorous stick insects (Phasmatodea), to identify their CYP complement and see if any CYPs correlate with diet toxicity or specialization, and see what factors influenced their evolution in this insect order. CYP genes were mined from six published Phasmatodea transcriptomes and analyzed phylogenetically. The Phasmatodea CYP complement resembles that of other insects, though with relatively low numbers, and with significant expansions in the CYP clades 6J1, 6A13/14, 4C1, and 15A1. The CYP6 group is known to be the dominant CYP family in insects, but most insects have no more than one CYP15 gene, so the function of the multiple CYP15A1 genes in Phasmatodea is unknown, with neofunctionalization following gene duplication hypothesized. No correlation was found between CYPs and diet specialization or toxicity, with some CYP clades expanding within the Phasmatodea and others likely inherited from a common ancestor.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
6
|
De Martini F, Coots NL, Jasso-Selles DE, Shevat J, Ravenscraft A, Stiblík P, Šobotník J, Sillam-Dussès D, Scheffrahn RH, Carrijo TF, Gile GH. Biogeography and Independent Diversification in the Protist Symbiont Community of Heterotermes tenuis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic microbiome of “lower” termites is highly stable and host-specific. This is due to the mutually obligate nature of the symbiosis and the direct inheritance of protists by proctodeal trophallaxis. However, vertical transmission is occasionally imperfect, resulting in daughter colonies that lack one or more of the expected protist species. This phenomenon could conceivably lead to regional differences in protist community composition within a host species. Here, we have characterized the protist symbiont community of Heterotermes tenuis (Hagen) (Blattodea: Rhinotermitidae) from samples spanning South and Central America. Using light microscopy, single cell isolation, and amplicon sequencing, we report eight species-level protist phylotypes belonging to four genera in the phylum Parabasalia. The diversity and distribution of each phylotype’s 18S rRNA amplicon sequence variants (ASVs) mostly did not correlate with geographical or host genetic distances according to Mantel tests, consistent with the lack of correlation we observed between host genetic and geographical distances. However, the ASV distances of Holomastigotoides Ht3 were significantly correlated with geography while those of Holomastigotoides Ht1 were significantly correlated with host phylogeny. These results suggest mechanisms by which termite-associated protist species may diversify independently of each other and of their hosts, shedding light on the coevolutionary dynamics of this important symbiosis.
Collapse
|
7
|
Li YH, Huang YF, Chen TH, Wu SS, Tang HC, Hsiao CY, Huang LC, Chang JC, Chiu KP, Nai YS. Comparison of gut microbiota of healthy and diseased walking sticks, Phasmotaenia lanyuhensis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21749. [PMID: 33075172 DOI: 10.1002/arch.21749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Feng Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shin-Shan Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chieh Tang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Chung-Yi Hsiao
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Lung-Chun Huang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Budd K, Gunn JC, Finch T, Klymus K, Sitati N, Eggert LS. Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna ( Loxodonta africana) and forest elephants ( L. cyclotis). Ecol Evol 2020; 10:5637-5650. [PMID: 32607180 PMCID: PMC7319146 DOI: 10.1002/ece3.6305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6-5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop-raiding versus noncrop-raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.
Collapse
Affiliation(s)
- Kris Budd
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Joe C. Gunn
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Tabitha Finch
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
- Vermont Genetics NetworkUniversity of VermontBurlingtonVTUSA
| | - Katy Klymus
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
- Columbia Environmental Research CenterUnited States Geological SurveyColumbiaMOUSA
| | - Noah Sitati
- World Wide Fund for NatureDar es SalaamTanzania
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
9
|
Shelomi M, Jacobs C, Vilcinskas A, Vogel H. The unique antimicrobial peptide repertoire of stick insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103471. [PMID: 31634521 DOI: 10.1016/j.dci.2019.103471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
The comparative analysis of innate immunity across different insect taxa has revealed unanticipated evolutionary plasticity, providing intriguing examples of immunity-related effector gene expansion and loss. Phasmatodea, the stick and leaf insects, is an order of hemimetabolous insects that can provide insight into ancestral innate immunity genes lost by later insect clades. We injected the stick insect Peruphasma schultei with a mixture of microbial elicitors to activate a strong immune response, followed by RNA-Seq analysis to screen for induced immunity-related effector genes. This revealed a highly diverse spectrum of antimicrobial peptides (AMPs) belonging to the attacin, coleoptericin, defensin, thaumatin, and tachystatin families. In addition, we identified a large group of short, cysteine-rich putative AMPs, some of which were strongly elicited. The immunity-related effector gene repertoire also included c-type and i-type lysozymes and several pattern-recognition proteins, such as proteins that recognize Gram-negative bacteria and peptidoglycans. Finally, we identified 45 hemolymph lipopolysaccharide-binding protein sequences, an unusually large number for insects. Taken together, our results indicate that at least some phasmids synthesize a broad spectrum of diverse AMPs that deserve further in-depth analysis.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan.
| | - Chris Jacobs
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:451-475. [PMID: 32733173 DOI: 10.1146/annurev-ecolsys-110617-062453] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animals are distinguished by having guts: organs that must extract nutrients from food while barring invasion by pathogens. Most guts are colonized by non-pathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have co-diversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary "addiction" whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely, to using them as food, to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| |
Collapse
|
11
|
Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett 2019; 366:5499024. [DOI: 10.1093/femsle/fnz117] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
ABSTRACTIt is often taken for granted that all animals host and depend upon a microbiome, yet this has only been shown for a small proportion of species. We propose that animals span a continuum of reliance on microbial symbionts. At one end are the famously symbiont-dependent species such as aphids, humans, corals and cows, in which microbes are abundant and important to host fitness. In the middle are species that may tolerate some microbial colonization but are only minimally or facultatively dependent. At the other end are species that lack beneficial symbionts altogether. While their existence may seem improbable, animals are capable of limiting microbial growth in and on their bodies, and a microbially independent lifestyle may be favored by selection under some circumstances. There is already evidence for several ‘microbiome-free’ lineages that represent distantly related branches in the animal phylogeny. We discuss why these animals have received such little attention, highlighting the potential for contaminants, transients, and parasites to masquerade as beneficial symbionts. We also suggest ways to explore microbiomes that address the limitations of DNA sequencing. We call for further research on microbiome-free taxa to provide a more complete understanding of the ecology and evolution of macrobe-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX 78712, USA
| | - Jon G Sanders
- Cornell Institute of Host–Microbe Interactions and Disease, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA
| | - Noah Fierer
- Department of Ecology & Evolutionary Biology, University of Colorado at Boulder, 216 UCB, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, CIRES Bldg. Rm. 318, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Foysal MJ, Fotedar R, Tay CY, Gupta SK. Dietary supplementation of black soldier fly ( Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron ( Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 2019; 7:e6891. [PMID: 31149398 PMCID: PMC6534111 DOI: 10.7717/peerj.6891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to evaluate the dietary supplementary effects of black soldier fly (Hermetia illucens) (BSF) meal on the bacterial communities in the distal gut, immune response and growth of freshwater crayfish, marron (Cherax cainii) fed poultry-by-product meal (PBM) as an alternative protein source to fish meal (FM). A total of 64 marron were randomly distributed into 16 different tanks with a density of four marron per tank. After acclimation, a 60-days feeding trial was conducted on marron fed isonitrogenouts and isocalorific diets containing protein source from FM, PBM, and a combination of FM + BSF and PBM + BSF. At the end of the trial, weight gain and growth of marron were found independent of any dietary treatment, however, the two diets supplemented with BSF significantly (P < 0.05) enhanced haemolymph osmolality, lysozyme activity, total haemocyte counts, and protein and energy contents in the tail muscle. In addition, the analysis of microbiota and its predicted metabolic pathways via 16s rRNA revealed a significantly (P < 0.05) higher bacterial activity and gene function correlated to biosynthesis of protein, energy and secondary metabolites in PBM + BSF than other dietary groups. Diets FM + BSF and PBM + BSF were seen to be associated with an up-regulation of cytokine genes in the intestinal tissue of marron. Overall, PBM + BSF diet proved to be a superior diet in terms of improved health status, gut microbiota and up-regulated expression of cytokine genes for marron culture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sanjay Kumar Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
13
|
Ravenscraft A, Kish N, Peay K, Boggs C. No evidence that gut microbiota impose a net cost on their butterfly host. Mol Ecol 2019; 28:2100-2117. [PMID: 30803091 PMCID: PMC6525022 DOI: 10.1111/mec.15057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Gut microbes are believed to play a critical role in most animal life, yet fitness effects and cost–benefit trade‐offs incurred by the host are poorly understood. Unlike most hosts studied to date, butterflies largely acquire their nutrients from larval feeding, leaving relatively little opportunity for nutritive contributions by the adult's microbiota. This provides an opportunity to measure whether hosting gut microbiota comes at a net nutritional price. Because host and bacteria may compete for sugars, we hypothesized that gut flora would be nutritionally neutral to adult butterflies with plentiful food, but detrimental to semistarved hosts, especially when at high density. We held field‐caught adult Speyeria mormonia under abundant or restricted food conditions. Because antibiotic treatments did not generate consistent variation in their gut microbiota, we used interindividual variability in bacterial loads and operational taxonomic unit abundances to examine correlations between host fitness and the abdominal microbiota present upon natural death. We detected strikingly few relationships between microbial flora and host fitness. Neither total bacterial load nor the abundances of dominant bacterial taxa were related to butterfly fecundity, egg mass or egg chemical content. Increased abundance of a Commensalibacter species did correlate with longer host life span, while increased abundance of a Rhodococcus species correlated with shorter life span. Contrary to our expectations, these relationships were unchanged by food availability to the host and were unrelated to reproductive output. Our results suggest the butterfly microbiota comprises parasitic, commensal and beneficial taxa that together do not impose a net reproductive cost, even under caloric stress.
Collapse
Affiliation(s)
- Alison Ravenscraft
- Department of Biology, Stanford University, Stanford, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| | - Nicole Kish
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Kabir Peay
- Department of Biology, Stanford University, Stanford, California
| | - Carol Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
14
|
Clarke LJ, Suter L, King R, Bissett A, Deagle BE. Antarctic Krill Are Reservoirs for Distinct Southern Ocean Microbial Communities. Front Microbiol 2019; 9:3226. [PMID: 30697197 PMCID: PMC6340936 DOI: 10.3389/fmicb.2018.03226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Host-associated bacterial communities have received limited attention in polar habitats, but are likely to represent distinct nutrient-rich niches compared to the surrounding environment. Antarctic krill (Euphausia superba) are a super-abundant species with a circumpolar distribution, and the krill microbiome may make a substantial contribution to marine bacterial diversity in the Southern Ocean. We used high-throughput sequencing of the bacterial 16S ribosomal RNA gene to characterize bacterial diversity in seawater and krill tissue samples from four locations south of the Kerguelen Plateau, one of the most productive regions in the Indian Sector of the Southern Ocean. Krill-associated bacterial communities were distinct from those of the surrounding seawater, with different communities inhabiting the moults, digestive tract and faecal pellets, including several phyla not detected in the surrounding seawater. Digestive tissues from many individuals contained a potential gut symbiont (order: Mycoplasmoidales) shown to improve survival on a low quality diet in other crustaceans. Antarctic krill swarms thus influence Southern Ocean microbial communities not only through top-down grazing of eukaryotic cells and release of nutrients into the water column, but also by transporting distinct microbial assemblages horizontally via migration and vertically via sinking faecal pellets and moulted exuviae. Changes to Antarctic krill demographics or distribution through fishing pressure or climate-induced range shifts will also influence the composition and dispersal of Southern Ocean microbial communities.
Collapse
Affiliation(s)
- Laurence J Clarke
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Léonie Suter
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Robert King
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | | |
Collapse
|
15
|
Bapatla KG, Singh A, Yeddula S, Patil RH. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J Basic Microbiol 2018; 58:217-226. [PMID: 29380873 DOI: 10.1002/jobm.201700462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/05/2022]
Abstract
The insect gut has been the house of many taxonomically and physiologically diverse groups of microbial colonizers as symbionts and commensals, which are evolving to support the physiological requirement of insects. Lepidoptera is one of the important family of class hexapoda, comprising agriculture insect pest Spodoptera litura and Spilosoma obliqua. Information on gut microbiota and their functional role in these insects was meager to elucidate the wide-ranging survivalist mechanisms. In this context, we analyzed the composition, diversity and functional role of gut bacteria in S. litura and S. obliqua collected from soybean and sunflower crops, respectively, using Next Generation Sequencing of 16S rRNA. A total of 3427 and 206 Operation Taxonomic Units (OTUs) were identified in S. litura and S. obliqua gut metagenome, respectively. Highest number of sequences were annotated to unclassified bacteria (34%), followed by Proteobacteria (27%), and Chlorobi (14%) in S. litura, while S. obliqua has significant representation of Firmicutes (48%), followed by Bacteroidetes (20%), and unclassified bacteria (11%). Functionality of both metagenomes revealed, high abundance of ammonia oxidizers (20.1 58.0%) followed by relative abundance of detoxifying processes - dehalogenation (17.4-41.2%) and aromatic hydrocarbons degradation (1.1-3.1%). This study highlights the significance of the inherent microbiome of two defoliators in shaping the metagenome for nutrition and detoxifying the chemical molecules, and opens an avenue for exploring role of insect gut bacteria in host selection, metabolic endurance of insecticides and synergistic or agonistic mechanisms inside gut of insects feeding on insect-resistant biotech crops.
Collapse
Affiliation(s)
- Kiran G Bapatla
- Department of Agricultural Entomology, UAS Dharwad, Karnataka, India
| | - Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath, Uttar Pradesh, India
| | - Srujana Yeddula
- Department of Agricultural Entomology, UAS Dharwad, Karnataka, India
| | | |
Collapse
|
16
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci U S A 2017; 114:9641-9646. [PMID: 28830993 PMCID: PMC5594680 DOI: 10.1073/pnas.1707186114] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many animals are inhabited by microbial symbionts that influence their hosts' development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 15 families. Compared with other insects and vertebrates assayed using the same methods, the microbes that we detected in caterpillar guts were unusually low-density and variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (although possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model species Manduca sexta Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle that may be widespread among animals.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309;
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
18
|
Ross E. The curious case of the caterpillar's missing microbes. Nature 2017. [DOI: 10.1038/nature.2017.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Wu C, Crowhurst RN, Dennis AB, Twort VG, Liu S, Newcomb RD, Ross HA, Buckley TR. De Novo Transcriptome Analysis of the Common New Zealand Stick Insect Clitarchus hookeri (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction. PLoS One 2016; 11:e0157783. [PMID: 27336743 PMCID: PMC4919086 DOI: 10.1371/journal.pone.0157783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.
Collapse
Affiliation(s)
- Chen Wu
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Ross N. Crowhurst
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Alice B. Dennis
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Victoria G. Twort
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shen Zhen, China
| | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Howard A. Ross
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas R. Buckley
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, Outreman Y, Terrat S, Mahéo F, Poinsot D. Bacterial Community Diversity Harboured by Interacting Species. PLoS One 2016; 11:e0155392. [PMID: 27258532 PMCID: PMC4892616 DOI: 10.1371/journal.pone.0155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.
Collapse
Affiliation(s)
- Mikaël Bili
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Anne Marie Cortesero
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | | | | | - Gwennola Ermel
- UMR CNRS 6026 Interactions Cellulaires et Moléculaires, Université de Rennes, Rennes, France
| | | | | | | | | | - Denis Poinsot
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
21
|
Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects. Sci Rep 2016; 6:26388. [PMID: 27210832 PMCID: PMC4876471 DOI: 10.1038/srep26388] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022] Open
Abstract
Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion.
Collapse
|
22
|
Shelomi M, Heckel DG, Pauchet Y. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:1-11. [PMID: 26855199 DOI: 10.1016/j.ibmb.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Phasmatodea (stick insects) have multiple, endogenous, highly expressed copies of glycoside hydrolase family 9 (GH9) genes. The purpose for retaining so many was unknown. We cloned and expressed the enzymes in transfected insect cell lines, and tested the individual proteins against different plant cell wall component poly- and oligosaccharides. Nearly all isolated enzymes were active against carboxymethylcellulose, however most could also degrade glucomannan, and some also either xylan or xyloglucan. The latter two enzyme groups were each monophyletic, suggesting the evolution of these novel substrate specificities in an early ancestor of the order. Such enzymes are highly unusual for Metazoa, for which no xyloglucanases had been reported. Phasmatodea gut extracts could degrade multiple plant cell wall components fully into sugar monomers, suggesting that enzymatic breakdown of plant cell walls by the entire Phasmatodea digestome may contribute to the Phasmatodea nutritional budget. The duplication and neofunctionalization of GH9s in the ancestral Phasmatodea may have enabled them to specialize as folivores and diverge from their omnivorous ancestors. The structural changes enabling these unprecedented activities in the cellulases require further study.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
23
|
Bolaños LM, Rosenblueth M, Castillo-Ramírez S, Figuier-Huttin G, Martínez-Romero E. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota. Environ Microbiol 2015; 18:1364-78. [PMID: 26058415 DOI: 10.1111/1462-2920.12939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/31/2015] [Indexed: 01/20/2023]
Abstract
Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species.
Collapse
Affiliation(s)
- Luis M Bolaños
- Programa de Ecología Genómica y, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Mónica Rosenblueth
- Programa de Ecología Genómica y, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Gilles Figuier-Huttin
- Programa de Ecología Genómica y, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica y, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
24
|
Gorokhova E, Rivetti C, Furuhagen S, Edlund A, Ek K, Breitholtz M. Bacteria-mediated effects of antibiotics on Daphnia nutrition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5779-87. [PMID: 25850437 DOI: 10.1021/acs.est.5b00833] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In polluted environments, contaminant effects may be manifested via both direct toxicity to the host and changes in its microbiota, affecting bacteria-host interactions. In this context, particularly relevant is exposure to antibiotics released into environment. We examined effects of the antibiotic trimethoprim on microbiota of Daphnia magna and concomitant changes in the host feeding. In daphnids exposed to 0.25 mg L(-1) trimethoprim for 24 h, the microbiota was strongly affected, with (1) up to 21-fold decrease in 16S rRNA gene abundance and (2) a shift from balanced communities dominated by Curvibacter, Aquabacterium, and Limnohabitans in controls to significantly lower diversity under dominance of Pelomonas in the exposed animals. Moreover, decreased feeding and digestion was observed in the animals exposed to 0.25-2 mg L(-1) trimethoprim for 48 h and then fed 14C-labeled algae. Whereas the proportion of intact algal cells in the guts increased with increased trimethoprim concentration, ingestion and incorporation rates as well as digestion and incorporation efficiencies decreased significantly. Thus, antibiotics may impact nontarget species via changes in their microbiota leading to compromised nutrition and, ultimately, growth. These bacteria-mediated effects in nontarget organisms may not be unique for antibiotics, but also relevant for environmental pollutants of various nature.
Collapse
Affiliation(s)
- Elena Gorokhova
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Claudia Rivetti
- ‡Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Sara Furuhagen
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Anna Edlund
- §Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, United States
| | - Karin Ek
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Magnus Breitholtz
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| |
Collapse
|
25
|
Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis. J Biotechnol 2014; 194:124-31. [PMID: 25500375 DOI: 10.1016/j.jbiotec.2014.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/08/2014] [Accepted: 11/24/2014] [Indexed: 11/21/2022]
Abstract
Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium.
Collapse
|
26
|
Shelomi M, Jasper WC, Atallah J, Kimsey LS, Johnson BR. Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut. BMC Genomics 2014; 15:917. [PMID: 25331961 PMCID: PMC4221708 DOI: 10.1186/1471-2164-15-917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/01/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Stick and leaf insects (Phasmatodea) are an exclusively leaf-feeding order of insects with no record of omnivory, unlike other "herbivorous" Polyneoptera. They represent an ideal system for investigating the adaptations necessary for obligate folivory, including plant cell wall degrading enzymes (PCWDEs). However, their physiology and internal anatomy is poorly understood, with limited genomic resources available. RESULTS We de novo assembled transcriptomes for the anterior and posterior midguts of six diverse Phasmatodea species, with RNA-Seq on one exemplar species, Peruphasma schultei. The latter's assembly yielded >100,000 transcripts, with over 4000 transcripts uniquely or more highly expressed in specific midgut sections. Two to three dozen PCWDE encoding gene families, including cellulases and pectinases, were differentially expressed in the anterior midgut. These genes were also found in genomic DNA from phasmid brain tissue, suggesting endogenous production. Sequence alignments revealed catalytic sites on most PCWDE transcripts. While most phasmid PCWDE genes showed homology with those of other insects, the pectinases were homologous to bacterial genes. CONCLUSIONS We identified a large and diverse PCWDE repertoire endogenous to the phasmids. If these expressed genes are translated into active enzymes, then phasmids can theoretically break plant cell walls into their monomer components independently of microbial symbionts. The differential gene expression between the two midgut sections provides the first molecular hints as to their function in living phasmids. Our work expands the resources available for industrial applications of animal-derived PCWDEs, and facilitates evolutionary analysis of lower Polyneopteran digestive enzymes, including the pectinases whose origin in Phasmatodea may have been a horizontal transfer event from bacteria.
Collapse
Affiliation(s)
- Matan Shelomi
- />Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA
- />Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - W Cameron Jasper
- />Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA
| | - Joel Atallah
- />Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA
| | - Lynn S Kimsey
- />Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA
| | - Brian R Johnson
- />Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA
| |
Collapse
|
27
|
Dickey AM, Trease AJ, Jara-Cavieres A, Kumar V, Christenson MK, Potluri LP, Morgan JK, Shatters RG, Mckenzie CL, Davis PH, Osborne LS. ESTIMATING BACTERIAL DIVERSITY IN SCIRTOTHRIPS DORSALIS (THYSANOPTERA: THRIPIDAE) VIA NEXT GENERATION SEQUENCING. THE FLORIDA ENTOMOLOGIST 2014; 97:362-366. [PMID: 25382863 PMCID: PMC4222051 DOI: 10.1653/024.097.0204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The last 2 decades have produced a better understanding of insect-microbial associations and yielded some important opportunities for insect control. However, most of our knowledge comes from model systems. Thrips (Thysanoptera: Thripidae) have been understudied despite their global importance as invasive species, plant pests and disease vectors. Using a culture and primer independent next-generation sequencing and metagenomics pipeline, we surveyed the bacteria of the globally important pest, Scirtothrips dorsalis Hood. The most abundant bacterial phyla identified were Actinobacteria and Proteobacteria and the most abundant genera were Propionibacterium, Stenotrophomonas, and Pseudomonas. A total of 189 genera of bacteria were identified. The absence of any vertically transferred symbiont taxa commonly found in insects is consistent with other studies suggesting that thrips primarilly acquire resident microbes from their environment. This does not preclude a possible beneficial/intimate association between S. dorsalis and the dominant taxa identified and future work should determine the nature of these associations.
Collapse
Affiliation(s)
- Aaron M. Dickey
- Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd., Apopka, FL 32703, USA
| | - Andrew J. Trease
- Biology Department, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Antonella Jara-Cavieres
- Indian River Research & Education Center, University of Florida, 2199 South Rock Rd, Fort Pierce, FL 34945
| | - Vivek Kumar
- Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd., Apopka, FL 32703, USA
| | | | | | - J. Kent Morgan
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945, USA
| | - Robert G. Shatters
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945, USA
| | - Cindy L. Mckenzie
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945, USA
| | - Paul H. Davis
- Biology Department, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Lance S. Osborne
- Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd., Apopka, FL 32703, USA
| |
Collapse
|
28
|
Shelomi M, Watanabe H, Arakawa G. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:25-30. [PMID: 24216471 DOI: 10.1016/j.jinsphys.2013.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
High cellulase (endo-beta-1,4-glucanase) activity was detected in the anterior midgut of the walking stick (Phasmatodea) Eurycantha calcarata. The enzyme was isolated and analyzed via mass spectrometry. RT-PCR revealed two endoglucanase genes, EcEG1 and EcEG2. Mascot analysis of the purified enzyme confirms it to be the product of gene EcEG1. Homologous cDNAs were also isolated from a distantly related species, Entoria okinawaensis, suggesting a general distribution of cellulase genes in phasmids. Phasmid cellulases showed high homology to endogenously-produced glycoside hydrolase family 9 (GH9) endoglucanases from insects, especially to those of termites, cockroaches, and crickets. The purified E. calcarata enzyme showed clear antigency against an anti-serum for termite GH9 cellulase, which, together with the sequence homology, further suggests an endogenous origin of the enzyme. This discovery suggests a possible nutritive value for cellulose in the leaf-feeding phasmids, unlike in herbivorous Lepidoptera.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology and Nematology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | - Hirofumi Watanabe
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| | - Gaku Arakawa
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
29
|
Shelomi M, Kimsey LS. Vital staining of the stick insect digestive system identifies appendices of the midgut as novel system of excretion. J Morphol 2013; 275:623-33. [DOI: 10.1002/jmor.20243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Matan Shelomi
- Bohart Museum of Entomology, Department of Entomology and Nematology; University of California; Davis California
| | - Lynn S. Kimsey
- Bohart Museum of Entomology, Department of Entomology and Nematology; University of California; Davis California
| |
Collapse
|