1
|
Kim MJ, Park SJ, Park H. Trend in serological and molecular diagnostic methods for Toxoplasma gondii infection. Eur J Med Res 2024; 29:520. [PMID: 39468639 PMCID: PMC11520523 DOI: 10.1186/s40001-024-02055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Toxoplasma gondii, an intracellular parasite, is a significant cause of zoonotic disease, with an estimated one-third of the world's human population believed to be infected. T. gondii is transmitted to humans through the consumption of contaminated water, soil, vegetables, fruits, shellfish or undercooked meat, and can also be passed from human to human through vertical transmission, transplants and blood transfusion. While T. gondii infection typically manifests mild symptoms such as colds among immunocompetent individuals, it can prove lethal for those with weakened immune systems. METHODS To summarize the diagnostic methods for Toxoplasma gondii infection, we performed a literature search on PubMed from 1948 to 2023 using the keywords "T. gondii serological diagnosis" or "T. gondii molecular diagnosis". RESULTS Rapid and accurate diagnosis of T. gondii infection is imperative. Although a diagnostic kit is currently commercially available, there are a number of disadvantages to the validation principles applied to each diagnostic kit. Consequently, multiple diagnostic methods are concurrently employed to offset these limitations. Serological methods for diagnosing T. gondii infection include the Dye Test (DT), Agglutination Test (AT), Modified Agglutination Test (MAT), Latex Agglutination Test (LAT), Enzyme-Linked Immunosorbent Assay (ELISA), and Western Blot. Meanwhile, molecular methods such as polymerase chain reaction (PCR), nested PCR, real-time PCR, loop-mediated isothermal amplification (LAMP), multiplex PCR, and PCR-restriction fragment length polymorphism (PCR-RFLP) are also utilized. Each of these methods possess its own set of advantages and disadvantages. CONCLUSIONS By summarizing the advantages and disadvantages of different diagnostic techniques, it is hoped that the epidemiology, prevention, and control of toxoplasmosis will be improved in the future through the use of appropriate technologies.
Collapse
Affiliation(s)
- Min-Ju Kim
- Health Park Co., Ltd, Seoul, 02447, Republic of Korea
| | - Soeun J Park
- Epigenix Innovation, Destin, Florida, 32541, USA
- Niceville High School, Niceville, Florida, 32578, USA
| | - Hyunwoo Park
- Health Park Co., Ltd, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Qian J, Li Y, Wang D, Song X, Tian S, Zhou J, Wang W, Guo R, Li J, Zhang X, Wang X, Fan B, Li B. Genetic characterization and phylogenetic analysis of the S genes of porcine epidemic diarrhea virus isolates from China from 2020 to 2023. Arch Virol 2024; 169:180. [PMID: 39150572 DOI: 10.1007/s00705-024-06109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023. Phylogenetic analysis showed that 10% (3/30) belonged to subtype GII-a, 6.67% (2/30) were categorized as subtype GII-b, 66.67% (20/30) were categorized as subtype GII-c, and 16.66% (5/30) were clustered with the S-INDEL strains. Amino acid sequence alignments showed that, when compared to strains of other subtypes, the GII-c strains had two characteristic amino acid substitutions (N139D and I289M). Five S-INDEL subtype strains had a single amino acid deletion (139N) and four amino acid substitutions (N118G, T137S, A138S, and D141G). Recombination analysis allowed six putative recombination events to be identified, one involving recombination between GII-c strains, two involving GII-c and GII-b strains, two involving GII-c and GI-a strains, and one involving GII-a and GI-b strains. These results suggest that recombination between PEDV strains has been common and complex in recent years and is one of the main reasons for the continuous variation of PEDV strains.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiali Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Yupeng Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Shuo Tian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
| | - Xianwei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baochao Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Bin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhong-ling Street, Nanjing, 210014, China.
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
3
|
Ayub F, Ahmed H, Sohail T, Shahzad K, Celik F, Wang X, Simsek S, Cao J. Letter to the editor of Heliyon re: Bioinformatics-based prediction and screening of immunogenic epitopes of Toxoplasma gondii rhoptry proteins 7, 21 and 22 as candidate vaccine target. Heliyon 2024; 10:e32221. [PMID: 39113981 PMCID: PMC11303993 DOI: 10.1016/j.heliyon.2024.e32221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Fariha Ayub
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| | - Tehreem Sohail
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| | - Khurram Shahzad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Xu Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Jeske R, Becker N, Kroeller L, Mentzer AJ, Brenner N, Guy E, Waterboer T, Butt J. Advancing Toxoplasma gondii multiplex serology. Microbiol Spectr 2024; 12:e0361823. [PMID: 38385741 PMCID: PMC10986549 DOI: 10.1128/spectrum.03618-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Toxoplasma gondii is a highly prevalent pathogen causing zoonotic infections with significant public health implications. Yet, our understanding of long-term consequences, associated risk factors, and the potential role of co-infections is still limited. Seroepidemiological studies are a valuable approach to address open questions and enhance our insights into T. gondii across human populations. Here, we present substantial advancements to our previously developed T. gondii multiplex serology assay, which is based on the immunodominant antigens SAG1 and P22. While our previous bead-based assay quantified antibody levels against multiple targets in a high-throughput fashion requiring only a small sample volume, impaired assay characteristics emerged in sample dilutions beyond 1:100 and when being transferred to magnetic beads. Both are now critical for inclusion in large-scale seroprevalence studies. Using the truncated versions, SAG1D1 and P22trunc, significantly enhanced signal-to-noise ratios were achieved with almost perfect concordance with the gold-standard Sabin-Feldman dye test. In sample dilutions of 1:100, the diagnostic accuracy of SAG1D1 and P22trunc reached sensitivities (true positive rates) of 98% and 94% and specificities (true negative rates) of 93% and 95%, respectively. Importantly, performance metrics were reproducible in a 1:1,000 sample dilution, using both magnetic and nonmagnetic beads. Thresholds for seropositivity were derived from finite mixture models and performed equally well as thresholds by receiver operating characteristic analysis. Our improved multiplex serology assay is therefore able to generate robust and reproducible performance metrics under various assay conditions. Inclusion of T. gondii antibody measurements with other pathogens, in multiplex serology panels will allow for large-scale seroepidemiological research. IMPORTANCE Toxoplasma gondii is a pathogen of significant public health concern due to its widespread prevalence and zoonotic potential. However, our understanding of key aspects, such as risk factors for infection and disease, potential outcomes, and their trends, remains limited. Seroepidemiological studies in large cohorts are invaluable for addressing these questions but remain scarce. Our revised multiplex serology assay equips researchers with a powerful tool capable of delivering T. gondii serum antibody measurements with high sensitivity and specificity under diverse assay conditions. This advancement paves the way for the integration of T. gondii antibody measurements into multi-pathogen multiplex serology panels, promising valuable insights into public health and pathogen interactions.
Collapse
Affiliation(s)
- Rima Jeske
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nico Becker
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Lea Kroeller
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward Guy
- Toxoplasma Reference Unit, Public Health Wales Microbiology, Swansea, United Kingdom
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Li X, Yuan W, He T, Guo R, Du X, He Y, Li X, El-Ashram S, Al-Olayan EM, Yang N, Sang X. Boosting Mouse Defense against Lethal Toxoplasma gondii Infection with Full-Length and Soluble SAG1 Recombinant Protein. Vaccines (Basel) 2023; 11:1678. [PMID: 38006011 PMCID: PMC10675489 DOI: 10.3390/vaccines11111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Toxoplasmosis is a major worldwide protozoan zoonosis. The surface antigen 1 (SAG1) of Toxoplasma gondii (T. gondii) has always been recognized as an ideal vaccine candidate antigen. However, the intact and soluble SAG1 protein is usually difficult to acquire in vitro, which is unfavorable for employing the recombinant protein as a vaccine candidate antigen. In the present study, we obtained the full-length SAG1 recombinant protein in soluble form by Escherichia coli Transetta (DE3) cells under optimized expression conditions. The immunogenicity and protective ability of this recombinant protein against T. gondii acute infection were evaluated in a mouse model. Monitoring changes in serum antibody levels and types, the presence of cytokines, and the rate of lymphocyte proliferation in vaccinated mice were used to assess humoral and cellular immune responses. Additional assessments were performed to determine the protective potency of the recombinant protein in combating T. gondii RH tachyzoites. It was found that the titers of both IgG2a and IgG2b were considerably greater in the immunized mice compared to the titers of IgG1 and IgG3. The levels of Th1-type cytokines (IFN-γ, IL-12p70, IL-2, and TNF-α) and Th2-type cytokines (IL-10) significantly increased when splenocytes from immunological group mice were treated with T. gondii lysate antigen. Compared to the control group, a recombinant protein substantially increased the longevity of infected mice, with an average death time prolonged by 14.50 ± 0.34 days (p < 0.0001). These findings suggest that the full-length and soluble SAG1 recombinant protein produced potent immune responses in mice and could be a preferred subunit vaccine candidate for T. gondii, offering a feasible option for vaccination against acute toxoplasmosis.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Yuan
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting He
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiying Guo
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiuxian Du
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanhong He
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuan Li
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Ebtesam M. Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China; (X.L.); (W.Y.); (T.H.); (R.G.); (X.D.); (Y.H.); (X.L.)
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Zhang Y, Li D, Shen Y, Li S, Lu S, Zheng B. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol 2023; 14:1161507. [PMID: 37122740 PMCID: PMC10140528 DOI: 10.3389/fimmu.2023.1161507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Toxoplasma gondii, a specialized intracellular parasite, causes a widespread zoonotic disease and is a severe threat to social and economic development. There is a lack of effective drugs and vaccines against T. gondii infection. Recently, mRNA vaccines have been rapidly developed, and their packaging materials and technologies are well established. In this study, TGGT1_216200 (TG_200), a novel molecule from T. gondii, was identified using bioinformatic screening analysis. TG_200 was purified and encapsulated with a lipid nanoparticle (LNP) to produce the TG_200 mRNA-LNP vaccine. The immune protection provided by the new vaccine and its mechanisms after immunizing BABL/C mice via intramuscular injection were investigated. There was a strong immune response when mice were vaccinated with TG_200 mRNA-LNP. Elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), and a higher IgG2a-to-IgG1 ratio was observed. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ), IL-4, and IL-10 were also elevated. The result showed that the vaccine induced a mixture of Th1 and Th2 cells, and Th1-dominated humoral immune response. Significantly increased antigen-specific splenocyte proliferation was induced by TG_200 mRNA-LNP immunization. The vaccine could also induce T. gondii-specific cytotoxic T lymphocytes (CTLs). The expression levels of interferon regulatory factor 8 (IRF8), T-Box 21 (T-bet), and nuclear factor kappa B (NF-κB) were significantly elevated after TG_200 mRNA-LNP immunization. The levels of CD83, CD86, MHC-I, MHC-II, CD8, and CD4 molecules were also higher. The results indicated that TG_200 mRNA-LNP produced specific cellular and humoral immune responses. Most importantly, TG_200 mRNA-LNP immunized mice survived significantly longer (19.27 ± 3.438 days) than the control mice, which died within eight days after T. gondii challenge (P< 0.001). The protective effect of adoptive transfer was also assessed, and mice receiving serum and splenocytes from mice immunized with TG_200 mRNA-LNP showed improved survival rates of 9.70 ± 1.64 days and, 13.40 ± 2.32 days, respectively (P< 0.001). The results suggested that TG_200 mRNA-LNP is a safe and promising vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| | - Bin Zheng
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| |
Collapse
|
7
|
Song PX, Yao SH, Yao Y, Zhou J, Li QF, Cao YH, He SY. Epitope Analysis and Efficacy Evaluation of Phosphatase 2C (PP2C) DNA Vaccine Against Toxoplasma gondii Infection. J Parasitol 2021; 106:513-521. [PMID: 32791522 DOI: 10.1645/18-210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma gondii infects almost all warm-blooded animals and negatively affects the health of a wide range of these animals, including humans. Protein phosphatase 2C (PP2C) is a T. gondii protein secreted by rhoptry organelles during host cell invasion. However, very little is known about whether this protein can induce protective immunity against T. gondii. In this study, bioinformatics analysis of PP2C revealed some useful information in the context of anti-toxoplasmosis treatments and vaccine research. In addition, the PP2C gene was amplified, and a eukaryotic expression vector (pEGFP-PP2C) was successfully constructed to express PP2C. Finally, the constructed pEGFP-PP2C was injected into mice to evaluate whether it could induce immunoprotection. Compared with the control groups, we found that immunizations with the pEGFP-PP2C plasmid could elicit specific IgG antibodies and cytokines against T. gondii infection. The survival of mice immunized with the pEGFP-PP2C plasmid was significantly prolonged compared with that of the control group mice. Based on the ability of pEGFP-PP2C to induce specific immune responses against T. gondii, we propose that PP2C merits consideration as a potential vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- P X Song
- Department of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000, People's Republic of China.,Department of Parasitology, Shandong University School of Basic Medicine, Jinan, Shandong 250012, People's Republic of China
| | - S H Yao
- Department of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000, People's Republic of China
| | - Y Yao
- Department of Medical Test, Shandong Medical College, Linyi, Shandong 276000, People's Republic of China
| | - J Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Q F Li
- Department of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000, People's Republic of China
| | - Y H Cao
- Department of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000, People's Republic of China
| | - S Y He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
8
|
Karimi M, Seyyed Tabaei SJ, Ranjbar MM, Fathi F, Jalili A, zamini G, Javadi Mamaghani A, Nazari J, Roshani D, Bagherani N, Khademerfan MB. Construction of A Synthetic Gene Encoding the Multi-Epitope of Toxoplasma gondii and Demonstration of the Relevant Recombinant Protein Production: A Vaccine Candidate. Galen Med J 2020; 9:e1708. [PMID: 34466573 PMCID: PMC8343506 DOI: 10.31661/gmj.v9i0.1708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/06/2019] [Accepted: 11/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is a widely-distributed parasite all over the world whose attributed severe afflicting complications in human necessitate the development of serodiagnostic tests and vaccines for it. Immunological responses to monovalent vaccines and the application of diagnostic reagents including single antigens are not optimally effective. Bioinformatics approaches were used to introduce these epitopes, predict their immunogenicity and preliminarily evaluate their potential as an effective DNA vaccine and for serodiagnostic goals. MATERIALS AND METHODS A 3D structure of proteins was predicted by I-TASSER server, and linear and conformational B cell and T cell epitopes were predicted using the online servers. Then, the predicted epitopes were constructed and called Toxoeb, and their expression in the prokaryotic and eukaryotic cells was demonstrated using SDS-PAGE. In the next step, Western blotting with pooled sera of mice infected with T. gondii was done. RESULTS The current in silico analysis revealed that the B cell epitopes with high immunogenicity for GRA4 protein were located in the residues 34-71, and 230-266, for GRA14 in 308-387, for SAG1 in 182-195, 261-278, and for GRA7 in residues 101-120, 160-176. The T cell epitopes were selected in overlapping regions with the B cell epitopes. The immunogenic region for GRA4 are in the residues 245-253, 50-58, and 40-54, for GRA14 in 307-315, 351-359, and 308- 322, for SAG1 261-269, and 259-267, and for GRA7 in the residues 103-112, and 167-175. The results of the western blotting showed that the expressed protein had immunogenicity. CONCLUSION Our constructed multi-epitope of T. gondii could be considered as a candidate for diagnostic and vaccination purposes.
Collapse
Affiliation(s)
- Maryam Karimi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ghasem zamini
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Science
| | - Amirreza Javadi Mamaghani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nazari
- Medical Department, Arak University of Medical Science, Arak, Iran
| | - Daem Roshani
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nooshin Bagherani
- Department of Molecular Medicine, School of Advanced Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Khademerfan
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Science
| |
Collapse
|
9
|
Singh G, Pritam M, Banerjee M, Singh AK, Singh SP. Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: A contemporary approach. Comput Biol Chem 2020; 86:107259. [PMID: 32339913 DOI: 10.1016/j.compbiolchem.2020.107259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani is a fatal parasitic disease affecting primarily the poor population in endemic countries. Increasing number of deaths as well as resistant to existing drugs necessitates the development of an effective vaccine for successful treatment of VL. The present study employed a combinatorial approach for designing monomer vaccine construct against L. donovani by applying forecasted B- and T- cell epitopes from 4 genome derived antigenic proteins having secretory signal peptides and glycophosphatidylinositol (GPI) anchors with ≤ 1 transmembrane helix. The forecasted population coverage of chosen T cell epitope ensemble (combined HLA class I and II) cover 99.14 % of world-wide human population. The predicted 3D structure of vaccine constructs (VC1/VC2) were modeled using homology modeling approach and docked to innate immune receptors TLR-2 and TLR-4 with respective docking energies -1231.4/-910.3 and -1119.4/-1476 kcal/mol. Overall, the aforementioned designed vaccine constructs were found appropriate for including in self-assembly protein nanoparticles (SAPN) for further study in developing cutting-edge precision vaccine against VL in short duration with cost-effective manner.
Collapse
Affiliation(s)
- Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| | - Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| | - Monisha Banerjee
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| | - Akhilesh Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India; Department of Biotechnology, Mahatma Gandhi Central University, Bihar, 845401, India.
| | - Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India; Department of Biotechnology, Mahatma Gandhi Central University, Bihar, 845401, India.
| |
Collapse
|
10
|
Javadi Mamaghani A, Fathollahi A, Spotin A, Ranjbar MM, Barati M, Aghamolaie S, Karimi M, Taghipour N, Ashrafi M, Tabaei SJS. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: A review. Microb Pathog 2019; 137:103788. [DOI: 10.1016/j.micpath.2019.103788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
|
11
|
Sánchez-López EF, Corigliano MG, Albarracín RM, Sander VA, Legarralde A, Bengoa-Luoni SA, Clemente M. Plant Hsp90 is a novel adjuvant that elicits a strong humoral and cellular immune response against B- and T-cell epitopes of a Toxoplasma gondii SAG1 peptide. Parasit Vectors 2019; 12:140. [PMID: 30909938 PMCID: PMC6434815 DOI: 10.1186/s13071-019-3362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The 90-kDa heat-shock protein (Hsp90) from Nicotiana benthamiana (NbHsp90.3) is a promising adjuvant, especially for those vaccines that require a T cell-mediated immune response. Toxoplasma gondii SAG1 is considered one of the most important antigens for the development of effective subunit vaccines. Some epitopes located in the SAG1 C-terminus region have showed a strong humoral and cellular immune response. In the present study, we aimed to assess the efficacy of NbHsp90.3 as carrier/adjuvant of SAG1-derived peptide (SAG1HC) in a T. gondii infection murine model. METHODS In the present study, C57BL/6 mice were intraperitoneal immunized with the NbHsp90.3-SAG1HC fusion protein (NbHsp90.3-SAG1HC group), mature SAG1 (SAG1m group), NbHsp90.3 (NbHsp90.3 group) or PBS buffer 1× (PBS group). The levels of IgG antibodies and the cytokine profile were determined by ELISA. Two weeks after the last immunization, all mice were orally challenged with 20 cysts of T. gondii Me49 strain and the number of brain cysts was determined. In addition, both humoral and cellular immune responses were also evaluated during the acute and chronic phase of T. gondii infection by ELISA. RESULTS The characterization of the immune response generated after vaccination with NbHsp90.3 as an adjuvant showed that NbHsp90.3-SAG1HC-immunized mice produced antibodies that were able to recognize not only rSAG1m but also the native SAG1 present in the total lysate antigen extract (SAG1TLA) from T. gondii tachyzoites, while control groups did not. Furthermore, anti-rSAG1m IgG2a/2b antibodies were significantly induced. In addition, only the spleen cell cultures from NbHsp90.3-SAG1HC-immunized mice showed a significantly increased production of IFN-γ. During the chronic phase of T. gondii infection, the antibodies generated by the infection were unable to detect the recombinant protein, but they did react with TLA extract. In addition, splenocytes from all groups showed a high production of IFN-γ when stimulated with rGRA4, but only those from NbHsp90.3-SAG1HC group stimulated with rSAG1m showed high production of IFN-γ. Finally, NbHsp90.3-SAG1HC-immunized mice exhibited a significant reduction in the cyst load (56%) against T. gondii infection. CONCLUSIONS We demonstrated that NbHsp90.3 enhances the humoral and cell-mediated immune response through a Th1 type cytokine production. Mice vaccinated with NbHsp90.3-SAG1HC exhibited a partial protection against T. gondii infection and it was correlated with the induction of memory immune response. We developed and validated a vaccine formulation which, to our knowledge, for the first time includes the NbHsp90.3 protein covalently fused to a peptide from T. gondii SAG1 protein that contains T- and B-cell epitopes.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Mariana G. Corigliano
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Romina M. Albarracín
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Valeria A. Sander
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Ariel Legarralde
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Sofía A. Bengoa-Luoni
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| |
Collapse
|
12
|
Joshi S, Yadav NK, Rawat K, Kumar V, Ali R, Sahasrabuddhe AA, Siddiqi MI, Haq W, Sundar S, Dube A. Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani. Front Immunol 2019; 10:288. [PMID: 30873164 PMCID: PMC6403406 DOI: 10.3389/fimmu.2019.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that Leishmania-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins viz. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9–97.1 kDa) of Leishmania (Leishmania) donovani promastigote, in treated Leishmania patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against Leishmania challenge which is indicative of their candidature as potential vaccine candidates.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Narendra Kumar Yadav
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Rafat Ali
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Amogh Anant Sahasrabuddhe
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
13
|
Wang Y, Wang G, Cai JP. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:431-7. [PMID: 27658594 PMCID: PMC5040083 DOI: 10.3347/kjp.2016.54.4.431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 11/26/2015] [Indexed: 01/18/2023]
Abstract
The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jian Ping Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
14
|
Dard C, Fricker-Hidalgo H, Brenier-Pinchart MP, Pelloux H. Relevance of and New Developments in Serology for Toxoplasmosis. Trends Parasitol 2016; 32:492-506. [PMID: 27167666 DOI: 10.1016/j.pt.2016.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/26/2022]
Abstract
Toxoplasmosis is a widespread parasitic disease caused by the intracellular parasite Toxoplasma gondii with a wide spectrum of clinical outcomes. The biological diagnosis of toxoplasmosis is often difficult and of paramount importance because clinical features are not sufficient to discriminate between toxoplasmosis and other illnesses. Serological tests are the most widely used biological tools for the diagnosis of toxoplasmosis worldwide. This review focuses on the crucial role of serology in providing answers to the most important questions related to the epidemiology and diagnosis of toxoplasmosis in human pathology. Notwithstanding their undeniable importance, serological tools need to be continuously improved and the interpretation of the ensuing results remains complex in many circumstances.
Collapse
Affiliation(s)
- Céline Dard
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.
| | - Hélène Fricker-Hidalgo
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France
| | - Marie-Pierre Brenier-Pinchart
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Hervé Pelloux
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 2015; 115:459-68. [PMID: 26581372 DOI: 10.1007/s00436-015-4824-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite with a broad range of hosts, and it causes severe toxoplasmasis in both humans and animals. It is well known that the progression and severity of a disease depend on the immunological status of the host. Immunological studies on antigens indicate that antigens do not exert their functions through the entire protein molecule, but instead, specific epitopes are responsible for the immune response. Protein antigens not only contain epitope structures used by B, T, cytotoxic T lymphocyte (CTL), and NK cells to mediate immunological responses but can also contain structures that are unfavorable for protective immunity. Therefore, the study of antigenic epitopes from T. gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology but it also plays a significant role in the development of new diagnostic reagents and vaccines. In this review, we summarized the immune mechanisms induced by antigen epitopes and the latest advances in identifying T. gondii antigen epitopes. Particular attention was paid to the potential clinical usefulness of epitopes in this context. Through a critical analysis of the current state of knowledge, we elucidated the latest data concerning the biological effects of epitopes and the immune results aimed at the development of future epitope-based applications, such as vaccines and diagnostic reagents.
Collapse
|
16
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. Design and evaluation of a recombinant multi-epitope antigen for serodiagnosis of Toxoplasma gondii infection in humans. Parasit Vectors 2015; 8:315. [PMID: 26062975 PMCID: PMC4465724 DOI: 10.1186/s13071-015-0932-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens. Findings To accomplish our goals, a single synthetic gene of approximately 456 bp, which encodes potential epitopes of T. gondii antigens, was successfully constructed using gene assembly PCR. The constructed gene was cloned into a pET32a expression vector and transformed into BL21 E. coli. The entire protein was successfully expressed and purified. Subsequently, the preliminary diagnostic performance of expressed protein was evaluated by developing IgG enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using human sera. The results showed 100 % sensitivity and specificity. Conclusion A purified protein expressing multi-immunodominant epitopes of T. gondii was generated. Further studies are required to evaluate the immunogenicity in animal models and to verify the immuno-reactivity of USM.TOXO1 as a diagnostic antigen.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Lu G, Zhou A, Meng M, Wang L, Han Y, Guo J, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Alpha-galactosylceramide enhances protective immunity induced by DNA vaccine of the SAG5D gene of Toxoplasma gondii. BMC Infect Dis 2014; 14:3862. [PMID: 25527277 PMCID: PMC4312432 DOI: 10.1186/s12879-014-0706-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/11/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Toxoplasmosis caused by the intracellular parasite Toxoplasma gondii (T. gondii) is a global epidemic parasitic disease. DNA vaccines play an important role in preventing the spread of toxoplasmosis. SAG family genes encoding particular surface proteins of T. gondii are the best candidates of DNA vaccine. As a member of SAG family genes, SAG5 gene has been proved to have better antigenic than SAG1. In addition, alpha-Galactosylceramide (α-GalCer) was used to be an adjuvant in malaria vaccine and received positive results. In this study, the effect of the DNA vaccine enhanced by α-GalCer was evaluated by immunizing BALB/c mice. METHODS In the present study, SAG5D gene of T. gondii was cloned, sequenced, and biologically characterized. BALB/c mice were randomly divided into five groups, including three experimental groups (pEGFP-C1-SAG5D, α-GalCer and α-GalCer/pEGFP-C1-SAG5D) and two control groups (PBS and pEGFP-C1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine productions in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally with 1 × 10(4) tachyzoites of T. gondii and the survival time of mice was recorded. RESULTS A significant level of increase of IgG response against the soluble tachyzoite antigens (STAg) was detected by ELISA in experimental group. It revealed relatively high level of IFN-γ production by the spleen cells. There were higher productions of interleukin-4 (IL-4) in α-GalCer treated groups compared to control groups. Challenge experiment showed a longer survival period (11 days compared with 5 days in control) in SAG5D DNA vaccinated mice was found after a lethal challenge with T. gondii RH strain. CONCLUSIONS The present study suggested that T. gondii SAG5D was a novel and positive DNA vaccine candidate against toxoplasmosis. In addition, the adjuvant (α-GalCer) enhanced the body's cellular immune response and prolonged the survival time of mice after challenge.
Collapse
Affiliation(s)
- Gang Lu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, Jinan, Shandong Province, 250021, Peoples Republic of China.
| | - Min Meng
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Lin Wang
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Yali Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Jingjing Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Huaiyu Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Hua Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Qunli Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, Peoples Republic of China.
| | - Shenyi He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, Peoples Republic of China.
| |
Collapse
|
18
|
Wang Y, Wang G, Ou J, Yin H, Zhang D. Analyzing and identifying novel B cell epitopes within Toxoplasma gondii GRA4. Parasit Vectors 2014; 7:474. [PMID: 25301141 PMCID: PMC4195951 DOI: 10.1186/s13071-014-0474-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Background The identification of specific epitopes targeted by the host antibody response is important for understanding the natural response to infection and for the development of epitope-based marker vaccines and diagnostic tools for toxoplasmosis. In this study, Toxoplasma gondii GRA4 epitopes were identified using software-based prediction and a synthetic peptide technique. Methods The complete GRA4 gene sequence was obtained from T. gondii of the Gansu Jingtai strain of tachyzoites. The potential B cell epitopes of GRA4 was predicted using the PROTEAN subroutine in the DNASTAR software package. The peptides with good hydrophilicity, high accessibility, high flexibility and strong antigenicity were chemically synthesized and assessed by ELISA using pig sera from different time points after infection. Results The potential B cell epitopes of GRA4 predicted by bioinformatics tools focused on six regions of GRA4, 52–77 aa, 93–112 aa, 127–157 aa, 178–201 aa, 223–252 aa and 314–333 aa. Eleven shorter peptides from the six regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the eleven peptides (amino acids 62–77, 233–252 and 314–333) tested were recognized by all sera. Conclusions We precisely located the T. gondii GRA4 epitopes using pig sera collected at different time points after infection. The identified epitopes may be useful for additional studies of epitope-based vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jiangtao Ou
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Road, Yancheng, 224051, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Delin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
19
|
Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front Immunol 2014; 5:380. [PMID: 25202307 PMCID: PMC4141159 DOI: 10.3389/fimmu.2014.00380] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | - Keerti Rawat
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | | | - Vikash Kumar
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| |
Collapse
|
20
|
Research progress on surface antigen 1 (SAG1) of Toxoplasma gondii. Parasit Vectors 2014; 7:180. [PMID: 24726014 PMCID: PMC3989796 DOI: 10.1186/1756-3305-7-180] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasitic protozoan that has a wide host range and causes a zoonotic parasitosis called toxoplasmosis. This infection causes significant morbidity, costs for care and loss of productivity and suffering. The most effective measures to minimize this parasite’s harm to patients are prompt diagnosis and treatment and preventing infection. A parasite surface antigen, SAG1, is considered an important antigen for the development of effective diagnostic tests or subunit vaccines. This review covers several aspects of this antigen, including its gene structure, contribution to host invasion, mechanisms of the immune responses and its applications for diagnosis and vaccine development. This significant progress on this antigen provides foundations for further development of more effective and precise approaches to diagnose toxoplasmosis in the clinic, and also have important implications for exploring novel measures to control toxoplasmosis in the near future.
Collapse
|
21
|
Cong H, Yuan Q, Zhao Q, Zhao L, Yin H, Zhou H, He S, Wang Z. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice. Parasit Vectors 2014; 7:145. [PMID: 24685150 PMCID: PMC4229990 DOI: 10.1186/1756-3305-7-145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 03/21/2014] [Indexed: 12/03/2022] Open
Abstract
Background Toxoplasmosis is an important zoonosis, being a cause of congenital disease and abortion in animals and humans. DNA vaccination as a promising vaccine remains a challenge for an improved delivery system. Methods In this study, attenuated Salmonella typhimurium BRD509 was used to deliver a DNA vaccine encoding several epitopes, derived from the tachyzoite proteins SAG1, GRA1, ROP2, GRA4 and bradyzoite proteins SAG2C, SAG2X of Toxoplasma gondii and A2/B subunit of cholera toxin. The recombinant plasmids were electroporated into attenuated Salmonella typhimurium. Humoral and cellular immune responses were evaluated for BALB/c mice administered with this attenuated recombinant Salmonella vaccine via the oral and nasal route or by intramuscular injection with DNA plasmid directly. Results High IgG levels were present in the mice immunized intramuscularly, while IgA levels were higher in the oral and nasal immunization groups. Furthermore, cellular immunity was activated in oral immunization groups with 60% survival rate following challenge with high virulent RH strain. Conclusions The results from this study indicate that a DNA vaccine encoding multi-epitopes of T. gondii delivered by attenuated Salmonella is promising.
Collapse
Affiliation(s)
- Hua Cong
- Department of human parasitology, Medical school, Shandong University, No,44 Wenhuaxi Road, Jinan, Shandong 250012, P, R, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Y, Wang G, Zhang D, Yin H, Wang M. Identification of novel B cell epitopes within Toxoplasma gondii GRA1. Exp Parasitol 2013; 135:606-10. [PMID: 24090568 DOI: 10.1016/j.exppara.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 11/28/2022]
Abstract
Newly synthesized epitopes are one of the most promising antigens for the development of diagnostic kits and peptide vaccines. Very little is known about the B cell epitopes on GRA1 of Toxoplasma gondii, which are recognized by the humoral immune response in pigs. In this study, epitopes derived from GRA1 of T. gondii were identified using synthetic peptide techniques and bioinformatics. Three (PG10, PG13 and PG18) out of the eighteen peptides tested were recognized by all pig sera from different time points after infection, and the other peptides were recognized by select sera from various time points after infection. Our data indicate that many regions of GRA1, and in particular, the regions represented by the peptides PG10, PG13 and PG18, are involved in the pig antibody response. The identification of specific epitopes targeted by the host antibody response is important both for understanding the natural response to infection and for the development of epitope-based marker vaccines and diagnostic tools for toxoplasmosis.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | | | | | | | | |
Collapse
|