1
|
Kamgang B, Acântara J, Tedjou A, Keumeni C, Yougang A, Ancia A, Bigirimana F, Clarke SE, Gil VS, Wondji C. Entomological surveys and insecticide susceptibility profile of Aedes aegypti during the dengue outbreak in Sao Tome and Principe in 2022. PLoS Negl Trop Dis 2024; 18:e0011903. [PMID: 38829904 PMCID: PMC11175431 DOI: 10.1371/journal.pntd.0011903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/13/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The first dengue outbreak in Sao Tome and Principe was reported in 2022. Entomological investigations were undertaken to establish the typology of Aedes larval habitats, the distribution of Ae. aegypti and Ae. albopictus, the related entomological risk and the susceptibility profile of Ae. aegypti to insecticides, to provide evidence to inform the outbreak response. METHODOLOGY/PRINCIPAL FINDINGS Entomological surveys were performed in all seven health districts of Sao Tome and Principe during the dry and rainy seasons in 2022. WHO tube and synergist assays using piperonyl butoxide (PBO) and diethyl maleate (DEM) were carried out, together with genotyping of F1534C/V1016I/V410L mutations in Ae. aegypti. Aedes aegypti and Ae. albopictus were found in all seven health districts of the country with high abundance of Ae. aegypti in the most urbanised district, Agua Grande. Both Aedes species bred mainly in used tyres, discarded tanks and water storage containers. In both survey periods, the Breteau (BI > 50), house (HI > 35%) and container (CI > 20%) indices were higher than the thresholds established by WHO to indicate high potential risk of dengue transmission. The Ae. aegypti sampled were susceptible to all insecticides tested except dichlorodiphenyltrichloroethane (DDT) (9.2% mortality, resistant), bendiocarb (61.4% mortality, resistant) and alpha-cypermethrin (97% mortality, probable resistant). A full recovery was observed in Ae. aegypti resistant to bendiocarb after pre-exposure to synergist PBO. Only one Ae. aegypti specimen was found carrying F1534C mutation. CONCLUSIONS/SIGNIFICANCE These findings revealed a high potential risk for dengue transmission throughout the year, with the bulk of larval breeding occurring in used tyres, water storage and discarded containers. Most of the insecticides tested remain effective to control Aedes vectors in Sao Tome, except DDT and bendiocarb. These data underline the importance of raising community awareness and implementing routine dengue vector control strategies to prevent further outbreaks in Sao Tome and Principe, and elsewhere in the subregion.
Collapse
Affiliation(s)
- Basile Kamgang
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
| | - João Acântara
- Centro Nacional de Endemias, Ministério da Saúde de São Tomé e Príncipe, Agua Grande, São Tomé e Príncipe
| | - Armel Tedjou
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
| | - Christophe Keumeni
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurelie Yougang
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
| | - Anne Ancia
- World Health Organization, Port Louis, Mauritius
| | | | - Sian E. Clarke
- Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Charles Wondji
- Centre for Research in Infectious Diseases, Department of Medical Entomology, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Anwar S, Ahmed B, Qadir MI. Arboviruses: Transmission and Host Resistance. Crit Rev Eukaryot Gene Expr 2024; 34:15-31. [PMID: 38073439 DOI: 10.1615/critreveukaryotgeneexpr.2023049820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this review, there is a complete description of the classes of arboviruses, their evolutionary process, virus characterization, disease transmission methods; it also describes about the vectors involved in transmission and their mood of transmission, both biologically as well as non-biologically and, about host, the resistance mechanism in host, and artificial methods of preventing those viral transmissions. Arboviruses transmitted to hosts by some vectors such as mosquitoes, ticks, etc. The virus replicates in the host can be prevented by some host resistance mechanisms like RNA interference (RNAi), which degrade virus RNA by its antiviral activity, insect repellents, IGRs, and PI technology.
Collapse
Affiliation(s)
- Sidra Anwar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Bilal Ahmed
- University of Science And Technology of Fujairah, UAE; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
3
|
Teshome A, Erko B, Golassa L, Yohannes G, Irish SR, Zohdy S, Dugassa S. Laboratory-based efficacy evaluation of Bacillus thuringiensis var. israelensis and temephos larvicides against larvae of Anopheles stephensi in ethiopia. Malar J 2023; 22:48. [PMID: 36759908 PMCID: PMC9912598 DOI: 10.1186/s12936-023-04475-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.
Collapse
Affiliation(s)
- Abebe Teshome
- National Malaria Elimination Programme, Ministry of Health Ethiopia, PO Box 1234, Addis Ababa, Ethiopia.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Seth R Irish
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123, Allschwil, Switzerland
| | - Sarah Zohdy
- Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, GA, USA
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
5
|
A Review of the Use of Pyriproxyfen for Controlling Aedes aegypti in Argentina. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Wood MJ, Alkhaibari AM, Butt TM. Stress-Mediated Responses of Aedes aegypti (Diptera: Culicidae) Larvae When Exposed to Metarhizium brunneum (Hypocreales: Clavicipitaceae) and Toxorhynchites brevipalpis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1732-1740. [PMID: 35938709 PMCID: PMC9473657 DOI: 10.1093/jme/tjac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Aedes aegypti mosquitoes are capable of vectoring a wide range of diseases including dengue, yellow fever, and Zika viruses, with approximately half of the worlds' population at risk from such diseases. Development of combined predator-parasite treatments for the control of larvae consistently demonstrates increased efficacy over single-agent treatments, however, the mechanism behind the interaction remains unknown. Treatments using the natural predator Toxorhynchites brevipalpis and the entomopathogenic fungus Metarhizium brunneum were applied in the laboratory against Ae. aegypti larvae as both individual and combined treatments to determine the levels of interaction between control strategies. Parallel experiments involved the removal of larvae from test arenas at set intervals during the course of the trial to record whole body caspase and phenoloxidase activities. This was measured via luminometric assay to measure larval stress factors underlying the interactions. Combined Metarhizium and Toxorhynchites treatments were seen to drastically reduce lethal times as compared to individual treatments. This was accompanied by increased phenoloxidase and caspase activities in combination treatments after 18 h (p < 0.001). The sharp increases in caspase and phenoloxidase activities suggest that combined treatments act to increase stress factor responses in the larvae that result in rapid mortality above that of either control agent individually. This work concludes that the underlying mechanism for increased lethality in combined parasite-predator treatments may be related to additive stress factors induced within the target host larvae.
Collapse
Affiliation(s)
| | | | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| |
Collapse
|
7
|
First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasit Vectors 2022; 15:254. [PMID: 35818063 PMCID: PMC9397858 DOI: 10.1186/s13071-022-05310-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background The development of resistance against insecticides in Aedes aegypti can lead to operational failures in control programs. Knowledge of the spatial and temporal trends of this resistance is needed to drive effective monitoring campaigns, which in turn provide data on which vector control decision-making should be based. Methods Third-stage larvae (L3) from the F1 and F2 generations of 39 Peruvian field populations of Ae. aegypti mosquitoes from established laboratory colonies were evaluated for resistance against the organophosphate insecticide temephos. The 39 populations were originally established from eggs collected in the field with ovitraps in eight departments of Peru during 2018 and 2019. Dose–response bioassays, at 11 concentrations of the insecticide, were performed following WHO recommendations. Results Of the 39 field populations of Ae. aegypti tested for resistance to temephos , 11 showed high levels of resistance (resistance ratio [RR] > 10), 16 showed moderate levels of resistance (defined as RR values between 5 and 10) and only 12 were susceptible (RR < 5). The results segregated the study populations into two geographic groups. Most of the populations in the first geographic group, the coastal region, were resistant to temephos, with three populations (AG, CR and LO) showing RR values > 20 (AG 21.5, CR 23.1, LO 39.4). The populations in the second geographic group, the Amazon jungle and the high jungle, showed moderate levels of resistance, with values ranging between 5.1 (JN) and 7.1 (PU). The exception in this geographic group was the population from PM, which showed a RR value of 28.8 to this insecticide. Conclusions The results of this study demonstrate that Ae. aegypti populations in Peru present different resistance intensities to temephos, 3 years after temephos use was discontinued. Resistance to this larvicide should continue to be monitored because it is possible that resistance to temephos could decrease in the absence of routine selection pressures. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05310-x.
Collapse
|
8
|
Silva EB, Mendonça CM, Mendonça JDA, Dias ESF, Florêncio SGL, Guedes DRD, Paiva MHS, Amaral A, Netto AM, Melo-Santos MAV. Effects of gamma radiation on the reproductive viability of Aedes aegypti and its descendants (Diptera: Culicidae). Acta Trop 2022; 228:106284. [PMID: 34922909 DOI: 10.1016/j.actatropica.2021.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
This work evaluated the genetic damage in descendants of male pupae of Aedes (Stegomyia) aegypti (Diptera: Culicidae) separately exposed to 20, 30, and 40 Gy of gamma radiation in the context of Sterile Insect Technique (SIT). Despite the transmission of the dominant lethal mutation, the employed dose levels did not promote a marked reduction in adult mosquito emergence and fertility. This study emphasized that semi-sterilizing doses < 50 Gy for SIT of Aedes aegypti are not recommended.
Collapse
Affiliation(s)
- Edvane Borges Silva
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil.
| | - Carlos Messias Mendonça
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil
| | - Jaziela de Arruda Mendonça
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil
| | | | - Sloana Giesta Lemos Florêncio
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste (CAA), Caruaru, Pernambuco, Brazil
| | - Ademir Amaral
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | |
Collapse
|
9
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
10
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
11
|
Pereira Filho AA, Pessoa GCD, Yamaguchi LF, Stanton MA, Serravite AM, Pereira RHM, Neves WS, Kato MJ. Larvicidal Activity of Essential Oils From Piper Species Against Strains of Aedes aegypti (Diptera: Culicidae) Resistant to Pyrethroids. FRONTIERS IN PLANT SCIENCE 2021; 12:685864. [PMID: 34149785 PMCID: PMC8213341 DOI: 10.3389/fpls.2021.685864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The continuous and indiscriminate use of insecticides has been responsible for the emergence of insecticide resistant vector insect populations, especially in Aedes aegypti. Thus, it is urgent to find natural insecticide compounds with novel mode of action for vector control. The goal of this study was to investigate the larvicidal activity of essential oils (EOs) from Piper species against A. aegypti characterized as resistant and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species were submitted to the evaluation of larvicidal activity in populations of A. aegypti in agreement with the (World Health Organization, 2005) guidelines. The resistance of the strains characterized by determining the lethal concentrations (LCs) with the insecticide deltamethrin (positive control). The major compounds of the EOs from Piper species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum, P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to 90% lethality at 100 ppm (concentration for screening). The activities of the EOs from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds identified in the most active EO were available commercially and included β-Asarone, (E)-Anethole, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids [Dillapiole, (E)-Anethole and β-Asarone] and monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene) showed larvicidal activity with mortality between 90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene (E)-β-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P. crassinervium, did not show activity on the three populations of A. aegypti larvae at a concentration of 100 ppm. These results indicate that Piper's EOs should be further evaluated as a potential larvicide, against strains resistant to currently used pesticides, and the identification of phenylpropanoids and monoterpenes as the active compounds open the possibility to study their mechanism of action.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grasielle C. D‘Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lydia F. Yamaguchi
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Alves Stanton
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Artur M. Serravite
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael H. M. Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Welber S. Neves
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Empey MA, Lefebvre-Raine M, Gutierrez-Villagomez JM, Langlois VS, Trudeau VL. A Review of the Effects of the Biopesticides Bacillus thuringiensis Serotypes israelensis (Bti) and kurstaki (Btk) in Amphibians. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:789-800. [PMID: 33876257 DOI: 10.1007/s00244-021-00842-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are important in agriculture, to reduce human disease, and to decrease the nuisance of biting insects. Despite this, many have the potential for environmental impacts and toxicity in nontarget organisms. We reviewed data on the effects of insecticides based on toxins from Bacillus thuringiensis var. israelensis (Bti) and Bacillus thuringiensis var. kurstaki (Btk) on amphibians. The few peer-reviewed publications that are available for Bti provide variable conclusions, ranging from few observable effects to evidence of acute toxicity at high concentrations. We briefly highlight the current controversies and identify key areas for future investigation.
Collapse
Affiliation(s)
| | - Molly Lefebvre-Raine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, Canada
| | | | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Rossi da Silva K, Ribeiro da Silva W, Silva BP, Arcos AN, da Silva Ferreira FA, Soares-da-Silva J, Pontes GO, Roque RA, Tadei WP, Navarro-Silva MA, Zequi JAC. New traps for the capture of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) (Diptera: Culicidae) eggs and adults. PLoS Negl Trop Dis 2021; 15:e0008813. [PMID: 33861744 PMCID: PMC8081340 DOI: 10.1371/journal.pntd.0008813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/28/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
The control of arboviruses carried by Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) can be performed with tools that monitor and reduce the circulation of these vectors. Therefore, the efficiency of four types of traps in capturing A. aegypti and A. albopictus eggs and adults, with the biological product Vectobac WG, was evaluated in the field. For this, 20 traps were installed in two locations, which were in the South (Londrina, Paraná) and North (Manaus, Amazonas) Regions of Brazil, from March to April 2017 and January to February 2018, respectively. The UELtrap-E (standard trap) and UELtrap-EA traps captured A. aegypti and A. albopictus eggs: 1703/1866 eggs in Londrina, and 10268/2149 eggs in Manaus, respectively, and presented high ovitraps positivity index (OPI) values (averages: 100%/100% in Londrina, and 100%/96% in Manaus, respectively); and high egg density index (EDI) values (averages: 68/75 in Londrina, and 411/89 in Manaus, respectively), so they had statistically superior efficiency to that of the CRtrap-E and CRtrap-EA traps in both regions, that captured less eggs and adults: 96/69 eggs in Londrina, and 1091/510 eggs in Manaus, respectively. Also presented lower OPI values (averages: 28%/4% in Londrina, and 88%/60% in Manaus, respectively); and lower EDI values (averages: 10.5/9 in Londrina, and 47/30 in Manaus, respectively). The capture ratios of Aedes adults in the UELtrap-EA and CRtrap-EA traps in Londrina and Manaus were 53.3%/29.5% and 0%/9.8%, respectively. UELtrap-EA can be adopted as efficient tool for Aedes monitoring due to their high sensitivity, low cost and ease of use.
Collapse
Affiliation(s)
- Karina Rossi da Silva
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| | - William Ribeiro da Silva
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
| | - Bianca Piraccini Silva
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| | - Adriano Nobre Arcos
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Francisco Augusto da Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
| | - Joelma Soares-da-Silva
- Curso de Ciências Naturais, Campus VII, Universidade Federal do Maranhão (UFMA), Codó, Maranhão, Brasil
| | - Grafe Oliveira Pontes
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Rosemary Aparecida Roque
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Wanderli Pedro Tadei
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Mário Antonio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil
| | - João Antonio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| |
Collapse
|
14
|
Liu T, Xie YG, Lin F, Xie LH, Yang WQ, Su XH, Ou CQ, Luo L, Xiao Q, Gan L, Chen XG. A long-lasting biological larvicide against the dengue vector mosquito Aedes albopictus. PEST MANAGEMENT SCIENCE 2021; 77:741-748. [PMID: 32869454 DOI: 10.1002/ps.6069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Aedes albopictus is the primary vector of mosquito-borne diseases, including dengue and chikungunya, in China. The management of vector mosquitoes is the primary strategy for the control of such infectious diseases. The gravid Ae. albopictus prefers to skip-oviposit its eggs into different small water containers, and the management of these breeding places is critical for mosquito control. Bacillus thuringiensis subspecies Israelensis (Bti) is a useful biological larvicide, but the effective period of the currently available commercial product is relatively short. This study aimed to develop a long-lasting formulation of Bti to control the dengue vector mosquito Ae. albopictus. RESULTS Water-soluble polyethylene glycols and water-insoluble hexadecanol were mixed with Bti to develop the long-lasting formulation Bti-BLOCK, based on the solid dispersion technique. The controlled release of Bti-BLOCK and its effect on Ae. albopictus were assayed in the laboratory and in the field. The results showed that Bti toxins were slowly released from Bti-BLOCK into the water and maintained at an effective dose for at least 6 months. Bti-BLOCK caused high mortality during the immature stage (>90%) and achieved full inhibition during pupation (100%). The efficacy lasted at least 12 weeks in the laboratory and 6 weeks in the field. Furthermore, we confirmed an 89% reduction in Ae. albopictus density and a reduction in the R0 of dengue to a low-risk level after 6 months of open-field interventions. CONCLUSIONS We developed a long-lasting biological larvicide, Bti-BLOCK, which displayed very good efficacy in the control of the dengue vector mosquito Ae. albopictus.
Collapse
Affiliation(s)
- Tong Liu
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Gu Xie
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Lin
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Hua Xie
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Qiang Yang
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xing-Hua Su
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qi Xiao
- Guangdong Huilimin Public Health Institute CO., Ltd, Guangzhou, Guangdong, China
| | - Lu Gan
- Guangdong Huilimin Public Health Institute CO., Ltd, Guangzhou, Guangdong, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Falqueto SA, Pitaluga BF, de Sousa JR, Targanski SK, Campos MG, de Oliveira Mendes TA, da Silva GF, Silva DHS, Soares MA. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species. J Invertebr Pathol 2020; 179:107525. [PMID: 33383067 DOI: 10.1016/j.jip.2020.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Silvia Altoé Falqueto
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Bruno Faria Pitaluga
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Janaína Rosa de Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Sabrina Ketrin Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Mateus Gandra Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Dulce Helena Siqueira Silva
- Centro de Inovação em Biodiversidade e Fármacos, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Marcos Antônio Soares
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil.
| |
Collapse
|
16
|
Pires S, Alves J, Dia I, Gómez LF. Susceptibility of mosquito vectors of the city of Praia, Cabo Verde, to Temephos and Bacillus thuringiensis var israelensis. PLoS One 2020; 15:e0234242. [PMID: 32520941 PMCID: PMC7286513 DOI: 10.1371/journal.pone.0234242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Many vector-borne diseases circulate in the Republic of Cabo Verde. These include malaria during the colonization of the archipelago by the Portuguese explorers and several arboviruses such as yellow fever (now eradicated), dengue and zika. To control these vector-borne diseases, an integrated vector control program was implemented. The main targeted mosquito vectors are Aedes aegypti and Anopheles arabiensis, and in a lesser extent the potential arbovirus vector Culex pipiens s.l. The main control strategy is focused on mosquito aquatic stages using diesel oil and Temephos. This latter has been applied in Cabo Verde since 1979. Its continuous use was followed by the emergence of resistance in mosquito populations. We investigated the current susceptibility to Temephos of the three potential mosquito vectors of Cabo Verde through bioassays tests. Our results showed various degrees of susceptibility with 24h post-exposure mortality rates ranging from 43.1% to 90.9% using WHO diagnostic doses. A full susceptibility was however observed with Bacillus thurigiensis var israelensis with mortality rates from 99.6% to 100%.
Collapse
Affiliation(s)
- Sílvia Pires
- Unidade de Ciências da Natureza, da Vida e do Ambiente, Universidade Jean Piaget de Cabo Verde, Praia, Cabo Verde
| | - Joana Alves
- Instituto Nacional de Saúde Pública, Ministério da Saúde, Praia, Cabo Verde
| | - Ibrahima Dia
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Lara F. Gómez
- Unidade de Ciências da Natureza, da Vida e do Ambiente, Universidade Jean Piaget de Cabo Verde, Praia, Cabo Verde
- * E-mail:
| |
Collapse
|
17
|
Gonzalez PV, Harburguer L. Lufenuron can be transferred by gravid Aedes aegypti females to breeding sites and can affect their fertility, fecundity and blood intake capacity. Parasit Vectors 2020; 13:257. [PMID: 32414396 PMCID: PMC7227266 DOI: 10.1186/s13071-020-04130-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti (L.) is the main vector of dengue, yellow fever, Zika and chikungunya viruses. A new method for controlling this mosquito has been developed based on the possibility that wild adult mosquitoes exposed to artificial resting sites contaminated with a larvicide, can disseminate it to larval breeding sites, is named "auto-dissemination". The present study was undertaken to evaluate if a chitin synthesis inhibitor like lufenuron can be disseminated to larval breeding sites and prevent adult emergence and also if forced contact of Ae. aegypti females with treated surfaces can affect its fertility, fecundity, and blood intake capacity. METHODS Larval susceptibility to lufenuron was measured through EI50 and EI90. On the other hand, gravid females were exposed by tarsal contact to lufenuron-treated papers, we used the WHO susceptibility test kit tube to line the papers, and 1, 3 or 5 females for the transference. We also evaluated if the exposure of female mosquitoes to lufenuron-treated papers (0.4 and 1 mg a.i./cm2) has an effect on their fertility, fecundity or in the ability to feed on blood. In each assay 12-15 female mosquitoes were exposed to lufenuron for 1 h, 24 h before blood meal (BBM) or 24 h after a blood meal (ABM). RESULTS Lufenuron proved to be very active against Ae. aegypti larvae with an EI50 of 0.164 ppb and EI90 of 0.81 ppb. We also found that lufenuron can be transferred by females from treated surfaces to clean containers causing the inhibition of emergence of the larvae (between 30 and 50%). This effect was dependent on the concentration applied on the paper and the number of females added to each cage. CONCLUSIONS This study introduces an innovation by first exploring the possibility that an insect growth regulator (IGR) belonging to the group of benzoylphenyl ureas, such as lufenuron, can be transferred by gravid females to breeding sites and that at the same time can have an effect on fertility, fecundity and blood intake capacity of adult mosquitoes.
Collapse
Affiliation(s)
- Paula V. Gonzalez
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CITEDEF/CONICET), J.B. de La Salle 4397, Villa Martelli (1603), Buenos Aires, Argentina
| | - Laura Harburguer
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CITEDEF/CONICET), J.B. de La Salle 4397, Villa Martelli (1603), Buenos Aires, Argentina
| |
Collapse
|
18
|
Helvecio E, Romão TP, de Carvalho-Leandro D, de Oliveira IF, Cavalcanti AEHD, Reimer L, de Paiva Cavalcanti M, de Oliveira APS, Paiva PMG, Napoleão TH, Wallau GL, de Melo Neto OP, Melo-Santos MAV, Ayres CFJ. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104464. [PMID: 32359546 DOI: 10.1016/j.pestbp.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
The glutathione S-transferases (GSTs) are enzymes involved in several distinct biological processes. In insects, the GSTs, especially delta and epsilon classes, play a key role in the metabolism of xenobiotics used to control insect populations. Here, we investigated its potential role in temephos resistance, examining the GSTE2 gene from susceptible (RecL) and resistant (RecR) strains of the mosquito Aedes aegypti, vector for several pathogenic arboviruses. Total GST enzymatic activity and the GSTE2 gene expression profile were evaluated, with the GSTE2 cDNA and genomic loci sequenced from both strains. Recombinant GSTE2 and mutants were produced in a heterologous expression system and assayed for enzyme kinetic parameters. These proteins also had their 3D structure predicted through molecular modeling. Our results showed that RecR has a profile of total GST enzymatic activity higher than RecL, with the expression of the GSTE2 gene in resistant larvae increasing six folds. Four exclusive RecR mutations were observed (L111S, I150V, E178A and A198E), which were absent in the laboratory susceptible strains. The enzymatic activity of the recombinant GSTE2 showed different kinetic parameters, with the GSTE2 RecR showing an enhanced ability to metabolize its substrate. The I150V mutation was shown to induce significant changes in catalytic parameters and a 3D modeling of GSTE2 mapped two of the RecR changes (L111S and I150V) near the enzyme's catalytic pocket, also implying an impact on its catalytic activity. Our results reinforce a potential role for GSTE2 in the metabolic resistance phenotype while contributing to the understanding of the molecular basis for the resistance mechanism.
Collapse
Affiliation(s)
- Elisama Helvecio
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Tatiany Patrícia Romão
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil.
| | | | | | | | - Lisa Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | | | | | - Gabriel Luz Wallau
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | | | | | | |
Collapse
|
19
|
Alves GB, Melo FL, Oliveira EE, Haddi K, Costa LTM, Dias ML, Campos FS, Pereira EJG, Corrêa RFT, Ascêncio SD, Santos GR, Smagghe G, Ribeiro BM, Aguiar RWS. Comparative genomic analysis and mosquito larvicidal activity of four Bacillus thuringiensis serovar israelensis strains. Sci Rep 2020; 10:5518. [PMID: 32218451 PMCID: PMC7099026 DOI: 10.1038/s41598-020-60670-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis (Bti) is used to control insect vectors of human and animal diseases. In the present study, the toxicity of four strains of Bti, named T0124, T0131, T0137, and T0139, toward Aedes aegypti and Culex quinquefasciatus larvae was analyzed. The T0131 strain showed the highest larvicidal activity against A. aegypti (LC50 = 0.015 µg/ml) and C. quinquefasciatus larvae (LC50 = 0.035 µg/ml) when compared to the other strains. Furthermore, the genomic sequences of the four strains were obtained and compared. These Bti strains had chromosomes sizes of approximately 5.4 Mb with GC contents of ~35% and 5472–5477 putative coding regions. Three small plasmids (5.4, 6.8, and 7.6 kb) and three large plasmids (127, 235, and 359 kb) were found in the extrachromosomal content of all four strains. The SNP-based phylogeny revealed close relationship among isolates from this study and other Bti isolates, and SNPs analysis of the plasmids 127 kb did not reveal any mutations in δ-endotoxins genes. This newly acquired sequence data for these Bti strains may be useful in the search for novel insecticidal toxins to improve existing ones or develop new strategies for the biological control of important insect vectors of human and animal diseases.
Collapse
Affiliation(s)
- Giselly B Alves
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Eugenio E Oliveira
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Khalid Haddi
- Departamento de Entomologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil
| | - Lara T M Costa
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Marcelo L Dias
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Fabrício S Campos
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Eliseu J G Pereira
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Roberto F T Corrêa
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Sergio D Ascêncio
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal (Rede Bionorte), Universidade Federal do Tocantins, Palmas, TO, 77413-070, Brazil
| | - Gil R Santos
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Raimundo W S Aguiar
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil.
| |
Collapse
|
20
|
Functional Bacillus thuringiensis Cyt1Aa Is Necessary To Synergize Lysinibacillus sphaericus Binary Toxin (Bin) against Bin-Resistant and -Refractory Mosquito Species. Appl Environ Microbiol 2020; 86:AEM.02770-19. [PMID: 32005737 DOI: 10.1128/aem.02770-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
The binary (Bin) toxin from Lysinibacillus sphaericus is effective to mosquito larvae, but its utilization is threatened by the development of insect resistance. Bin toxin is composed of the BinB subunit required for binding to midgut receptors and the BinA subunit that causes toxicity after cell internalization, mediated by BinB. Culex quinquefasciatus resistance to this toxin is caused by mutations that prevent expression of Bin toxin receptors in the midgut. Previously, it was shown that the Cyt1Aa toxin from Bacillus thuringiensis subsp. israelensis restores Bin toxicity to Bin-resistant C. quinquefasciatus and to Aedes aegypti larvae, which are naturally devoid of functional Bin receptors. Our goal was to elucidate the mechanism involved in Cyt1Aa synergism with Bin in such larvae. In vivo assays showed that the mixture of Bin toxin, or its BinA subunit, with Cyt1Aa was effective to kill resistant larvae. However, no specific binding interaction between Cyt1Aa and the Bin toxin, or its subunits, was observed. The synergy between Cyt1Aa and Bin toxins is dependent on functional Cyt1Aa, as demonstrated by using the nontoxic Cyt1AaV122E mutant toxin affected in oligomerization and membrane insertion, which was unable to synergize Bin toxicity in resistant larvae. The synergism correlated with the internalization of Bin or BinA into anterior and medium midgut epithelial cells, which occurred only in larvae treated with wild-type Cyt1Aa toxin. This toxin is able to overcome failures in the binding step involving BinB receptor by allowing the internalization of Bin toxin, or its BinA subunit, into the midgut cells.IMPORTANCE One promising management strategy for mosquito control is the utilization of a mixture of L. sphaericus and B. thuringiensis subsp. israelensis insecticidal toxins. From this set, Bin and Cyt1Aa toxins synergize and display toxicity to resistant C. quinquefasciatus and to A. aegypti larvae, whose midgut cells lack Bin toxin receptors. Our data set provides evidence that functional Cyt1Aa is essential for internalization of Bin or its BinA subunit into such cells, but binding interaction between Bin and Cyt1Aa is not observed. Thus, this mechanism contrasts with that for the synergy between Cyt1Aa and the B. thuringiensis subsp. israelensis Cry toxins, where active Cyt1Aa is not necessary but a specific binding between Cry and Cyt1Aa is required. Our study established the initial molecular basis of the synergy between Bin and Cyt1Aa, and these findings enlarge our knowledge of their mode of action, which could help to develop improved strategies to cope with insect resistance.
Collapse
|
21
|
Derua YA, Kahindi SC, Mosha FW, Kweka EJ, Atieli HE, Zhou G, Lee MC, Githeko AK, Yan G. Susceptibility of Anopheles gambiae complex mosquitoes to microbial larvicides in diverse ecological settings in western Kenya. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:220-227. [PMID: 30628101 PMCID: PMC6995353 DOI: 10.1111/mve.12353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/20/2018] [Accepted: 11/01/2018] [Indexed: 05/26/2023]
Abstract
The microbial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (Bacillales: Bacillaceae) are well known for their efficacy and safety in mosquito control. In order to assess their potential value in future mosquito control strategies in western Kenya, the current study tested the susceptibility of five populations of Anopheles gambiae complex mosquitoes (Diptera: Culicidae), collected from five diverse ecological sites in this area, to Bti and Bs under laboratory conditions. In each population, bioassays were conducted with eight concentrations of larvicide (Bti/Bs) in four replicates and were repeated on three separate days. Larval mortality was recorded at 24 h or 48 h after the application of larvicide and subjected to probit analysis. A total of 2400 An. gambiae complex larvae from each population were tested for their susceptibility to Bti and Bs. The mean (± standard error of the mean, SEM) lethal concentration values of Bti required to achieve 50% and 95% larval mortality (LC50 and LC95 ) across the five populations were 0.062 (± 0.005) mg/L and 0.797 (± 0.087) mg/L, respectively. Corresponding mean (± SEM) values for Bs were 0.058 (± 0.005) mg/L and 0.451 (± 0.053) mg/L, respectively. Statistical analysis indicated that the five populations of An. gambiae complex mosquitoes tested were fully susceptible to Bti and Bs, and there was no significant variation in susceptibility among the tested populations.
Collapse
Affiliation(s)
- Y A Derua
- Department of Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tumaini University Makumira, Moshi, Tanzania
- Department of Research Programmes, National Institute for Medical Research, Amani Research Centre, Tanga, Tanzania
| | - S C Kahindi
- Department of Zoology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - F W Mosha
- Department of Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tumaini University Makumira, Moshi, Tanzania
| | - E J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - H E Atieli
- Department of Public Health, Maseno University, Kisumu, Kenya
| | - G Zhou
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| | - M-C Lee
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| | - A K Githeko
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - G Yan
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| |
Collapse
|
22
|
Ayres CFJ, Guedes DRD, Paiva MHS, Morais-Sobral MC, Krokovsky L, Machado LC, Melo-Santos MAV, Crespo M, Oliveira CMF, Ribeiro RS, Cardoso OA, Menezes ALB, Laperrière-Jr RC, Luna CF, Oliveira ALS, Leal WS, Wallau GL. Zika virus detection, isolation and genome sequencing through Culicidae sampling during the epidemic in Vitória, Espírito Santo, Brazil. Parasit Vectors 2019; 12:220. [PMID: 31068218 PMCID: PMC6505216 DOI: 10.1186/s13071-019-3461-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/27/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) has been isolated from many mosquito species in nature, but it is believed that the main vectors in urban environments are species of the genus Aedes. Here, we detected and isolated ZIKV in samples from Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus, collected during the Zika epidemic in Vitória, southeast Brazil. Using quantitative real-time polymerase chain reaction, ZIKV detection was performed in mosquito samples collected from February to April 2016. RESULTS Overall, six pools of mosquitoes were positive for ZIKV: four of Cx. quinquefasciatus, one of Ae. aegypti and one of Ae. taeniorhynchus. Their genomes were sequenced. CONCLUSIONS These results support and strengthen the hypothesis that other mosquito species can also be involved in ZIKV transmission.
Collapse
Affiliation(s)
| | | | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brasil.,Universidade Federal de Pernambuco, Caruaru, Brasil
| | | | - Larissa Krokovsky
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brasil
| | - Laís Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brasil
| | | | - Mônica Crespo
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brasil
| | | | - Ricardo Silva Ribeiro
- Núcleo de Vigilância em Saúde, Superintendência Regional de Saúde de Vitória, Cariacica, Brasil
| | - Orlei Amaral Cardoso
- Núcleo de Vigilância em Saúde, Superintendência Regional de Saúde de Vitória, Cariacica, Brasil
| | | | - Roberto Costa Laperrière-Jr
- Núcleo Especial de Vigilância Ambiental, Gerência Estratégica de Vigilância em Saúde, Secretaria de Estado da Saúde, Vitória, Brasil
| | - Carlos Feitosa Luna
- Núcleo de Estatística e Geoprocessamento (NEG), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brazil
| | - André Luiz Sá Oliveira
- Núcleo de Estatística e Geoprocessamento (NEG), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brazil
| | - Walter Soares Leal
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz, Recife, Brasil
| |
Collapse
|
23
|
de Araújo AP, Paiva MHS, Cabral AM, Cavalcanti AEHD, Pessoa LFF, Diniz DFA, Helvecio E, da Silva EVG, da Silva NM, Anastácio DB, Pontes C, Nunes V, de Souza MDFM, Magalhães FJR, de Melo Santos MAV, Ayres CFJ. Screening Aedes aegypti (Diptera: Culicidae) Populations From Pernambuco, Brazil for Resistance to Temephos, Diflubenzuron, and Cypermethrin and Characterization of Potential Resistance Mechanisms. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:16. [PMID: 31175834 PMCID: PMC6556078 DOI: 10.1093/jisesa/iez054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 05/15/2023]
Abstract
Resistance to chemical insecticides detected in Aedes aegypti (L.) mosquitoes has been a problem for the National Dengue Control Program (PNCD) over the last years. In order to provide deeper knowledge of resistance to xenobiotics, our study evaluated the susceptibility profile of temephos, diflubenzuron, and cypermethrin insecticides in natural mosquito populations from the Pernambuco State, associating these results with the local historical use of such compounds. Furthermore, mechanisms that may be associated with this particular type of resistance were characterized. Bioassays with multiple temephos and diflubenzuron concentrations were performed to detect and quantify resistance. For cypermethrin, diagnostic dose assays were performed. Biochemical tests were carried out to quantify the activity of detoxification enzymes. In addition, a screening of mutations present in the voltage-gated sodium channel gene (NaV) was performed in samples previously submitted to bioassays with cypermethrin. The populations under study were resistant to temephos and showed a positive correlation between insecticide consumption and the resistance ratio (RR) to the compound. For diflubenzuron, the biological activity ratio (BAR) ranged from 1.3 to 4.7 times, when compared to the susceptible strain. All populations showed resistance to cypermethrin. Altered enzymatic profiles of alpha, p-nitrophenyl acetate (PNPA) esterases and glutathione-S-transferases were recorded in most of these samples. Molecular analysis demonstrated that Arcoverde was the only population that presented the mutated form 1016Ile/Ile. These findings show that the situation is critical vis-à-vis the effectiveness of mosquito control using chemical insecticides, since resistance to temephos and cypermethrin is widespread in Ae. aegypti from Pernambuco.
Collapse
Affiliation(s)
- Ana Paula de Araújo
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Marcelo Henrique Santos Paiva
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
- Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Núcleo de Ciências da Vida, Caruaru, Pernambuco, Brazil
| | - Amanda Maria Cabral
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Luiz Fernando Freitas Pessoa
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Diego Felipe Araujo Diniz
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Elisama Helvecio
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Ellyda Vanessa Gomes da Silva
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Norma Machado da Silva
- Departamento de Biologia Celular, Embriologia e Genética – BEG, Universidade Federal de Santa Catarina, SC, Brasil. Campus Universitário Reitor João David Ferreira Lima, Bairro Trindade, Florianópolis, Santa Catarina, Brazil
| | | | - Claudenice Pontes
- State of Pernambuco Department of Health, Arbovirus Surveillance Manager Recife, Pernambuco, Brazil
| | - Vânia Nunes
- Secretaria Municipal de Saúde do Recife, Recife, Pernambuco, Brazil
| | | | | | | | | |
Collapse
|
24
|
Valle D, Bellinato DF, Viana-Medeiros PF, Lima JBP, Martins Junior ADJ. Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem Inst Oswaldo Cruz 2019; 114:e180544. [PMID: 31038548 PMCID: PMC6489372 DOI: 10.1590/0074-02760180544] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aedes aegypti populations in Brazil have been subjected to insecticide selection pressures with variable levels and sources since 1967. Therefore, the Brazilian Ministry of Health (MoH) coordinated the activities of an Ae. aegypti insecticide resistance monitoring network (MoReNAa) from 1999 to 2012. OBJECTIVES The objective of this study was to consolidate all information available from between 1985 and 2017 regarding the resistance status and mechanisms of Brazilian Ae. aegypti populations against the main insecticide compounds used at the national level, including the larvicide temephos (an organophosphate) and the adulticide deltamethrin (a pyrethroid). METHODS Data were gathered from two sources: a bibliographic review of studies published from 1985 to 2017, and unpublished data produced by our team within the MoReNAa between 1998 and 2012. A total of 146 municipalities were included, many of which were evaluated several times, totalling 457 evaluations for temephos and 274 for deltamethrin. Insecticide resistance data from the five Brazilian regions were examined separately using annual records of both the MoH supply of insecticides to each state and the dengue incidence in each evaluated municipality. FINDINGS Ae. aegypti resistance to temephos and deltamethrin, the main larvicide and adulticide, respectively, employed against mosquitoes in Brazil for a long time, was found to be widespread in the country, although with some regional variations. Comparisons between metabolic and target-site resistance mechanisms showed that one or another of these was the main component of pesticide resistance in each studied population. MAIN CONCLUSIONS (i) A robust dataset on the assessments of the insecticide resistance of Brazilian Ae. aegypti populations performed since 1985 was made available through our study. (ii) Our findings call into question the efficacy of chemical control as the sole methodology of vector control. (iii) It is necessary to ensure that sustainable insecticide resistance monitoring is maintained as a key component of integrated vector management. (iv) Consideration of additional parameters, beyond the supply of insecticides distributed by the MoH or the diverse local dynamics of dengue incidence, is necessary to find consistent correlations with heterogeneous vector resistance profiles.
Collapse
Affiliation(s)
- Denise Valle
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivírus, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Diogo Fernandes Bellinato
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivírus, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil
| | | | - José Bento Pereira Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil.,Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil
| | - Ademir de Jesus Martins Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil.,Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
25
|
Carvalho KDS, Crespo MM, Araújo AP, da Silva RS, de Melo-Santos MAV, de Oliveira CMF, Silva-Filha MHNL. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit Vectors 2018; 11:673. [PMID: 30594214 PMCID: PMC6311009 DOI: 10.1186/s13071-018-3246-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 01/13/2023] Open
Abstract
Background Bacillus thuringiensis svar. israelensis (Bti) is an effective and safe biolarvicide to control Aedes aegypti. Its mode of action based on four protoxins disfavors resistance; however, control in endemic areas that display high mosquito infestation throughout the year requires continuous larvicide applications, which imposes a strong selection pressure. Therefore, this study aimed to investigate the effects of an intensive Bti exposure on an Ae. aegypti strain (RecBti), regarding its susceptibility to Bti and two of its protoxins tested individually, to other control agents temephos and diflubenzuron, and its profile of detoxifying enzymes. Methods The RecBti strain was established using a large egg sample (10,000) from Recife city (Brazil) and more than 290,000 larvae were subjected to Bti throughout 30 generations. Larvae susceptibility to larvicides and the activity of detoxifying enzymes were determined by bioassays and catalytic assays, respectively. The Rockefeller strain was the reference used for these evaluations. Results Bti exposure yielded an average of 74% mortality at each generation. Larvae assessed in seven time points throughout the 30 generations were susceptible to Bti crystal (resistance ratio RR ≤ 2.8) and to its individual toxins Cry11Aa and Cry4Ba (RR ≤ 4.1). Early signs of altered susceptibility to Cry11Aa were detected in the last evaluations, suggesting that this toxin was a marker of the selection pressure imposed. RecBti larvae were also susceptible (RR ≤ 1.6) to the other control agents, temephos and diflubenzuron. The activity of the detoxifying enzymes α- and β-esterases, glutathione-S-transferases and mixed-function oxidases was classified as unaltered in larvae from two generations (F19 and F25), except for a β-esterases increase in F25. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not evolve into resistance to the crystal, and no cross-resistance with temephos and diflubenzuron were recorded, which supports their sustainable use with Bti for integrated control practices. The unaltered activity of most detoxifying enzymes suggests that they might not play a major role in the metabolism of Bti toxins, therefore resistance by this mechanism is unlikely to occur. This study also highlights the need to establish suitable criteria to classify the status of larval susceptibility/resistance. Electronic supplementary material The online version of this article (10.1186/s13071-018-3246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | - Ana Paula Araújo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | | | | | | | | |
Collapse
|
26
|
Aedes aegypti(Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates. Acta Trop 2018; 185:115-126. [PMID: 29758171 DOI: 10.1016/j.actatropica.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/27/2022]
Abstract
The resistance status of Selangor Aedes aegypti (Linnaeus) larvae against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Aedes aegypti were susceptible against temephos (organophosphate), although resistance (RR50 = 0.21-2.64) may be developing. The insecticides susceptibility status of Ae. aegypti larvae were found heterogeneous among the different study sites. Results showed that Ae. aegypti larvae from Klang, Sabak Bernam and Sepang were susceptible against all insecticides tested. However, other study sites exhibited low to high resistance against all pyrethroids (RR50 = 1.19-32.16). Overall, the application of synergists ethacrynic acid, S.S.S.- tributylphosphorotrithioate and piperonyl butoxide increased the toxicity of insecticides investigated. However, the application failed to increase the mortality to susceptible level (>97%) for certain populations, therefore there are chances of alteration of target site resistance involved. Biochemical assays revealed that α-esterase, (Gombak, Kuala Langat, Kuala Selangor and Sabak Bernam strains) β-esterase (Klang and Sabak Bernam strains), acetylcholinesterase (Kuala Selangor and Sabak Bernam strains), glutathione-S-transferase (Kuala Selangor and Sabak Bernam strains) and mono-oxygenases (Gombak, Hulu Langat, Hulu Selangor and Kuala Langat strains) were elevated. Spearman rank-order correlation indicated a significant correlation between resistance ratios of: DDT and deltamethrin (r = 0.683, P = 0.042), cyfluthrin and deltamethrin (r = 0.867, P =0.002), cyflyuthrin and lambdacyhalothrin (r = 0.800, P =0.010), cyfluthrin and permethrin (r = 0.770, P =0.015) deltamethrin and permethrin (r = 0.803, P =0.088), propoxur and malathion (r = 0.867, P = 0.002), malathion and temephos (r = 0.800, P = 0.010), etofenprox and MFO enzyme (r = 0.667, P =0.050). The current study provides baseline information for vector control programs conducted by local authorities. The susceptibility status of Ae. aegypti should be monitored sporadically to ensure the effectiveness of current vector control strategy in Selangor.
Collapse
|
27
|
Viana-Medeiros PF, Bellinato DF, Valle D. Laboratory selection of Aedes aegypti field populations with the organophosphate malathion: Negative impacts on resistance to deltamethrin and to the organophosphate temephos. PLoS Negl Trop Dis 2018; 12:e0006734. [PMID: 30125295 PMCID: PMC6128625 DOI: 10.1371/journal.pntd.0006734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/07/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background Resistance to pyrethroids and to the organophosphate temephos is widespread in Brazilian populations of the dengue vector, Aedes aegypti. Thereof, since 2009 Insect Growth Regulators are employed as larvicides, and malathion is used against adults. Methodology/Principal findings We performed laboratory selection with malathion of two A. aegypti field populations initially susceptible to this organophosphate but resistant to temephos and deltamethrin. A fixed malathion dose inducing at least 80% mortality in the first generation, was used throughout the selection process, interrupted after five generations, when the threshold of 20% mortality was reached. For each population, three experimental and two control groups, not exposed to insecticides, were kept independently. For both populations, quantitative bioassays revealed, in the selected groups, acquisition of resistance to malathion and negative impact of malathion selection on deltamethrin and temephos resistance levels. In the control groups resistance to all evaluated insecticides decreased except, unexpectedly, to deltamethrin. Analysis of the main resistance mechanisms employed routine methodologies: biochemical and molecular assays for, respectively, metabolic resistance and quantification of the NaV pyrethroid target main kdr mutations at positions 1016 and 1534. No diagnostic alteration could be specifically correlated with malathion selection, neither with the unusual deltamethrin increase in resistance levels observed in the control groups. Conclusions/Significance Our results confirm the multifactorial character of insecticide resistance and point to the need of high throughput methodologies and to the study of additional field vector populations in order to unravel resistance mechanisms. Dengue, Zika and chikungunya viruses affect millions of people worldwide. Due to the lack of specific antivirals or to the limited supply of vaccines, focus remains on the control of the main vector, Aedes aegypti. Although the importance of social participation in the elimination of A. aegypti breeding sites is increasingly recognized, chemical control is still an important component of vector control. The exaggerated use of insecticides results in the spread of resistance and, consequently, in the loss of their effectiveness. In Brazil, malathion is the last adulticide available to the control of A. aegypti, due to the widespread resistance to pyrethroids. In order to anticipate what could occur in the field, we exposed two vector populations to selection with malathion. Both malathion and temephos, a larvicide largely employed, are organophosphates; however, they are structurally distinct molecules and seem to elicit different resistance mechanisms. We confirmed this issue: selection with malathion had a negative impact on temephos resistance compared to groups reared without any insecticide. Indeed, the variety of responses of both vector populations to the various insecticides points to the participation of multiple resistance mechanisms and confirms previous assumptions regarding the difficulty of identifying diagnostic insecticide resistance mechanisms.
Collapse
Affiliation(s)
| | - Diogo Fernandes Bellinato
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro (RJ), Brasil
| | - Denise Valle
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro (RJ), Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro (RJ), Brasil
- * E-mail:
| |
Collapse
|
28
|
Suter T, Crespo MM, de Oliveira MF, de Oliveira TSA, de Melo-Santos MAV, de Oliveira CMF, Ayres CFJ, Barbosa RMR, Araújo AP, Regis LN, Flacio E, Engeler L, Müller P, Silva-Filha MHNL. Insecticide susceptibility of Aedes albopictus and Ae. aegypti from Brazil and the Swiss-Italian border region. Parasit Vectors 2017; 10:431. [PMID: 28927441 PMCID: PMC5606125 DOI: 10.1186/s13071-017-2364-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aedes aegypti and Ae. albopictus are two highly invasive mosquito species, both vectors of several viruses, including dengue, chikungunya and Zika. While Ae. aegypti is the primary vector in the tropics and sub-tropics, Ae. albopictus is increasingly under the public health watch as it has been implicated in arbovirus-transmission in more temperate regions, including continental Europe. Vector control using insecticides is the pillar of most control programmes; hence development of insecticide resistance is of great concern. As part of a Brazilian-Swiss Joint Research Programme we set out to assess whether there are any signs of existing or incipient insecticide resistance primarily against the larvicide Bacillus thuringiensis svar. israelensis (Bti), but also against currently applied and potentially alternative insecticides in our areas, Recife (Brazil) and the Swiss-Italian border region. METHODS Following World Health Organization guidelines, dose-response curves for a range of insecticides were established for both colonized and field caught Ae. aegypti and Ae. albopictus. The larvicides included Bti, two of its toxins, Cry11Aa and Cry4Ba, Lysinibacillus sphaericus, Vectomax CG®, a formulated combination of Bti and L. sphaericus, and diflubenzuron. In addition to the larvicides, the Swiss-Italian Ae. albopictus populations were also tested against five adulticides (bendiocarb, dichlorodiphenyltrichloroethane, malathion, permethrin and λ-cyhalothrin). RESULTS Showing a similar dose-response, all mosquito populations were fully susceptible to the larvicides tested and, in particular, to Bti which is currently used both in Brazil and Switzerland. In addition, there were no signs of incipient resistance against Bti as larvae were equally susceptible to the individual toxins, Cry11Aa and Cry4Ba. The field-caught Swiss-Italian populations were susceptible to the adulticides tested but DDT mortality rates showed signs of reduced susceptibility. CONCLUSIONS The insecticides currently used for mosquito control in Switzerland and Brazil are still effective against the target populations. The present study provides an important reference as relatively few insecticide susceptibility surveys have been carried out with Ae. albopictus.
Collapse
Affiliation(s)
- Tobias Suter
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
- Avia-GIS, Risschotlei 33, 2980 Zoersel, Belgium
| | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife 50740-465, Brazil
| | | | | | | | | | | | | | - Ana Paula Araújo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife 50740-465, Brazil
| | - Lêda Narcisa Regis
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife 50740-465, Brazil
| | - Eleonora Flacio
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Lukas Engeler
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | | |
Collapse
|
29
|
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11:e0005625. [PMID: 28727779 PMCID: PMC5518996 DOI: 10.1371/journal.pntd.0005625] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
Collapse
Affiliation(s)
- Catherine L. Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Ademir J. Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Sin Ying Koou
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Isabelle Dusfour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kamaraju Raghavendra
- Insecticides and Insecticide Resistance Lab, National Institute of Malaria Research (ICMR), Delhi, India
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS), University Grenoble-Alpes (UGA), Grenoble, France
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
30
|
Corbel V, Fonseca DM, Weetman D, Pinto J, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Grieco J, Juntarajumnong W, Lenhart A, Martins AJ, Moyes C, Ng LC, Raghavendra K, Vatandoost H, Vontas J, Muller P, Kasai S, Fouque F, Velayudhan R, Durot C, David JP. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasit Vectors 2017; 10:278. [PMID: 28577363 PMCID: PMC5457540 DOI: 10.1186/s13071-017-2224-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022] Open
Abstract
Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world’s population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5–8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France.
| | - Dina M Fonseca
- Rutgers University (RU), Center for Vector Biology, 180 Jones Avenue, New Brunswick, NJ, 08901, USA
| | - David Weetman
- Liverpool School of Tropical Medicine (LSTM), Department of Vector Biology, Pembroke Place, Liverpool, L35QA, UK
| | - João Pinto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame (UND), Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, Indiana, 46556, USA
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France
| | - Mamadou B Coulibaly
- Malaria Research and Training Center (MRTC), Point G, Bamako, B.P, 1805, Mali
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane (IPG), 23 avenue Pasteur B.P. 6010, 97306, Cedex, Cayenne, French Guiana
| | - John Grieco
- Department of Biological Sciences, University of Notre Dame (UND), Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, Indiana, 46556, USA
| | - Waraporn Juntarajumnong
- Department of Entomology, Kasetsart University (KU), 50 Ngam Wong Wan Rd, Ladyaow, Bangkok, Chatuchak, 10900, Thailand
| | - Audrey Lenhart
- Center for Global Health/Division of Parasitic Diseases and Malaria/Entomology Branch, U.S. Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd. NE, MS G-49; Bldg. 23, Atlanta, GA, 30329, USA
| | - Ademir J Martins
- Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Rio de Janeiro/RJ CEP, Manguinhos, 21040-360, Brazil
| | - Catherine Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Lee Ching Ng
- Environmental Health Institute (EHI), National Environment Agency (NEA), 11 Biopolis Way, Helios Block, #04-03/04 & #06-05/08, Singapore, Republic of Singapore
| | - Kamaraju Raghavendra
- National Institute of Malaria Research (NIMR), Department of Health Research, GoI Sector 8, Dwarka, Delhi, 110 077, India
| | - Hassan Vatandoost
- Department of Medical Entomology & Vector Control, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences (TUMS), Pour Sina Street, P.O. Box: 14155-6446, Tehran, Iran
| | - John Vontas
- Institute Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Panepistimioupoli, Voutes, 70013, Heraklio, Crete, Greece.,Pesticide Science Laboratory, Agricultural University of Athens, Ieara Odoes 75, 118, Athens, Greece
| | - Pie Muller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box 4002, Basel, Switzerland
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| | - Florence Fouque
- Vector Environment and Society Unit, The Special Programme for Research and Training in Tropical Diseases World Health Organization, 20, avenue Appia, CH-1211, 27, Geneva, Switzerland
| | - Raman Velayudhan
- Vector Ecology and Management, Department of Control of Neglected Tropical Diseases (HTM/NTD), World Health Organization, 20 Avenue Appia, CH-1211, 27, Geneva, Switzerland
| | - Claire Durot
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France
| | - Jean-Philippe David
- Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS Université Grenoble-Alpes, Domaine universitaire de Saint-Martin d'Hères, 2233 rue de la piscine, 38041, Cedex 9, Grenoble, France.
| |
Collapse
|
31
|
Costa-da-Silva AL, Ioshino RS, Petersen V, Lima AF, Cunha MDP, Wiley MR, Ladner JT, Prieto K, Palacios G, Costa DD, Suesdek L, Zanotto PMDA, Capurro ML. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas. PLoS Negl Trop Dis 2017; 11:e0005630. [PMID: 28614394 PMCID: PMC5470658 DOI: 10.1371/journal.pntd.0005630] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. METHODOLOGY/PRINCIPAL FINDINGS During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. CONCLUSIONS Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.
Collapse
Affiliation(s)
- André Luis Costa-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaella Sayuri Ioshino
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Petersen
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Michael R. Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Jason T. Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-graduação do Instituto de Medicina Tropical, Universidade de São Paulo, SP, Brasil
| | | | - Margareth Lara Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Liu XH, Wang Q, Sun ZH, Wedge DE, Becnel JJ, Estep AS, Tan CX, Weng JQ. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. PEST MANAGEMENT SCIENCE 2017; 73:953-959. [PMID: 27448764 DOI: 10.1002/ps.4370] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aedes aegypti is a major mosquito vector for the transmission of serious diseases, especially dengue and yellow fever. More than 1 billion people in developing countries are at risk. The widespread and continual use of pesticides can lead to resistant mosquitoes. In order to maintain mosquito control gains, it is critical to develop and evaluate novel bioactive molecules that differ in mode of action from currently used products. RESULTS A series of novel pyrimidine derivatives were designed and synthesized. Their structures were elucidated by proton nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The biological activities of these compounds were tested against Ae. aegypti. Many of them exhibited insecticidal activity against adult and larval mosquitoes. Compound 4d displayed relatively good activity to reach 70% mortality at 2 µg mL-1 . Furthermore, density functional theory calculations were established to study the structure-activity relationship of these novel compounds. CONCLUSION A practical synthetic route for pyrimidine derivatives is presented. This study suggests that these pyrimidine derivatives exhibit some activity against the yellow fever mosquito and, with further structure modification, could be novel lead compounds for the development of insecticides against mosquitoes. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhao-Hui Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - David E Wedge
- USDA-ARS, Natural Products Utilization Research Unit, University, MS, USA
| | - James J Becnel
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, FL, USA
| | - Alden S Estep
- Navy Entomology Center of Excellence, CMAVE Detachment, Gainesville, FL, USA
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
33
|
Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front Microbiol 2017; 8:526. [PMID: 28421042 PMCID: PMC5378795 DOI: 10.3389/fmicb.2017.00526] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.
Collapse
Affiliation(s)
- Eva Novakova
- Faculty of Science, University of South BohemiaCeske Budejovice, Czechia.,Biology Centre of ASCR, Institute of ParasitologyCeske Budejovice, Czechia
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts BostonBoston, MA, USA
| | | | | | - Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | | | - Amnon Amir
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA
| | - Rob Knight
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA.,Department of Pediatrics, University of California San DiegoLa Jolla, CA, USA
| | - James Scott
- Sporometrics IncToronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of TorontoToronto, ON, Canada
| |
Collapse
|
34
|
dos Santos Dias L, Macoris MDLDG, Andrighetti MTM, Otrera VCG, Dias ADS, Bauzer LGSDR, Rodovalho CDM, Martins AJ, Lima JBP. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. PLoS One 2017; 12:e0173689. [PMID: 28301568 PMCID: PMC5354417 DOI: 10.1371/journal.pone.0173689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 02/26/2017] [Indexed: 01/11/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.
Collapse
Affiliation(s)
- Luciana dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
| | | | | | | | - Adriana dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
| | - Luiz Guilherme Soares da Rocha Bauzer
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
| | - Cynara de Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ—Brasil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ—Brasil
- * E-mail:
| |
Collapse
|
35
|
Pruszynski CA, Hribar LJ, Mickle R, Leal AL. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission. PLoS One 2017; 12:e0170079. [PMID: 28199323 PMCID: PMC5310849 DOI: 10.1371/journal.pone.0170079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022] Open
Abstract
Background Aedes aegypti is a container-inhabiting mosquito and a vector of dengue, chikungunya, and Zika viruses. In 2009 several cases of autochthonous dengue transmission were reported in Key West, Florida, USA prompting a comprehensive response to control A. aegypti. In Key West, larvae of this mosquito develop in containers around human habitations which can be numerous and labor intensive to find and treat. Aerial applications of larvicide covering large areas in a short time can be an efficient and economical method to control A. aegypti. Bacillus thuringiensis israelensis (Bti) is a bacterial larvicide which is highly target specific and appropriate for wide area spraying over urban areas, but to date, there are no studies that evaluate aerial spraying of Bti to control container mosquitoes like A. aegypti. Methodology This paper examines the effectiveness of aerial larvicide applications using VectoBac® WG, a commercially available Bti formulation, for A. aegypti control in an urban setting in the USA. Droplet characteristics and spray drop deposition were evaluated in Key West, Florida, USA. The mortality of A. aegypti in containers placed under canopy in an urban environment was also evaluated. Efficacy of multiple larvicide applications on adult female A. aegypti population reduction was compared between an untreated control and treatment site. Conclusions Droplet characteristics showed that small droplets can penetrate through dense canopy to reach small containers. VectoBac WG droplets reached small containers under heavy canopy in sufficient amounts to cause > 55% mortality on all application days and >90% mortality on 3 of 5 application days while controls had <5% mortality. Aerial applications of VectoBac WG caused significant decrease in adult female populations throughout the summer and during the 38th week (last application) the difference in adult female numbers between untreated and treated sites was >50%. Aerial larvicide applications using VectoBac WG can cover wide areas in a short period of time and can be effective in controlling A. aegypti and reducing A. aegypti-borne transmission in urban areas similar to Key West, Florida, USA.
Collapse
Affiliation(s)
- Catherine A Pruszynski
- Florida Keys Mosquito Control District, College Road, Key West, Florida, United States of America
| | - Lawrence J Hribar
- Florida Keys Mosquito Control District, College Road, Key West, Florida, United States of America
| | - Robert Mickle
- REMSpC Spray Consulting, Welsh Drive, Ayr, ON, Canada
| | - Andrea L Leal
- Florida Keys Mosquito Control District, College Road, Key West, Florida, United States of America
| |
Collapse
|
36
|
Costa-da-Silva AL, Ioshino RS, de Araújo HRC, Kojin BB, Zanotto PMDA, Oliveira DBL, Melo SR, Durigon EL, Capurro ML. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PLoS One 2017; 12:e0171951. [PMID: 28187183 PMCID: PMC5302382 DOI: 10.1371/journal.pone.0171951] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/28/2017] [Indexed: 11/18/2022] Open
Abstract
The Zika virus outbreaks are unprecedented human threat in relation to congenital malformations and neurological/autoimmune complications. Since this virus has high potential to spread in regions presenting the vectors, improvement in mosquito control is a top priority. Thus, Aedes aegypti laboratory strains will be fundamental to support studies in different research fields implicated on Zika-mosquito interactions which are the basis for the development of innovative control methods. In this sense, our aim was to determine the main infection aspects of a Brazilian Zika strain in reference Aedes aegypti laboratory mosquitoes. We orally exposed Rockefeller, Higgs and Rexville mosquitoes to the Brazilian ZIKV (ZIKVBR) and qRT-PCR was applied to determine the infection, dissemination and detection rates of ZIKV in the collected saliva as well as viral levels in mosquito tissues. The three strains sustain the virus development but Higgs showed significantly lower viral loads in bodies at 14 days post-infection (dpi) and the lowest prevalences in bodies and heads. The Rockefeller strain was the most susceptible at 7 dpi but similar dissemination rates were observed at 14 dpi. Although variations exist, the ZIKVBR RNA shows detectable levels in saliva of the three strains at 14 dpi but is only detected in Rockefeller at 7 dpi. Moreover, saliva samples from the three strains were confirmed to be infectious when intrathoracically injected into mosquitoes. The ZIKVBR kinetics was monitored in Rockefeller mosquitoes and virus could be identified in the heads at 4 dpi but was more consistently detected late in infection. Our study presents the first evaluation on how Brazilian Zika virus behaves in reference Aedes aegypti strains and shed light on how the infection evolves over time. Vector competence and hallmarks of the ZIKVBR development were revealed in laboratory mosquitoes, providing additional information to accelerate studies focused on ZIKV-mosquito interactions.
Collapse
Affiliation(s)
- André Luis Costa-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (ALCS); (MLC)
| | - Rafaella Sayuri Ioshino
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Rocha Corrêa de Araújo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Burini Kojin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stella Rezende Melo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Edison Luiz Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Margareth Lara Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (ALCS); (MLC)
| |
Collapse
|
37
|
Ngoagouni C, Kamgang B, Brengues C, Yahouedo G, Paupy C, Nakouné E, Kazanji M, Chandre F. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasit Vectors 2016; 9:599. [PMID: 27881148 PMCID: PMC5121976 DOI: 10.1186/s13071-016-1887-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background Aedes aegypti and Ae. albopictus are the main epidemic vectors of dengue, chikungunya and Zika viruses worldwide. Their control during epidemics relies mainly on control of larvae and adults with insecticides. Unfortunately, loss of susceptibility of both species to several insecticide classes limits the efficacy of interventions. In Africa, where Aedes-borne viruses are of growing concern, few data are available on resistance to insecticides. To fill this gap, we assessed the susceptibility to insecticides of Ae. aegypti and Ae. albopictus populations in the Central African Republic (CAR) and studied the mechanisms of resistance. Methods Immature stages were sampled between June and September 2014 in six locations in Bangui (the capital of CAR) for larval and adult bioassays according to WHO standard procedures. We also characterized DDT- and pyrethroid-resistant mosquitoes molecularly and biochemically, including tests for the activities of nonspecific esterases (α and β), mixed-function oxidases, insensitive acetylcholinesterase and glutathione S-transferases. Results Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95) and resistance ratios (RR50 and RR95), suggested that both vector species were susceptible to Bacillus thuringiensis var. israeliensis and to temephos. Bioassays of adults showed susceptibility to propoxur and fenitrothion, except for one Ae. albopictus population that was suspected to be resistant to fenithrothion. None of the Ae. aegypti populations was fully susceptible to DDT. Ae. albopictus presented a similar profile to Ae. aegypti but with a lower mortality rate (41%). Possible resistance to deltamethrin was observed among Ae. aegypti and Ae. albopictus, although some were susceptible. No kdr mutations were detected in either species; however, the activity of detoxifying enzymes was higher in most populations than in the susceptible Ae. aegypti strain, confirming decreased susceptibility to DDT and deltamethrin. Conclusion These findings suggested that regular, continuous monitoring of resistance is necessary in order to select the most effective adulticides for arbovirus control in Bangui. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1887-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carine Ngoagouni
- Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic.
| | - Basile Kamgang
- Research Unit Liverpool School of Tropical Medicine, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, PO Box 288, Yaoundé, Cameroon
| | - Cécile Brengues
- Laboratoire des Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Unité mixte de Recherche 224-5290, Centre National de Recherche Scientifique-Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Gildas Yahouedo
- Laboratoire des Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Unité mixte de Recherche 224-5290, Centre National de Recherche Scientifique-Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Christophe Paupy
- Laboratoire des Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Unité mixte de Recherche 224-5290, Centre National de Recherche Scientifique-Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Emmanuel Nakouné
- Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Mirdad Kazanji
- Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic.,Institut Pasteur de la Guyane, BP 6010, 23 Avenue Pasteur, 97306, Cayenne, French Guiana
| | - Fabrice Chandre
- Laboratoire des Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Unité mixte de Recherche 224-5290, Centre National de Recherche Scientifique-Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Setha T, Chantha N, Benjamin S, Socheat D. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia. PLoS Negl Trop Dis 2016; 10:e0004973. [PMID: 27627758 PMCID: PMC5023181 DOI: 10.1371/journal.pntd.0004973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
A multi-phased study was conducted in Cambodia from 2005–2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0–5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10–12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province. Aedes aegypti is responsible for global dengue outbreaks in the recent years. It is also the vector of Zika virus, which may be associated with the thousands of microcephaly cases in Latin America. At the moment, dengue prevention and control solely depends on vector control measures. Ae aegypti thrives in all types of artificial water storage containers. Countries lacking piped water systems and depending on water storage containers are required to implement preventive measures regularly. Temephos has been the mainstay of Ae aegypti larval control for 40 years in the Asian region. Temephos resistance is established in the vector population. Here in Cambodia, we assessed a bacterial larvicide, Bacillus thuringiensis israelensis (Bti) strain AM65-52 in communes and districts with temephos resistant mosquito population. A single dose of Bti treatment was sufficient to suppress the pupal and adult vector population for three months. Moreover, two cycles of Bti treatment over six months suppressed disease transmission in the treated districts. As this study was conducted over multiple years in multiple sites, we know that these data are reproducible. Our data confirm that Bti strain AM65-52 is an efficient ammunition, and when used with complete coverage of the target habitats it can prevent dengue outbreaks.
Collapse
Affiliation(s)
- To Setha
- National Center for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
- * E-mail:
| | - Ngan Chantha
- National Center for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Seleena Benjamin
- Public Health, Valent BioSciences Corporation, Kuala Lumpur. Malaysia
| | - Doung Socheat
- National Center for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| |
Collapse
|
39
|
Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8603263. [PMID: 27419140 PMCID: PMC4932163 DOI: 10.1155/2016/8603263] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 01/10/2023]
Abstract
Insecticides are still largely applied in public health to control disease vectors. In Brazil, organophosphates (OP) and pyrethroids (PY) are used against Aedes aegypti for years. Since 2009 Insect Growth Regulators (IGR) are also employed in the control of larvae. We quantified resistance to temephos (OP), deltamethrin (PY), and diflubenzuron (IGR) of A. aegypti samples from 12 municipalities distributed throughout the country, collected between 2010 and 2012. High levels of resistance to neurotoxic insecticides were detected in almost all populations: RR95 to temephos varied between 4.0 and 27.1; the lowest RR95 to deltamethrin was 13.1, and values higher than 70.0 were found. In contrast, all samples were susceptible to diflubenzuron (RR95 < 2.3). Biochemical tests performed with larvae and adults discarded the participation of acetylcholinesterase, the OP target, and confirmed involvement of the detoxifying enzymes esterases, mixed function oxidases, and glutathione-S-transferases. The results obtained were discussed taking into account the public chemical control component and the increase in the domestic use of insecticides during dengue epidemic seasons in the evaluated municipalities.
Collapse
|
40
|
Chediak M, G Pimenta F, Coelho GE, Braga IA, Lima JBP, Cavalcante KRL, Sousa LCD, Melo-Santos MAVD, Macoris MDLDG, Araújo APD, Ayres CFJ, Andrighetti MTM, Gomes RGDA, Campos KB, Guedes RNC. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem Inst Oswaldo Cruz 2016; 111:311-21. [PMID: 27143489 PMCID: PMC4878300 DOI: 10.1590/0074-02760150409] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The organophosphate temephos has been the main insecticide used against larvae of the
dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the
mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of
widespread temephos resistance have occurred to date. As resistance investigation is
paramount for strategic decision-making by health officials, our objective here was
to investigate the spatial and temporal spread of temephos resistance in Ae.
aegypti in Brazil for the last 12 years using discriminating temephos
concentrations and the bioassay protocols of the World Health Organization. The
mortality results obtained were subjected to spatial analysis for distance
interpolation using semi-variance models to generate maps that depict the spread of
temephos resistance in Brazil since 1999. The problem has been expanding. Since
2002-2003, approximately half the country has exhibited mosquito populations
resistant to temephos. The frequency of temephos resistance and, likely, control
failures, which start when the insecticide mortality level drops below 80%, has
increased even further since 2004. Few parts of Brazil are able to achieve the target
80% efficacy threshold by 2010/2011, resulting in a significant risk of control
failure by temephos in most of the country. The widespread resistance to temephos in
Brazilian Ae. aegypti populations greatly compromise effective
mosquito control efforts using this insecticide and indicates the urgent need to
identify alternative insecticides aided by the preventive elimination of potential
mosquito breeding sites.
Collapse
Affiliation(s)
- Mateus Chediak
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Fabiano G Pimenta
- Secretaria Municipal de Saúde de Belo Horizonte, Belo Horizonte, MG, Brasil
| | - Giovanini E Coelho
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brasil
| | - Ima A Braga
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brasil
| | - José Bento P Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | - Ana Paula de Araújo
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil
| | | | | | | | - Kauara B Campos
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brasil
| | | |
Collapse
|
41
|
Vantaux A, Ouattarra I, Lefèvre T, Dabiré KR. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum. Parasit Vectors 2016; 9:226. [PMID: 27107591 PMCID: PMC4842262 DOI: 10.1186/s13071-016-1514-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/15/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many studies have shown that the environment in which larvae develop can influence adult characteristics with consequences for the transmission of pathogens. We investigated how two environmental stresses (larviciding and nutritional stress) interact to affect Anopheles gambiae (previously An. gambiae S molecular form) life history traits and its susceptibility for field isolates of its natural malaria agent Plasmodium falciparum. METHODS Larvae were reared in the presence or not of a sub-lethal concentration of larvicide and under a high and low food regimen. Development time, individual size, adult survival and competence for P. falciparum were assessed. RESULTS Individuals under low food regimen took more time to develop, had a lower development success and were smaller while there was no main effect of larvicide exposure on these traits. However, larvicide exposure impacted individual size in interaction with nutritional stress. Female survival was affected by the interaction between gametocytemia, parasite exposure and larval diet, as well as the interaction between gametocytemia, parasite exposure and larvicidal stress, and the interaction between gametocytemia, larvicidal exposure and larval diet. Among the 951 females dissected 7 days post-infection, 559 (58.78%) harboured parasites. Parasite prevalence was significantly affected by the interaction between larvicidal stress and larval diet. Indeed, females under low food regimen had a higher prevalence than females under high food regimen and this difference was greater under larvicidal stress. The two stresses did not impact parasite intensity. CONCLUSIONS We found that larval nutritional and larvicidal stresses affect mosquito life history traits in complex ways, which could greatly affect P. falciparum transmission. Further studies combining field-based trials on larvicide use and mosquito experimental infections would give a more accurate understanding of the effects of this vector control tool on malaria transmission.
Collapse
Affiliation(s)
- Amélie Vantaux
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France. .,Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.
| | - Issiaka Ouattarra
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Centre Muraz, Bobo Dioulasso, Burkina Faso
| |
Collapse
|
42
|
Mohiddin A, Lasim AM, Zuharah WF. Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Diniz DFA, de Melo-Santos MAV, Santos EMDM, Beserra EB, Helvecio E, de Carvalho-Leandro D, dos Santos BS, de Menezes Lima VL, Ayres CFJ. Fitness cost in field and laboratory Aedes aegypti populations associated with resistance to the insecticide temephos. Parasit Vectors 2015; 8:662. [PMID: 26715037 PMCID: PMC4696322 DOI: 10.1186/s13071-015-1276-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 12/20/2015] [Indexed: 01/28/2023] Open
Abstract
Background The continued use of chemical insecticides in the context of the National Program of Dengue Control in Brazil has generated a high selective pressure on the natural populations of Aedes aegypti, leading to their resistance to these compounds in the field. Fitness costs have been described as adaptive consequences of resistance. This study evaluated the biological and reproductive performance of A. aegypti strains and a field population resistant to temephos, the main larvicide used for controlling mosquitoes. Methods Comparative tests were performed with a resistant field population from the municipality of Arcoverde, Pernambuco State, Brazil, with a high rate of temephos resistance (RR = 226.6) and three isogenetic laboratory strains from the same origin (Araripina municipality, Pernambuco): RecR (RR = 283.6); RecRNEx (RR = 250.5), a strain under a process of resistance reversion; and RecRev (RR = 2.32), a reversed susceptible strain used as an experimental control. Results Our study revealed that the absence of selective pressure imposed by exposure to temephos, for five consecutive generations, led to a discrete reduction of the resistance ratio and the response of the detoxifying enzymes. Most of the 19 biological parameters were impaired in the resistant strains and field population. The analysis of the fertility life table confirmed the presence of reproductive disadvantages for the resistant individuals. Similarly, the longevity, body size, and total energetic resources were also lower for the resistant females, except for the last two parameters in the field females (Arcoverde). In contrast, the sex ratio and embryonic viability suffered no interference in all strains or population evaluated, regardless of their status of resistance to temephos. Conclusions The reproductive potential and survival of the resistant individuals were compromised. The parameters most affected were the larval development time, fecundity, net reproduction rate, and the generational doubling time. These fitness costs in the natural population and laboratory strains investigated are likely associated with maintaining the metabolic mechanism of resistance to temephos. Our results show that despite these costs, the highly temephos resistant populations can compensate for these losses and successfully overcome the control actions that are based on the use of chemical insecticides.
Collapse
Affiliation(s)
- Diego Felipe Araujo Diniz
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| | - Maria Alice Varjal de Melo-Santos
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| | - Eloína Maria de Mendonça Santos
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| | - Eduardo Barbosa Beserra
- Department of Biology, State University of Paraíba (Universidade Estadual da Paraíba - UEPB), Campina Grande, Brazil.
| | - Elisama Helvecio
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| | - Danilo de Carvalho-Leandro
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| | - Bianka Santana dos Santos
- Laboratory of Lipids, Biochemistry Department, Federal University of Pernambuco (Universidade Federal de Pernambuco - UFPE), Recife, Brazil.
| | - Vera Lúcia de Menezes Lima
- Laboratory of Lipids, Biochemistry Department, Federal University of Pernambuco (Universidade Federal de Pernambuco - UFPE), Recife, Brazil.
| | - Constância Flávia Junqueira Ayres
- Department of Entomology, Aggeu Magalhães Research Center (Centro de Pesquisas Aggeu Magalhães - CPqAM) - Oswaldo Cruz Foundation (Fundação Oswaldo Cruz - Fiocruz), Recife, Brazil.
| |
Collapse
|
44
|
Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Trop 2015; 152:66-73. [PMID: 26307496 DOI: 10.1016/j.actatropica.2015.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022]
Abstract
In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major insecticides used for vector control, deltamethrin and temephos. To our knowledge, this is the first report of temephos resistance in an African A. aegypti population. The low level of temephos resistance was maintained from 2012-2014, which suggested the imposition of selective pressure, although it was not possible to identify the resistance mechanisms involved. These data show that the potential failures in the local mosquito control program are not associated with insecticide resistance.
Collapse
|
45
|
Rašić G, Schama R, Powell R, Maciel-de Freitas R, Endersby-Harshman NM, Filipović I, Sylvestre G, Máspero RC, Hoffmann AA. Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evol Appl 2015; 8:901-15. [PMID: 26495042 PMCID: PMC4610386 DOI: 10.1111/eva.12301] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio.
Collapse
Affiliation(s)
- Gordana Rašić
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - Renata Schama
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil
| | - Rosanna Powell
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - Rafael Maciel-de Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil
| | - Nancy M Endersby-Harshman
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - Igor Filipović
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - Gabriel Sylvestre
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil
| | - Renato C Máspero
- Gerencia de Risco Biológico da Coordenação de Vigilância Ambiental em Saude, Superintendência de Vigilânciaem Saude – SMSRio de Janeiro, Brazil
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|
46
|
Yadav K, Rabha B, Dhiman S, Veer V. Multi-insecticide susceptibility evaluation of dengue vectors Stegomyia albopicta and St. aegypti in Assam, India. Parasit Vectors 2015; 8:143. [PMID: 25886449 PMCID: PMC4359396 DOI: 10.1186/s13071-015-0754-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is rapidly expanding mosquito-borne viral infection globally facing operational challenges due to insecticide resistance in dengue vectors. We have studied the susceptibility status of potential dengue vectors St. albopicta and St. aegypti to the commonly used insecticides. METHODS Stegomyia larval bioassays were carried out to determine LC10, LC50 and LC99 values and resistance ratios (RR50 and RR99) for temephos. Adult susceptibility bioassay to 4% DDT, 0.05% deltamethrin, 5% malathion was assessed following standard procedure to determine the corrected mortality. Knock-down times (KDT50 and KDT99) were estimated and the knock-down resistance ratios (KRR50 and KRR99) were calculated. RESULTS St. albopicta wild population (WP) of Sotia was resistant to temephos as the LC99 value was 0.12 mg/l and found to be 2.3 fold high than the reference population (RP). St. aegypti WP of Borgong, Kusumtola and Serajuli displayed a RR99 of 2.5, 5.4 and 4.5 respectively suggesting high level of resistance to temephos. Results suggested that both St. albopicta and St. aegypti WP were fully resistant to DDT (mortality < 90%) in all the study locations. Both the species were completely susceptible to deltamethrin and malathion (corrected mortality > 98%), except for St. albopicta at Sotia which displayed low level of resistance to malathion (corrected mortality =95.4%). The estimated KDT values for both the species indicated high level of knock-down resistance to DDT and susceptibility to deltamethrin. CONCLUSION WP of both the dengue vectors showed varied response to temephos, while resistant to DDT and completely susceptible to deltamethrin. Both the species were susceptible to malathion at majority of the testing sites. Current results strongly advocate that DDT is no longer effective against dengue vectors, while thorough monitoring of malathion susceptibility in geographical area at dengue risk is inexorable to ascertain whether or not the resistance to malathion is focal. Information generated herein may be useful in better planning and implementing in dengue control strategy using insecticides.
Collapse
Affiliation(s)
- Kavita Yadav
- Defence Research Laboratory, Tezpur, Assam, 784 001, India.
| | - Bipul Rabha
- Defence Research Laboratory, Tezpur, Assam, 784 001, India.
| | - Sunil Dhiman
- Defence Research Laboratory, Tezpur, Assam, 784 001, India.
| | - Vijay Veer
- Defence Research Laboratory, Tezpur, Assam, 784 001, India.
| |
Collapse
|
47
|
Marina CF, Bond JG, Muñoz J, Valle J, Novelo-Gutiérrez R, Williams T. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Parasit Vectors 2014; 7:55. [PMID: 24479683 PMCID: PMC3915226 DOI: 10.1186/1756-3305-7-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 11/20/2022] Open
Abstract
Background The larvicidal efficacy of the naturally derived insecticide spinosad, for control of immature stages of Anopheles albimanus and associated culicids, was compared to that of synthetic and biological larvicides. Effects on non-target insects were also determined. Methods A field trial was performed in replicated temporary pools during the rainy season, in southern Mexico. Pools were treated with 10 ppm a.i. spinosad (Tracer 480SC), Bti granules applied at 2 kg/ha (VectoBac WDG, ABG-6511), and 100 ml/ha temephos (50 EC), or an untreated control. Numbers of immature mosquitoes, and aquatic insects in pools were monitored for 20 weeks. Results Samples of immature mosquitoes comprised approximately 10% An. albimanus, 70% Culex spp. (mostly Cx. melanoconion and Cx. coronator) and 20% Uranotaenia lowii. The most effective larvicides were spinosad and temephos that eliminated An. albimanus in 16 out of 20 post-treatment samples, or 9 weeks of continuous control of immature stages, respectively. These larvicides resulted in 15 and 5 weeks of elimination of Culex spp., respectively, or 20 and 4 weeks of continuous elimination of U. lowii, respectively. Bti treatment provided little consistent control. Aquatic insects were recorded comprising 3 orders, 20 families, 40 genera and 44 species. Shannon diversity index values (H’) for aquatic insects were highest in the control (0.997) and Bti (0.974) treatments, intermediate in the spinosad treatment (0.638) and lowest in the temephos treatment (0.520). Severely affected non-target insects in the spinosad and temephos treated pools were predatory Coleoptera, Hemiptera and Odonata, which in the case of spinosad was likely due to the high concentration applied. Bti had little effect on aquatic insects. Conclusions The spinosad treatment retained larvicidal activity for markedly longer than expected. Spinosad is likely to be an effective tool for control of anopheline and other pool-breeding mosquitoes in tropical regions. Non-target effects of spinosad on aquatic insects merit further study, but were likely related to the concentration of the product used.
Collapse
|