1
|
Porcelli S, Deshuillers PL, Moutailler S, Lagrée AC. Meta-analysis of tick-borne and other pathogens: Co-infection or co-detection? That is the question. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100219. [PMID: 39483631 PMCID: PMC11525461 DOI: 10.1016/j.crpvbd.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
This literature-based review aims to distinguish studies describing co-infection with tick-borne pathogens from those describing co-detection or co-exposure scenarios. The review analyzed 426 papers and identified only 20 with direct evidence of co-infection in humans and animals, highlighting the need for accurate terminology and proposing definitions for co-infection, co-exposure and co-detection. Current diagnostic methods - including serology and molecular techniques - have limitations in accurately identifying real co-infections, often leading to misinterpretation. The review highlights the importance of developing laboratory models to better understand tick-borne pathogen interactions, and advocates improved diagnostic strategies for tick screening by testing their RNA for co-infections. Moreover, the establishment of additional animal models for pathogen co-infection will help develop our understanding of selection pressures for various traits of tick-borne pathogens (such as virulence and transmissibility) over time. This comprehensive analysis provides insights into the complexity of tick-borne pathogen co-infections and calls for precise diagnostic terms to improve the clarity and effectiveness of future research.
Collapse
Affiliation(s)
- Stefania Porcelli
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| |
Collapse
|
2
|
Rymaszewska A, Piotrowski M. Rickettsia Species: Genetic Variability, Vectors, and Rickettsiosis-A Review. Pathogens 2024; 13:661. [PMID: 39204262 PMCID: PMC11357061 DOI: 10.3390/pathogens13080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Rickettsiae are an interesting group of bacteria comprising a large number of obligate intracellular species. The circulation of these bacteria in the environment depends on the presence of vectors (blood-sucking invertebrates) and their hosts. On the basis of phylogenetic analyses in 2022, a division into five groups of Rickettsia has been proposed: I belli group, II canadensis group, III typhus group, and IV and V spotted group fever (respectively II, phylogenetically older, and I). The genus Rickettsia includes species that are both pathogenic and nonpathogenic to humans and domestic and wild animals. Some Rickettsia species are invertebrate symbionts. Currently, rickettsiae, which are transmitted mainly by ticks, are spreading worldwide. This has been promoted by climate change, environmental changes caused by humans, and the synanthropisation of plants and animals. Therefore, it is extremely important to monitor the natural and urban environments. The study of potential vectors and reservoirs of bacteria in the genus Rickettsia should be a permanent part of the analysis of the modern human environment.
Collapse
Affiliation(s)
- Anna Rymaszewska
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, ul. Felczaka 3C, 71-412 Szczecin, Poland;
| | - Mariusz Piotrowski
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, ul. Felczaka 3C, 71-412 Szczecin, Poland;
- BIOSPACE Foundation, ul. Karpia 31, 61-619 Poznań, Poland
| |
Collapse
|
3
|
Koutantou M, Drancourt M, Angelakis E. Prevalence of Lyme Disease and Relapsing Fever Borrelia spp. in Vectors, Animals, and Humans within a One Health Approach in Mediterranean Countries. Pathogens 2024; 13:512. [PMID: 38921809 PMCID: PMC11206712 DOI: 10.3390/pathogens13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Borrelia has been divided into Borreliella spp., which can cause Lyme Disease (LD), and Borrelia spp., which can cause Relapsing Fever (RF). The distribution of genus Borrelia has broadened due to factors such as climate change, alterations in land use, and enhanced human and animal mobility. Consequently, there is an increasing necessity for a One Health strategy to identify the key components in the Borrelia transmission cycle by monitoring the human-animal-environment interactions. The aim of this study is to summarize all accessible data to increase our understanding and provide a comprehensive overview of Borrelia distribution in the Mediterranean region. Databases including PubMed, Google Scholar, and Google were searched to determine the presence of Borreliella and Borrelia spp. in vectors, animals, and humans in countries around the Mediterranean Sea. A total of 3026 were identified and screened and after exclusion of papers that did not fulfill the including criteria, 429 were used. After examination of the available literature, it was revealed that various species associated with LD and RF are prevalent in vectors, animals, and humans in Mediterranean countries and should be monitored in order to effectively manage and prevent potential infections.
Collapse
Affiliation(s)
- Myrto Koutantou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
4
|
Kapo N, Zuber Bogdanović I, Gagović E, Žekić M, Veinović G, Sukara R, Mihaljica D, Adžić B, Kadriaj P, Cvetkovikj A, Djadjovski I, Potkonjak A, Velo E, Savić S, Tomanović S, Omeragić J, Beck R, Hodžić A. Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasit Vectors 2024; 17:45. [PMID: 38297327 PMCID: PMC10832161 DOI: 10.1186/s13071-023-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Naida Kapo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Ema Gagović
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marina Žekić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Adžić
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| | - Përparim Kadriaj
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Aleksandar Cvetkovikj
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Igor Djadjovski
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Enkelejda Velo
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmin Omeragić
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia.
| | - Adnan Hodžić
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Gafarova MT, Eremeeva ME. History and Current Status of Mediterranean Spotted Fever (MSF) in the Crimean Peninsula and Neighboring Regions along the Black Sea Coast. Pathogens 2023; 12:1161. [PMID: 37764969 PMCID: PMC10536518 DOI: 10.3390/pathogens12091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Mediterranean spotted fever (MSF) is a tick-borne rickettsiosis caused by Rickettsia conorii subspecies conorii and transmitted to humans by Rhipicephalus sanguineus ticks. The disease was first discovered in Tunisia in 1910 and was subsequently reported from other Mediterranean countries. The first cases of MSF in the former Soviet Union were detected in 1936 on the Crimean Peninsula. This review summarizes the historic information and main features of MSF in that region and contemporary surveillance and control efforts for this rickettsiosis. Current data pertinent to the epidemiology of the disease, circulation of the ticks and distribution of animal hosts are discussed and compared for each of the countries in the Black Sea basin where MSF occurs.
Collapse
Affiliation(s)
- Muniver T. Gafarova
- S.I. Georgievsky Medical Academy (Academic Unit), V.I. Vernadsky Crimean Federal University, 295051 Simferopol, Russia
| | - Marina E. Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| |
Collapse
|
6
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
7
|
Kosak L, Satz N, Jutzi M, Dobec M, Schlagenhauf P. Spotted fever group rickettsiae and Anaplasma phagocytophilum in Borrelia burgdorferi sensu lato seropositive individuals with or without Lyme disease: A retrospective analysis. New Microbes New Infect 2023; 53:101139. [PMID: 37168237 PMCID: PMC10165448 DOI: 10.1016/j.nmni.2023.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023] Open
Abstract
Background The Ixodes ricinus tick is the main vector of Borrelia burgdorferi and tick-borne encephalitis virus in Switzerland. Spotted fever group Rickettsiae (SFG) and Anaplasma phagocytophilum have been detected in Swiss ticks, however, information about the extent and clinical presentation of these infections in humans is scant. Methods Indirect fluorescent antibody tests for SFG rickettsiae and Anaplasma phagocytophilum were performed on serum samples of 121 Borrelia burgdorferi seropositive patients with and without Lyme disease and 43 negative controls. Results Out of 121 Borrelia burgdorferi seropositive individuals, 65 (53.7%) were seropositive for IgG and 15 (12.4%) for IgM antibodies to SFG rickettsiae. IgM antibodies were detected more frequently in early-than in late-stage of Lyme disease (12 out of 51 and 2 out of 49; respectively; p = 0.0078). Significantly higher IgG antibody titers against SFG rickettsiae were found in patients with late-stage compared to patients with early-stage Lyme disease (mean titer 1:261 and 1:129, respectively; p = 0.038). This difference was even more pronounced in patients with acrodermatitis chronica atrophicans compared to patients with early stage of Lyme disease (mean titer 1:337 and 1:129, respectively; p = 0.009).In patients presenting with fatigue, headache and myalgia, the prevalence of IgG antibodies against SFG rickettsiae was significantly higher (7 out of 11; 63.6%) than in Borrelia burgdorferi seropositive individuals without clinical illness (1 out of 10; 10%; p = 0.024). IgG antibodies to Anaplasma phagocytophilum were detected in 12 out of 121 individuals (9.9%), no IgM antibodies were found. Conclusion Infections with SFG rickettsiae and Anaplasma phagocytophilum are underdiagnosed and should be ruled out after a tick bite. Further studies are needed to elucidate the possible causative role of SFG rickettsiae for myalgia, headache and long-lasting fatigue after a tick bite and to determine the necessity for an antibiotic treatment.
Collapse
Affiliation(s)
- Leonie Kosak
- University of Zürich, Institute for Epidemiology, Biostatistics and Prevention, Zürich, Switzerland
- Corresponding author.
| | | | - Markus Jutzi
- Analytica Medizinische Laboratorien AG, Zürich, Switzerland
| | - Marinko Dobec
- Analytica Medizinische Laboratorien AG, Zürich, Switzerland
| | - Patricia Schlagenhauf
- University of Zürich, Institute for Epidemiology, Biostatistics and Prevention, WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Zürich, Switzerland
| |
Collapse
|
8
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
9
|
Emerging tick-borne spotted fever group rickettsioses in the Balkans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105400. [PMID: 36586459 DOI: 10.1016/j.meegid.2022.105400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The impact of tick-borne pathogens (TBPs) on human health has increased in the last decades, since the incidence of emerging and re-emerging infectious and zoonotic tick-borne diseases has increased worldwide. Tick-borne rickettsiae of the Spotted Fever group (SFGR) are considered as emerging pathogens that can infect humans and cause a variety of non-specific clinical symptoms. Here, we report nine cases of atypical tick-borne diseases (9/460; 1.95%) that occurred over a period of four months (from 15 April 2021 to 16 August 2021) in Serbia, from which five cases were classified as confirmed SFGR infection, two cases as probable SFGR infection and two cases as suspected SFGR infection. Within cases of confirmed SFGR infection, R. helvetica was detected as the causative agent in two cases. The most common clinical finding was non-expanding persistent circular redness, followed by eschar and enlargement of regional lymph nodes, and pain at lesion site. Rickettsia outer membrane protein B (ompB) and citrate synthase (gltA) gene fragments were amplified from clinical samples and ticks attached to patients and IgG reacting with Rickettsia conorii antigen were detected in sera samples of patients, which are highly suggestive of exposure to SFGR. Surveillance and monitoring of rickettsial diseases in Serbia should continue and extended to new areas due to the increasing trend of clinical infections caused by SFGR in the country.
Collapse
|
10
|
de Sousa R, Dos Santos ML, Cruz C, Almeida V, Garrote AR, Ramirez F, Seixas D, Manata MJ, Maltez F. Rare Case of Rickettsiosis Caused by Rickettsia monacensis, Portugal, 2021. Emerg Infect Dis 2022; 28:1068-1071. [PMID: 35447057 PMCID: PMC9045422 DOI: 10.3201/eid2805.211836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of rickettsiosis caused by Rickettsia monacensis in an immunocompetent 67-year-old man in Portugal who had eschar, erythematous rash, and an attached Ixodes ricinus tick. Seroconversion and eschar biopsy led to confirmed diagnosis by PCR. Physicians should be aware of this rare rickettsiosis, especially in geographic regions with the vector.
Collapse
|
11
|
Boyer PH, Lenormand C, Jaulhac B, Talagrand-Reboul E. Human Co-Infections between Borrelia burgdorferi s.l. and Other Ixodes-Borne Microorganisms: A Systematic Review. Pathogens 2022; 11:pathogens11030282. [PMID: 35335606 PMCID: PMC8948674 DOI: 10.3390/pathogens11030282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 01/03/2023] Open
Abstract
When it comes to tick-borne diseases, co-infections are often mentioned. This concept includes several entities. On the one hand, tick vectors or vertebrate reservoir host can harbor several microorganisms that can be pathogenic for humans. On the other hand, human co-infections can also be understood in different ways, ranging from seropositivity without clinical symptoms to co-disease, i.e., the simultaneous clinical expression of infections by two tick-borne microorganisms. The latter, although regularly speculated, is not often reported. Hence, we conducted a systematic review on co-infections between B. burgdorferi s.l., the etiological agent of Lyme borreliosis, and other microorganisms potentially transmitted to humans by Ixodes spp. ticks. A total of 68 relevant articles were included, presenting 655 cases of possible co-infections. Most cases of co-infections corresponded to patients with one tick-borne disease and presenting antibody against another tick-borne microorganism. Co-disease was particularly frequent in two situations: patients with clinical symptoms of high fever and erythema migrans (EM), and patients with neurological symptoms linked to the TBEv or a neuroborreliosis. No impact on severity was evidenced. Further studies are needed to better appreciate the frequency and the impact of co-infections between several tick-borne microorganisms.
Collapse
Affiliation(s)
- Pierre H. Boyer
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, F-67000 Strasbourg, France; (C.L.); (B.J.); (E.T.-R.)
- Correspondence:
| | - Cédric Lenormand
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, F-67000 Strasbourg, France; (C.L.); (B.J.); (E.T.-R.)
- Service de Dermatologie, Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Benoît Jaulhac
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, F-67000 Strasbourg, France; (C.L.); (B.J.); (E.T.-R.)
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Emilie Talagrand-Reboul
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, F-67000 Strasbourg, France; (C.L.); (B.J.); (E.T.-R.)
| |
Collapse
|
12
|
Eliassen KE, Ocias LF, Krogfelt KA, Wilhelmsson P, Dudman SG, Andreassen Å, Lindbak M, Lindgren PE. Tick-transmitted co-infections among erythema migrans patients in a general practice setting in Norway: a clinical and laboratory follow-up study. BMC Infect Dis 2021; 21:1044. [PMID: 34625049 PMCID: PMC8501555 DOI: 10.1186/s12879-021-06755-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Background Erythema migrans (EM) is the most common manifestation of Lyme borreliosis. Here, we examined EM patients in Norwegian general practice to find the proportion exposed to tick-transmitted microorganisms other than Borrelia, and the impact of co-infection on the clinical manifestations and disease duration. Methods Skin biopsies from 139/188 EM patients were analyzed using PCR for Neoehrlichia mikurensis, Rickettsia spp., Anaplasma phagocytophilum and Babesia spp. Follow-up sera from 135/188 patients were analyzed for spotted fever group (SFG) Rickettsia, A. phagocytophilum and Babesia microti antibodies, and tested with PCR if positive. Day 0 sera from patients with fever (8/188) or EM duration of ≥ 21 days (69/188) were analyzed, using PCR, for A. phagocytophilum, Rickettsia spp., Babesia spp. and N. mikurensis. Day 14 sera were tested for TBEV IgG. Results We detected no microorganisms in the skin biopsies nor in the sera of patients with fever or prolonged EM duration. Serological signs of exposure against SFG Rickettsia and A. phagocytophilum were detected in 11/135 and 8/135, respectively. Three patients exhibited both SFG Rickettsia and A. phagocytophilum antibodies, albeit negative PCR. No antibodies were detected against B. microti. 2/187 had TBEV antibodies without prior immunization. There was no significant increase in clinical symptoms or disease duration in patients with possible co-infection. Conclusions Co-infection with N. mikurensis, A. phagocytophilum, SFG Rickettsia, Babesia spp. and TBEV is uncommon in Norwegian EM patients. Despite detecting antibodies against SFG Rickettsia and A. phagocytophilum in some patients, no clinical implications could be demonstrated.
Collapse
Affiliation(s)
- Knut Eirik Eliassen
- Department of Global Public Health and Primary Care, University of Bergen, PO Box 7804, 5020, Bergen, Norway.
| | - Lukas Frans Ocias
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2100, Copenhagen, Denmark.,Department of Clinical Microbiology, Karlstad Hospital, Region Värmland, 65230, Karlstad, Sweden
| | - Karen A Krogfelt
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2100, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden.,Department of Clinical Microbiology, Laboratory Medicine, County Hospital Ryhov, 55185, Jönköping, Sweden
| | - Susanne Gjeruldsen Dudman
- Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.,Department of Microbiology, Oslo University Hospital Rikshospitalet, 0424, Oslo, Norway
| | - Åshild Andreassen
- Department of Virology and Infection Immunology, Norwegian Institute of Public Health, 0213, Oslo, Norway.,Faculty of Technology, Natural Sciences and Maritime Technology-INMH, University of South-Eastern Norway-Campus Bø, 3800, Bø, Norway
| | - Morten Lindbak
- Antibiotic Centre for Primary Care, Department of General Practice, Institute of Health and Society, University of Oslo, 0316, Oslo, Norway
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden.,Department of Clinical Microbiology, Laboratory Medicine, County Hospital Ryhov, 55185, Jönköping, Sweden
| |
Collapse
|
13
|
Lejal E, Chiquet J, Aubert J, Robin S, Estrada-Peña A, Rue O, Midoux C, Mariadassou M, Bailly X, Cougoul A, Gasqui P, Cosson JF, Chalvet-Monfray K, Vayssier-Taussat M, Pollet T. Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions. MICROBIOME 2021; 9:153. [PMID: 34217365 PMCID: PMC8254910 DOI: 10.1186/s40168-021-01051-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions. METHODS Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community. RESULTS Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia. Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia, Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus. CONCLUSIONS We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases. Video abstract.
Collapse
Affiliation(s)
- E Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - J Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - J Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - S Robin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - A Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - O Rue
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - C Midoux
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, Antony, France
| | - M Mariadassou
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - X Bailly
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - A Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - P Gasqui
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - J F Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - K Chalvet-Monfray
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | | | - T Pollet
- UMR ASTRE, CIRAD, INRAE, Campus de Baillarguet, Montpellier, France.
| |
Collapse
|
14
|
Hoornstra D, Harms MG, Gauw SA, Wagemakers A, Azagi T, Kremer K, Sprong H, van den Wijngaard CC, Hovius JW. Ticking on Pandora's box: a prospective case-control study into 'other' tick-borne diseases. BMC Infect Dis 2021; 21:501. [PMID: 34051756 PMCID: PMC8164744 DOI: 10.1186/s12879-021-06190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne pathogens other than Borrelia burgdorferi sensu lato - the causative agent of Lyme borreliosis - are common in Ixodes ricinus ticks. How often these pathogens cause human disease is unknown. In addition, diagnostic tools to identify such diseases are lacking or reserved to research laboratories. To elucidate their prevalence and disease burden, the study 'Ticking on Pandora's Box' has been initiated, a collaborative effort between Amsterdam University Medical Center and the National Institute for Public Health and the Environment. METHODS The study investigates how often the tick-borne pathogens Anaplasma phagocytophilum, Babesia species, Borrelia miyamotoi, Neoehrlichia mikurensis, spotted fever group Rickettsia species and/or tick-borne encephalitis virus cause an acute febrile illness after tick-bite. We aim to determine the impact and severity of these tick-borne diseases in the Netherlands by measuring their prevalence and describing their clinical picture and course of disease. The study is designed as a prospective case-control study. We aim to include 150 cases - individuals clinically suspected of a tick-borne disease - and 3 matched healthy control groups of 200 persons each. The controls consist respectively of a group of individuals with either a tick-bite without complaints, the general population and of healthy blood donors. During a one-year follow-up we will acquire blood, urine and skin biopsy samples and ticks at baseline, 4 and 12 weeks. Additionally, participants answer modified versions of validated questionnaires to assess self-reported symptoms, among which the SF-36, on a 3 monthly basis. DISCUSSION This article describes the background and design of the study protocol of 'Ticking on Pandora's Box'. With our study we hope to provide insight into the prevalence, clinical presentation and disease burden of the tick-borne diseases anaplasmosis, babesiosis, B. miyamotoi disease, neoehrlichiosis, rickettsiosis and tick-borne encephalitis and to assist in test development as well as provide recommendations for national guidelines. TRIAL REGISTRATION NL9258 (retrospectively registered at Netherlands Trial Register, trialregister.nl in in February 2021).
Collapse
Affiliation(s)
- D Hoornstra
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands.
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands.
| | - M G Harms
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - S A Gauw
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| | - A Wagemakers
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| | - T Azagi
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - K Kremer
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - H Sprong
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - C C van den Wijngaard
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - J W Hovius
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Moniuszko-Malinowska A, Dunaj J, Andersson MO, Czupryna P, Zajkowska J, Guziejko K, Garkowski A, Grygorczuk S, Kondrusik M, Pancewicz S. Assessment of Anaplasma phagocytophilum presence in early Lyme borreliosis manifested by erythema migrans skin lesions. Travel Med Infect Dis 2020; 36:101648. [PMID: 32247015 DOI: 10.1016/j.tmaid.2020.101648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate to what extent early Lyme borreliosis patients with erythema migrans are infected with Anaplasma phagocytophilum. METHODS Three hundred ten patients from Poland with erythema migrans were included in the study. One hundred and eighty-three patients (59%) agreed to have both skin biopsy and blood samples analysed for Borrelia burgdorferi, A. phagocytophilum and 'Candidatus Neoehrlichia mikurensis', with PCR. Positive samples were confirmed with sequencing. RESULTS B. burgdorferi DNA was detected in 49.7% of the skin samples and in 1.1% of the blood samples. A. phagocytophilum DNA was found in 7.1% blood samples, and in 8.2% of the skin biopsies. In four patients, A. phagocytophilum DNA was detected only in blood; in one case A. phagocytophilum DNA was found simultaneously in blood and skin, and additionally in this patients' blood Borrelia DNA was detected. In four skin samples B. burgdorferi DNA was detected simultaneously with A. phagocytophilum DNA, indicative of a co-infection. CONCLUSIONS A. phagocytophilum may be present in early Lyme borreliosis characterized by erythema migrans and should always be considered as a differential diagnostic following a tick bite and considered in treatment schemes, as these differs (in early stage of Lyme borreliosis doxycycline, amoxicillin, cefuroxime axetil and azithromycin are recommended, while in anaplasmosis the most effective courses of treatment are doxycycline, rifampin and levofloxacin). Consequently, the role of A. phagocytophilum in erythema migrans should be further studied.
Collapse
Affiliation(s)
- Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Katarzyna Guziejko
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Adam Garkowski
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Maciej Kondrusik
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
16
|
Frątczak M, Vargová B, Tryjanowski P, Majláth I, Jerzak L, Kurimský J, Cimbala R, Jankowiak Ł, Conka Z, Majláthová V. Infected Ixodes ricinus ticks are attracted by electromagnetic radiation of 900 MHz. Ticks Tick Borne Dis 2020; 11:101416. [PMID: 32209348 DOI: 10.1016/j.ttbdis.2020.101416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023]
Abstract
The electromagnetic field (EMF) is known to influence functions of the nervous, cardiovascular and reproductive systems of many animals, including ticks. The aim of this study was to test the behavior of ticks in the presence of radio-frequency EMF. For testing, 160 adult male and 140 adult female unfed Ixodes ricinus ticks were used. Individuals were exposed to 900 MHz EMF in the Radiation-Shielded Tube (RST). Ticks were attracted to the irradiated area. This effect was significantly stronger for ticks infected with Rickettsia spp., suggesting that pathogens can alter the ticks' response to environmental stimuli. These results lead to the question of whether man-made EMF may have an impact on I. ricinus activity and, as such, be a contributing factor to the ongoing changes in the distribution of the tick and its pathogens currently observed in Europe and elsewhere.
Collapse
Affiliation(s)
- Martyna Frątczak
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland
| | - Blažena Vargová
- Centre of Applied Science, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland
| | - Igor Majláth
- Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 80 Kosice, Slovakia
| | - Leszek Jerzak
- Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana St. 1, 65-516 Zielona Góra, Poland
| | - Juraj Kurimský
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, 041 20 Kosice, Slovakia
| | - Roman Cimbala
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, 041 20 Kosice, Slovakia
| | - Łukasz Jankowiak
- Department of Vertebrate Anatomy and Zoology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| | - Zsolt Conka
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, 041 20 Kosice, Slovakia
| | - Viktória Majláthová
- Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 80 Kosice, Slovakia.
| |
Collapse
|
17
|
Kim SW, Kim CM, Kim DM, Yun NR. Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi. Am J Trop Med Hyg 2020; 101:332-335. [PMID: 31219004 DOI: 10.4269/ajtmh.18-0631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing.
Collapse
Affiliation(s)
- Seok Won Kim
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Na Ra Yun
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Azagi T, Hoornstra D, Kremer K, Hovius JWR, Sprong H. Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens 2020; 9:pathogens9020150. [PMID: 32102367 PMCID: PMC7168666 DOI: 10.3390/pathogens9020150] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
In Europe, Ixodes ricinus ticks transmit pathogens such as Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV). In addition, there is evidence for transmission to humans from I. ricinus of Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Babesia venatorum, Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis. However, whether infection with these potential tick-borne pathogens results in human disease has not been fully demonstrated for all of these tick-borne microorganisms. To evaluate the available evidence for a causative relation between infection and disease, the current study analyses European case reports published from 2008 to 2018, supplemented with information derived from epidemiological and experimental studies. The evidence for human disease causality in Europe found in this review appeared to be strongest for A. phagocytophilum and B. divergens. Nonetheless, some knowledge gaps still exist. Importantly, comprehensive evidence for pathogenicity is lacking for the remaining tick-borne microorganisms. Such evidence could be gathered best through prospective studies, for example, studies enrolling patients with a fever after a tick bite, the development of specific new serological tools, isolation of these microorganisms from ticks and patients and propagation in vitro, and through experimental studies.
Collapse
Affiliation(s)
- Tal Azagi
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven 3720 BA, The Netherlands; (K.K.); (H.S.)
- Correspondence:
| | - Dieuwertje Hoornstra
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers Location Academic Medical Center, Amsterdam 1105 AZ, The Netherlands; (D.H.); (J.W.R.H.)
| | - Kristin Kremer
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven 3720 BA, The Netherlands; (K.K.); (H.S.)
| | - Joppe W. R. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers Location Academic Medical Center, Amsterdam 1105 AZ, The Netherlands; (D.H.); (J.W.R.H.)
| | - Hein Sprong
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven 3720 BA, The Netherlands; (K.K.); (H.S.)
| |
Collapse
|
19
|
Lejal E, Marsot M, Chalvet-Monfray K, Cosson JF, Moutailler S, Vayssier-Taussat M, Pollet T. A three-years assessment of Ixodes ricinus-borne pathogens in a French peri-urban forest. Parasit Vectors 2019; 12:551. [PMID: 31752997 PMCID: PMC6873405 DOI: 10.1186/s13071-019-3799-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the predominant tick species in Europe and the primary pathogen vector for both humans and animals. These ticks are frequently involved in the transmission of Borrelia burgdorferi (sensu lato), the causative agents of Lyme borreliosis. While much more is known about I. ricinus tick-borne pathogen composition, information about temporal tick-borne pathogen patterns remain scarce. These data are crucial for predicting seasonal/annual patterns which could improve understanding and prevent tick-borne diseases. METHODS We examined tick-borne pathogen (TBP) dynamics in I. ricinus collected monthly in a peri-urban forest over three consecutive years. In total, 998 nymphs were screened for 31 pathogenic species using high-throughput microfluidic real-time PCR. RESULTS We detected DNA from Anaplasma phagocytophilum (5.3%), Rickettsia helvetica (4.5%), Borrelia burgdorferi (s.l.) (3.7%), Borrelia miyamotoi (1.2%), Babesia venatorum (1.5%) and Rickettsia felis (0.1%). Among all analysed ticks, 15.9% were infected by at least one of these microorganisms, and 1.3% were co-infected. Co-infections with B. afzeli/B. garinii and B. garinii/B. spielmanii were significantly over-represented. Moreover, significant variations in seasonal and/or inter-annual prevalence were observed for several pathogens (R. helvetica, B. burgdorferi (s.l.), B. miyamotoi and A. phagocytophilum). CONCLUSIONS Analysing TBP prevalence in monthly sampled tick over three years allowed us to assess seasonal and inter-annual fluctuations of the prevalence of TBPs known to circulate in the sampled area, but also to detect less common species. All these data emphasize that sporadic tick samplings are not sufficient to determine TBP prevalence and that regular monitoring is necessary.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, ANSES, University Paris Est, Maisons-Alfort, France
| | - Karine Chalvet-Monfray
- UMR EPIA, VetAgro Sup, INRA, Université de Lyon, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
20
|
Ocias LF, Wilhelmsson P, Sjöwall J, Henningsson AJ, Nordberg M, Jørgensen CS, Krogfelt KA, Forsberg P, Lindgren PE. Emerging tick-borne pathogens in the Nordic countries: A clinical and laboratory follow-up study of high-risk tick-bitten individuals. Ticks Tick Borne Dis 2019; 11:101303. [PMID: 31631052 DOI: 10.1016/j.ttbdis.2019.101303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Despite the presence of several microorganisms, other than Borrelia burgdorferi sensu lato (Bbsl) and TBE virus, in Ixodes ricinus ticks from the Nordic countries, data is lacking on their pathogenic potential in humans. In this study, we wanted to investigate the aetiology and clinical manifestations of tick-transmitted infections in individuals seeking medical care following a tick-bite. The sampling frame was participants of a large-scale, prospective, multi-centre, follow-up study of tick-bitten volunteers recruited in Sweden, Finland and Norway in the years 2007-2015. Participants who sought medical care during the three-month follow-up period and from whom blood samples were collected during this healthcare visit (n = 92) were tested, using PCR, for exposure to spotted fever group (SFG) Rickettsia spp., Anaplasma phagocytophilum and Babesia spp. Moreover, 86 of these individuals had two serum samples, collected three months apart, tested serologically for six tick-borne microorganisms. The selected organisms - Bbsl, SFG rickettsiae, Anaplasma phagocytophilum, TBE virus, Babesia microti and Bartonella henselae - have all been detected in field-collected ticks from the Nordic countries. Medical records were reviewed and questionnaires were completed to determine clinical manifestations. We found Lyme borreliosis to be the most common tick-transmitted infection as seen in 46 (54%) of the 86 participants with available medical records. Among the 86 participants with paired sera, serological or molecular evidence of recent exposure to other microorganisms than Bbsl could be demonstrated in eight (9%). Five participants (6%) exhibited serological evidence of recent concomitant exposure to more than one tick-borne microorganism. Clinical presentations were mild with one exception (TBE). In conclusion, our data suggest a low risk of infection with tick-borne microorganisms, other than Bbsl, in immunocompetent tick-bitten persons from the examined regions, a low occurrence of co-infection and mostly mild or no overt clinical signs of infection in immunocompetent persons exposed to the studied agents.
Collapse
Affiliation(s)
- Lukas Frans Ocias
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden; Department of Clinical Microbiology, County Hospital Ryhov, Sjukhusgatan, 55305 Jönköping, Sweden
| | - Johanna Sjöwall
- Clinic of Infectious Diseases, Linköping University Hospital, 58185 Linköping, Sweden
| | - Anna Jonsson Henningsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden; Department of Clinical Microbiology, County Hospital Ryhov, Sjukhusgatan, 55305 Jönköping, Sweden; Department of Clinical Microbiology, Linköping University Hospital, 58185 Linköping, Sweden
| | - Marika Nordberg
- The Åland Group for Borrelia Research, Åland Central Hospital, Doktorsvägen 2, 22110 Mariehamn, Åland, Finland
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Pia Forsberg
- Division of Infectious Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden; Department of Clinical Microbiology, County Hospital Ryhov, Sjukhusgatan, 55305 Jönköping, Sweden
| |
Collapse
|
21
|
Ocias LF, Dessau RB, Jørgensen CS, Krogfelt KA, Ornstein K. More than just Borrelia? A study of co-infection and etiology in erythema migrans patients from southernmost Sweden. Infect Dis (Lond) 2019; 51:618-621. [PMID: 31130039 DOI: 10.1080/23744235.2019.1617436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Lukas Frans Ocias
- a Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Artillerivej 5 , København S , 2300 , Denmark.,b Department of Clinical Microbiology , Rigshospitalet , Copenhagen , Denmark
| | - Ram Benny Dessau
- c Department of Clinical Microbiology , Slagelse Hospital , Slagelse , Denmark
| | - Charlotte Sværke Jørgensen
- a Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Artillerivej 5 , København S , 2300 , Denmark
| | - Karen Angeliki Krogfelt
- a Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Artillerivej 5 , København S , 2300 , Denmark.,d Department of Science and Environment , Roskilde University , Denmark
| | | |
Collapse
|
22
|
Alowaysi M, Chen J, Stark S, Teague K, LaCourse M, Proctor J, Vigil K, Corrigan J, Harding A, Li J, Kurtti T, Zhong J. Isolation and characterization of a Rickettsia from the ovary of a Western black-legged tick, Ixodes pacificus. Ticks Tick Borne Dis 2019; 10:918-923. [PMID: 31056486 DOI: 10.1016/j.ttbdis.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
A rickettsial isolate was obtained from a partially engorged Ixodes pacificus female, which was collected from Humboldt County, California. The isolate was provisionally named Rickettsia endosymbiont Ixodes pacificus (REIP). The REIP isolate displayed the highest nucleotide sequence identity to Rickettsia species phylotype G021 in I. pacificus (99%, 99%, and 100% for ompA, 16S rRNA, and gltA, respectively), a bacterium that was previously identified in I. pacifiucs by PCR. Analysis of sequences from complete opening frames of five genes, 16S rRNA, gltA, ompA, ompB, and sca4, provided inference to the bacteria's classification among other Rickettsia species. The REIP isolate displayed 99.8%, 99.4%, 99.2%, 99.5%, and 99.6% nucleotide sequence identity for 16S rRNA, gltA, ompA, ompB, and sca4 gene, respectively, with genes of 'R. monacensis' str. IrR/Munich, indicating the REIP isolate is closely related to 'R. monacensis'. Our suggestion was further supported by phylogenetic analysis using concatenated sequences of 16S rRNA, gltA, ompA, ompB, and sca4 genes, concatenated sequences of dksA-xerC, mppA-purC, and rpmE-tRNAfMet intergenic spacer regions. Both phylogenetic trees implied that the REIP isolate is most closely related to 'R. monacensis' str. IrR/Munich. We propose the bacterium be considered as 'Rickettsia monacensis' str. Humboldt for its closest phylogenetic relative (=DSM 103975 T = ATCC TSD-94 T).
Collapse
Affiliation(s)
- Maryam Alowaysi
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Junyan Chen
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Sierra Stark
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Kristine Teague
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Monique LaCourse
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Joanna Proctor
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Katie Vigil
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jeremy Corrigan
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Aja Harding
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jinze Li
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Timothy Kurtti
- Department of Entomology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jianmin Zhong
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA.
| |
Collapse
|
23
|
Ocias LF, Dessau RB, Lebech AM, Jørgensen CS, Petersen RF, Krogfelt KA. Evidence of rickettsiae in Danish patients tested for Lyme neuroborreliosis: a retrospective study of archival samples. BMC Infect Dis 2018; 18:325. [PMID: 29996782 PMCID: PMC6042448 DOI: 10.1186/s12879-018-3210-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With a prevalence of 4.7-13% in Danish Ixodes ricinus ticks, Rickettsia helvetica is one of the most frequently detected tick-borne organisms in Denmark. Most reports of human exposure have described asymptomatic seroconversion or a mild, self-limiting flu-like illness but it has also been implicated as a cause of subacute lymphocytic meningitis. Because Borrelia burgdorferi sensu lato (Bbsl) and R. helvetica are both found in the same tick species, potential co-transmission is a possibility. We examined 1) the seroprevalence of anti-rickettsia antibodies in patients investigated for Lyme neuroborreliosis (LNB), and 2) the cerebrospinal fluid (CSF) and sera of same patients for the presence of Rickettsia DNA. METHODS Ninety-nine sera and 87 CSF samples from patients with intrathecal synthesis of anti-Borrelia antibodies and 101 sera and 103 CSF samples from patients with no detectable intrathecal synthesis were retrospectively examined for this study. Sera were analyzed for antibodies against spotted fever group (SFG) rickettsiae and both the CSF and sera were tested for Rickettsia DNA using a genus-specific real-time PCR. RESULTS Of the patients tested for LNB, 32% (64/200) had IgG antibodies against SFG rickettsiae. Among patients with confirmed intrathecal synthesis of Borrelia-specific antibodies, 38% (38/99) exhibited IgG antibodies. None of these values were statistically significant when compared with sera from healthy blood donors (p = 0.7 and 0.19). Rickettsia DNA was found in the CSF of 4% (8/190) of patients. CONCLUSION No statistically significant difference was found in the seroprevalence of anti-rickettsia antibodies in patients tested for LNB and healthy blood donors, indicative of a low rate of exposure in this group of patients. Eight patients showed evidence of Rickettsia DNA in the CSF, five of whom had LNB. However, cycle threshold (Ct) values were high, indicating low concentrations of DNA, and no apparent alteration in the clinical manifestations of LNB were noted in the medical records of these patients.
Collapse
Affiliation(s)
- Lukas Frans Ocias
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark. .,Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark.
| | - Ram Benny Dessau
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark
| |
Collapse
|
24
|
Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME, Hovius JW. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit Vectors 2018; 11:145. [PMID: 29510749 PMCID: PMC5840726 DOI: 10.1186/s13071-018-2744-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022] Open
Abstract
Lyme borreliosis (LB) and other Ixodes ricinus-borne diseases (TBDs) are diseases that emerge from interactions of humans and domestic animals with infected ticks in nature. Nature, environmental and health policies at (inter)national and local levels affect the risk, disease burden and costs of TBDs. Knowledge on ticks, their pathogens and the diseases they cause have been increasing, and resulted in the discovery of a diversity of control options, which often are not highly effective on their own. Control strategies involving concerted actions from human and animal health sectors as well as from nature managers have not been formulated, let alone implemented. Control of TBDs asks for a “health in all policies” approach, both at the (inter)national level, but also at local levels. For example, wildlife protection and creating urban green spaces are important for animal and human well-being, but may increase the risk of TBDs. In contrast, culling or fencing out deer decreases the risk for TBDs under specific conditions, but may have adverse effects on biodiversity or may be societally unacceptable. Therefore, in the end, nature and health workers together must carry out tailor-made control options for the control of TBDs for humans and animals, with minimal effects on the environment. In that regard, multidisciplinary approaches in environmental, but also medical settings are needed. To facilitate this, communication and collaboration between experts from different fields, which may include patient representatives, should be promoted.
Collapse
Affiliation(s)
- Hein Sprong
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands. .,Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, the Netherlands.
| | - Tal Azagi
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Dieuwertje Hoornstra
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M Ewoud Baarsma
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Dunaj J, Moniuszko-Malinowska A, Swiecicka I, Andersson M, Czupryna P, Rutkowski K, Zambrowski G, Zajkowska J, Grygorczuk S, Kondrusik M, Świerzbińska R, Pancewicz S. Tick-borne infections and co-infections in patients with non-specific symptoms in Poland. Adv Med Sci 2018; 63:167-172. [PMID: 29120859 DOI: 10.1016/j.advms.2017.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/28/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
Abstract
AIM The aim of the study was the evaluation of the frequency of infections and co-infections among patients hospitalized because of non-specific symptoms after a tick bite. MATERIALS AND METHODS Whole blood, serum and cerebrospinal fluid samples from 118 patients hospitalised for non-specific symptoms up to 8 weeks after tick bite from 2010 to 2013 were examined for tick-borne infections. ELISA, Western blot and/or molecular biology (PCR; fla gene; 16S rRNA; sequencing) and thin blood smears (MDD) were used. Control group included 50 healthy blood donors. All controls were tested with PCR and serology according to the same procedure as in patients. RESULTS Out of 118 patients 85 (72%) experienced headaches, 15 (13%) vertigo, 32 (27%) nausea, 17 (14%) vomiting, 37 (31%) muscle pain, 73 (62%) fever and 26 (22%) meningeal signs. 47.5% were infected with at least one tick-borne pathogen. Borrelia burgdorferi sensu lato infection was confirmed with ELISA, Western blot in serum and/or (PCR (fla gene) in whole blood in 29.7% cases. In blood of 11.9% patients Anaplasma phagocytophilum DNA (16S rRNA gene) was detected; in 0.9% patients 1/118 Babesia spp. DNA (18S rRNA gene) was also detected. Co-infections were observed in 5.1% of patients with non-specific symptoms. B. burgdorferi s.l. - A. phagocytophilum co-infection (5/118; 4.2%) was most common. In 1/118 (0.8%) A. phagocytophilum - Babesia spp. co-infection was detected. All controls were negative for examined pathogens. CONCLUSIONS Non-specific symptoms after tick bite may be caused by uncommon pathogens or co-infection, therefore it should be considered in differential diagnosis after tick bite.
Collapse
|
26
|
Oechslin CP, Heutschi D, Lenz N, Tischhauser W, Péter O, Rais O, Beuret CM, Leib SL, Bankoul S, Ackermann-Gäumann R. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit Vectors 2017; 10:558. [PMID: 29121976 PMCID: PMC5680829 DOI: 10.1186/s13071-017-2500-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Background Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Results Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Conclusions Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite. Electronic supplementary material The online version of this article (10.1186/s13071-017-2500-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinne P Oechslin
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Heutschi
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Nicole Lenz
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland
| | - Werner Tischhauser
- ZHAW Life Science and Facility Management, Grüental, Wädenswil, Switzerland
| | - Olivier Péter
- retired, Infectious Diseases, Central Institute of Valais Hospitals, Sion, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Emile Argand, Neuchâtel, Switzerland
| | - Christian M Beuret
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Stephen L Leib
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland
| | - Sergei Bankoul
- Medical Services Directorate, Swiss Armed Forces, Ittigen, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland. .,Swiss National Reference Centre for tick-transmitted diseases, Spiez, Switzerland.
| |
Collapse
|
27
|
Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, Vayssier-Taussat M. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks. Front Cell Infect Microbiol 2017; 7:36. [PMID: 28261565 PMCID: PMC5306127 DOI: 10.3389/fcimb.2017.00036] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and “Candidatus Neoehrlichia mikurensis” (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite.
Collapse
Affiliation(s)
- Cristian Raileanu
- INRA, UMR Bipar, INRA, Anses, ENVAMaisons-Alfort, France; Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary MedicineIaşi, Romania
| | | | - Ionuţ Pavel
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | - Daniela Porea
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
| | - Gheorghe Savuta
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | | |
Collapse
|
28
|
Jahfari S, Krawczyk A, Coipan EC, Fonville M, Hovius JW, Sprong H, Takumi K. Enzootic origins for clinical manifestations of Lyme borreliosis. INFECTION GENETICS AND EVOLUTION 2016; 49:48-54. [PMID: 28040562 DOI: 10.1016/j.meegid.2016.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Abstract
Both early localized and late disseminated forms of Lyme borreliosis are caused by Borrelia burgdorferi senso lato. Differentiating between the spirochetes that only cause localized skin infection from those that cause disseminated infection, and tracing the group of medically-important spirochetes to a specific vertebrate host species, are two critical issues in disease risk assessment and management. Borrelia burgdorferi senso lato isolates from Lyme borreliosis cases with distinct clinical manifestations (erythema migrans, neuroborreliosis, acrodermatitis chronica atrophicans, and Lyme arthritis) and isolates from Ixodes ricinus ticks feeding on rodents, birds and hedgehogs were typed to the genospecies level by sequencing part of the intergenic spacer region. In-depth molecular typing was performed by sequencing eight additional loci with different characteristics (plasmid-bound, regulatory, and housekeeping genes). The most abundant genospecies and genotypes in the clinical isolates were identified by using odds ratio as a measure of dominance. Borrelia afzelii was the most common genospecies in acrodermatitis patients and engorged ticks from rodents. Borrelia burgdorferi senso stricto was widespread in erythema migrans patients. Borrelia bavariensis was widespread in neuroborreliosis patients and in ticks from hedgehogs, but rare in erythema migrans patients. Borrelia garinii was the dominant genospecies in ticks feeding on birds. Spirochetes in ticks feeding on hedgehogs were overrepresented in genotypes of the plasmid gene ospC from spirochetes in erythema migrans patients. Spirochetes in ticks feeding on hedgehogs were overrepresented in genotypes of ospA from spirochetes in acrodermatitis patients. Spirochetes from ticks feeding on birds were overrepresented in genotypes of the plasmid and regulatory genes dbpA, rpoN and rpoS from spirochetes in neuroborreliosis patients. Overall, the analyses of our datasets support the existence of at least three transmission pathways from an enzootic cycle to a clinical manifestation of Lyme borreliosis. Based on the observations with these nine loci, it seems to be justified to consider the population structure of B. burgdorferi senso lato as being predominantly clonal.
Collapse
Affiliation(s)
- Setareh Jahfari
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aleksandra Krawczyk
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - E Claudia Coipan
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Katsuhisa Takumi
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
29
|
Prevalence of Rickettsia spp. in Ticks and Serological and Clinical Outcomes in Tick-Bitten Individuals in Sweden and on the Åland Islands. PLoS One 2016; 11:e0166653. [PMID: 27846275 PMCID: PMC5113005 DOI: 10.1371/journal.pone.0166653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Tick-transmitted diseases are an emerging health problem, and the hard tick Ixodes ricinus is the main vector for Borrelia spp., tick-borne encephalitis virus and most of the spotted fever Rickettsiae in Europe. The aim of the present study was to examine the incidence of rickettsial infection in the southernmost and south central parts of Sweden and the Åland Islands in Finland, the risk of infection in humans and its correlation with a bite of a Rickettsia-infected tick, the self-reported symptoms of rickettsial disease, and the prevalence of co-infection between Rickettsia spp. and Borrelia spp. Persons with a recent tick bite were enrolled through public media and asked to answer a questionnaire, provide a blood sample and bring detached ticks at enlistment and at follow-up three months later. Blood samples were previously analysed for Borrelia spp. antibodies and, for this report, analysed for antibodies to Rickettsia spp. by immunofluorescence and in 16 cases also using Western Blot. Ninety-six (44.0%) of the 218 participants were seropositive for IgG antibodies to Rickettsia spp. Forty (18.3%) of the seropositive participants had increased titres at the follow-up, indicating recent/current infection, while four (1.8%) had titres indicating probable recent/current infection (≥1:256). Of 472 ticks, 39 (8.3%) were Rickettsia sp. positive. Five (31.3%) of 16 participants bitten by a Rickettsia-infected tick seroconverted. Experience of the self-reported symptoms nausea (p = 0.006) and radiating pain (p = 0.041) was more common among those with recent, current or probable infection compared to those who did not seroconvert. Participants who showed seroreactivity or seroconversion to Rickettsia spp. had more symptoms than those who were seronegative. Seven (3.2%) participants showed seroconversion to Borrelia spp., and three (1.4%) of these showed seroconversion to both Rickettsia spp. and Borrelia spp., in accordance with previous studies in Sweden. Symptoms of rickettsial disease were in most of the cases vague and general that were difficult to differentiate from other tick-borne diseases.
Collapse
|
30
|
Jahfari S, Hofhuis A, Fonville M, van der Giessen J, van Pelt W, Sprong H. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands. PLoS Negl Trop Dis 2016; 10:e0005042. [PMID: 27706159 PMCID: PMC5051699 DOI: 10.1371/journal.pntd.0005042] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tick-borne diseases are the most prevalent vector-borne diseases in Europe. Knowledge on the incidence and clinical presentation of other tick-borne diseases than Lyme borreliosis and tick-borne encephalitis is minimal, despite the high human exposure to these pathogens through tick bites. Using molecular detection techniques, the frequency of tick-borne infections after exposure through tick bites was estimated. METHODS Ticks, blood samples and questionnaires on health status were collected from patients that visited their general practitioner with a tick bite or erythema migrans in 2007 and 2008. The presence of several tick-borne pathogens in 314 ticks and 626 blood samples of this cohort were analyzed using PCR-based methods. Using multivariate logistic regression, associations were explored between pathogens detected in blood and self-reported symptoms at enrolment and during a three-month follow-up period. RESULTS Half of the ticks removed from humans tested positive for Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, Rickettsia monacensis, Borrelia miyamotoi and several Babesia species. Among 92 Borrelia burgdorferi s. l. positive ticks, 33% carried another pathogen from a different genus. In blood of sixteen out of 626 persons with tick bites or erythema migrans, DNA was detected from Candidatus Neoehrlichia mikurensis (n = 7), Anaplasma phagocytophilum (n = 5), Babesia divergens (n = 3), Borrelia miyamotoi (n = 1) and Borrelia burgdorferi s. l. (n = 1). None of these sixteen individuals reported any overt symptoms that would indicate a corresponding illness during the three-month follow-up period. No associations were found between the presence of pathogen DNA in blood and; self-reported symptoms, with pathogen DNA in the corresponding ticks (n = 8), reported tick attachment duration, tick engorgement, or antibiotic treatment at enrolment. CONCLUSIONS Based on molecular detection techniques, the probability of infection with a tick-borne pathogen other than Lyme spirochetes after a tick bite is roughly 2.4%, in the Netherlands. Similarly, among patients with erythema migrans, the probability of a co-infection with another tick-borne pathogen is approximately 2.7%. How often these infections cause disease symptoms or to what extend co-infections affect the course of Lyme borreliosis needs further investigations.
Collapse
Affiliation(s)
- Setareh Jahfari
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Agnetha Hofhuis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wilfrid van Pelt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
31
|
Mediterranean spotted fever-like illness in Sardinia, Italy: a clinical and microbiological study. Infection 2016; 44:733-738. [PMID: 27380385 DOI: 10.1007/s15010-016-0921-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Rickettsioses represent a group of emerging infectious diseases in Europe. Climate changes and the anthropization of rural environment have favored vectors' biological cycle and geographic spread. In Sardinia, Mediterranean spotted fever (MSF) is endemic and represents an important public health problem. PURPOSE We investigated the etiology and the clinical presentation of MSF-like illness in northern Sardinia by enrolling patients admitted to the Infectious Disease Unit of the University of Sassari. RESULTS Diagnostic tests included ELISA, Indirect immunofluorescence (IFI), DNA isolation from blood and from eschar samples with real-time PCR and genotyping. Eighty-seven patients with a mean age of 53 ± 14 years, of whom 65 (75 %) males, were included in the study. The most common diagnosis was MSF (79 %), followed by Q fever (8 %), and anaplasmosis (2 %). A tache noire was found in 58 % of rickettioses and 28 % of Coxiella burnetii infections. MSF was confirmed in 47 % of the cases by IFI and 43 % by ELISA antibody tests. The isolation of rickettsial DNA from the eschar was positive in 10/13 (77 %) of the cases due to Rickettsia conorii. Using this method, we identified the first case of R. monacensis infection in Italy. CONCLUSIONS In conclusion, antibody-based tests confirmed the diagnosis in less than 50 % of the cases, whereas DNA isolation confirmed the diagnosis in 77 % of tested cases and allowed the identification of a new pathogenic species in Italy. Therefore, DNA isolation should be implemented to better identify the etiology of MSF-like illnesses and help the clinician in the management of patients.
Collapse
|
32
|
Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers E, Cosson JF, Gasqui P, Van VT, Mavingui P, Vourc’h G, Vayssier-Taussat M. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl Trop Dis 2016; 10:e0004539. [PMID: 26986203 PMCID: PMC4795628 DOI: 10.1371/journal.pntd.0004539] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 01/17/2023] Open
Abstract
Introduction Ticks are the most common arthropod vectors of both human and animal diseases in Europe, and the Ixodes ricinus tick species is able to transmit a large number of bacteria, viruses and parasites. Ticks may also be co-infected with several pathogens, with a subsequent high likelihood of co-transmission to humans or animals. However few data exist regarding co-infection prevalences, and these studies only focus on certain well-known pathogens. In addition to pathogens, ticks also carry symbionts that may play important roles in tick biology, and could interfere with pathogen maintenance and transmission. In this study we evaluated the prevalence of 38 pathogens and four symbionts and their co-infection levels as well as possible interactions between pathogens, or between pathogens and symbionts. Methodology/principal findings A total of 267 Ixodes ricinus female specimens were collected in the French Ardennes and analyzed by high-throughput real-time PCR for the presence of 37 pathogens (bacteria and parasites), by rRT-PCR to detect the presence of Tick-Borne encephalitis virus (TBEV) and by nested PCR to detect four symbionts. Possible multipartite interactions between pathogens, or between pathogens and symbionts were statistically evaluated. Among the infected ticks, 45% were co-infected, and carried up to five different pathogens. When adding symbiont prevalences, all ticks were infected by at least one microorganism, and up to eight microorganisms were identified in the same tick. When considering possible interactions between pathogens, the results suggested a strong association between Borrelia garinii and B. afzelii, whereas there were no significant interactions between symbionts and pathogens. Conclusion/significance Our study reveals high pathogen co-infection rates in ticks, raising questions about possible co-transmission of these agents to humans or animals, and their consequences to human and animal health. We also demonstrated high prevalence rates of symbionts co-existing with pathogens, opening new avenues of enquiry regarding their effects on pathogen transmission and vector competence. Ticks transmit more pathogens than any other arthropod, and one single species can transmit a large variety of bacteria and parasites. Because co-infection might be much more common than previously thought, we evaluated the prevalence of 38 known or neglected tick-borne pathogens in Ixodes ricinus ticks. Our results demonstrated that co-infection occurred in almost half of the infected ticks, and that ticks could be infected with up to five pathogens. Moreover, as it is well established that symbionts can affect pathogen transmission in arthropods, we also evaluated the prevalence of four symbiont species and demonstrated that all ticks were infected by at least one microorganism. This work highlights the co-infection phenomenon in ticks, which may have important implications for human and animal health, emphasizing the need for new diagnostic tests better adapted to tick-borne diseases. Finally, the high co-occurrence of symbionts and pathogens in ticks, reveals the necessity to also account for these interactions in the development of new alternative strategies to control ticks and tick-borne disease.
Collapse
Affiliation(s)
- Sara Moutailler
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | | | - Lorraine Michelet
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Florence Hélène Tran
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Elodie Devillers
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Jean-François Cosson
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
- CBGP, INRA, Vetagrosup, IRD F-34988 Montferrier-sur-Lez, France
| | | | - Van Tran Van
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
- Université de La Réunion, UMR PIMIT, INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint-Denis, La Réunion, France
| | | | | |
Collapse
|
33
|
Neglected tick-borne pathogens in the Czech Republic, 2011–2014. Ticks Tick Borne Dis 2016; 7:107-112. [DOI: 10.1016/j.ttbdis.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
|
34
|
Heylen D, Fonville M, van Leeuwen AD, Sprong H. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ Microbiol 2016; 18:988-96. [DOI: 10.1111/1462-2920.13164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/19/2015] [Accepted: 11/27/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group; Department of Biology; University of Antwerp; Antwerpen Belgium
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology; National Institute for Public Health and Environment (RIVM); Bilthoven the Netherlands
| | - Arieke Docters van Leeuwen
- Laboratory for Zoonoses and Environmental Microbiology; National Institute for Public Health and Environment (RIVM); Bilthoven the Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology; National Institute for Public Health and Environment (RIVM); Bilthoven the Netherlands
| |
Collapse
|
35
|
Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson JF, Bonnet S, Vourch G, Gasqui P, Mihalca AD, Plantard O, Silaghi C, Cutler S, Rizzoli A. Emerging horizons for tick-borne pathogens: from the 'one pathogen-one disease' vision to the pathobiome paradigm. Future Microbiol 2015; 10:2033-43. [PMID: 26610021 DOI: 10.2217/fmb.15.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks.
Collapse
Affiliation(s)
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zdenek Hubalek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Sándor Hornok
- Department of Parasitology & Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Robert Farkas
- Department of Parasitology & Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | | | - Sarah Bonnet
- INRA, UMR BIPAR, INRA, ANSES, ENVA Maisons-Alfort, France
| | - Gwenaël Vourch
- INRA, UR 346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Patrick Gasqui
- INRA, UR 346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Andrei Daniel Mihalca
- University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca, Department of Parasitology & Parasitic Diseases, Cluj-Napoca, Romania
| | | | - Cornelia Silaghi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Zürich, Switzerland
| | - Sally Cutler
- University of East London, School of Health, Sport & Bioscience, London, UK
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research & Innovation Centre, San Michele all'Adige, Trento, Italy
| |
Collapse
|
36
|
Portillo A, Santibáñez S, García-Álvarez L, Palomar AM, Oteo JA. Rickettsioses in Europe. Microbes Infect 2015; 17:834-8. [PMID: 26384814 DOI: 10.1016/j.micinf.2015.09.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022]
Abstract
Bacteria of the genera Rickettsia and Orientia (family rickettsiaceae, order rickettsiales) cause rickettsioses worldwide, and are transmitted by lice, fleas, ticks and mites. In Europe, only Rickettsia spp. cause rickettsioses. With improvement of hygiene, the risk of louse-borne rickettsiosis (epidemic typhus) is low in Europe. Nevertheless, recrudescent form of Rickettsia prowazekii infection persists. There could be an epidemic typhus outbreak if a body lice epidemic occurs under unfavorable sanitary conditions. In Europe, endemic typhus or Rickettsia typhi infection, transmitted by rats and fleas, causes febrile illness. At the beginning of this century, flea-borne spotted fever cases caused by Rickettsia felis were diagnosed. Flea-borne rickettsiosis should be suspected after flea bites if fever, with or without rash, is developed. Tick-borne rickettsioses are the main source of rickettsia infections in Europe. Apart from Rickettsia conorii, the Mediterranean Spotted Fever (MSF) agent, other Rickettsia spp. cause MSF-like: Rickettsia helvetica, Rickettsia monacensis, Rickettsia massiliae or Rickettsia aeschlimannii. In the 1990s, two 'new' rickettsioses were diagnosed: Lymphangitis Associated Rickettsiosis (LAR) caused by Rickettsia sibirica mongolitimonae, and Tick-Borne Lymphadenopathy/Dermacentor-Borne-Necrosis-Erythema-Lymphadenopathy/Scalp Eschar Neck Lymphadenopathy (TIBOLA/DEBONEL/SENLAT), caused by Rickettsia slovaca, Candidatus Rickettsia rioja and Rickettsia raoultii. Lastly, European reports about mite-borne rickettsiosis are scarce.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Infectious Diseases Department, Hospital San Pedro-CIBIR, Logroño, Spain
| | - Sonia Santibáñez
- Infectious Diseases Department, Hospital San Pedro-CIBIR, Logroño, Spain
| | | | - Ana M Palomar
- Infectious Diseases Department, Hospital San Pedro-CIBIR, Logroño, Spain
| | - José A Oteo
- Infectious Diseases Department, Hospital San Pedro-CIBIR, Logroño, Spain.
| |
Collapse
|
37
|
Borgermans L, Goderis G, Vandevoorde J, Devroey D. Relevance of chronic lyme disease to family medicine as a complex multidimensional chronic disease construct: a systematic review. INTERNATIONAL JOURNAL OF FAMILY MEDICINE 2014; 2014:138016. [PMID: 25506429 PMCID: PMC4258916 DOI: 10.1155/2014/138016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Lyme disease has become a global public health problem and a prototype of an emerging infection. Both treatment-refractory infection and symptoms that are related to Borrelia burgdorferi infection remain subject to controversy. Because of the absence of solid evidence on prevalence, causes, diagnostic criteria, tools and treatment options, the role of autoimmunity to residual or persisting antigens, and the role of a toxin or other bacterial-associated products that are responsible for the symptoms and signs, chronic Lyme disease (CLD) remains a relatively poorly understood chronic disease construct. The role and performance of family medicine in the detection, integrative treatment, and follow-up of CLD are not well studied either. The purpose of this paper is to describe insights into the complexity of CLD as a multidimensional chronic disease construct and its relevance to family medicine by means of a systematic literature review.
Collapse
Affiliation(s)
- Liesbeth Borgermans
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Geert Goderis
- Department of General Practice and University Hospitals Leuven, Katholieke Universiteit Leuven (KUL), Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Jan Vandevoorde
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dirk Devroey
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
38
|
Vector competence of the tick Ixodes sinensis (Acari: Ixodidae) for Rickettsia monacensis. Parasit Vectors 2014; 7:512. [PMID: 25406413 PMCID: PMC4237728 DOI: 10.1186/s13071-014-0512-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cases of Mediterranean Spotted Fever like rickettsioses, caused by Rickettsia monacensis, have become more common in the last 10 years. In China, natural infection of R. monacensis in various tick species has been confirmed but the vector(s) of R. monacensis have not been recorded. METHODS The prevalence of R. monacensis in >1500 Ixodidae ticks from central and southern China was determined using centrifugation-shell vial culture and polymerase chain reaction techniques. The predominant species, Ixodes sinensis, harbored a natural infection of R. monacensis and was assumed to be a vector candidate of R. monacensis. Experimental transmissions were initialized by infecting Rickettsia-free tick colonies with R. monacensis using capillary tube feeding (CTF) or immersion techniques. Transstadial and transovarial transmissions, and transmission from ticks to mice, were conducted under laboratory conditions. RESULTS R. monacensis was isolated and identified from hemolymph of Ixodes sinensis using molecular techniques. Transovarial transmission of R. monacensis from infected ♀I. sinensis to offspring was documented and infected offspring successfully passed Rickettsia to mice. Transstadial transmission rates were 58% in larva to nymph and 56% in nymph to adult stages. Infected nymphs and adults were also able to infect mice. CONCLUSIONS I. sinensis is a competence vector for R. monacensis as demonstrated by natural infection and transmission studies.
Collapse
|
39
|
Welc-Falęciak R, Kowalec M, Karbowiak G, Bajer A, Behnke JM, Siński E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit Vectors 2014; 7:121. [PMID: 24661311 PMCID: PMC3994390 DOI: 10.1186/1756-3305-7-121] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/05/2014] [Indexed: 01/13/2023] Open
Abstract
Background Ixodes ricinus is a major vector for a range of microbial pathogens and the most prevalent and widely distributed tick species on the European continent, occurring in both natural and urban habitats. Nevertheless, little is known about the relative density of ticks in these two ecologically distinct habitats and the diversity of tick-borne pathogens that they carry. Methods We compared densities of questing I. ricinus nymphs and adults in urban and natural habitats in Central and Northeastern Poland, assessed the prevalence and rate of co-infection with A. phagocytophilum, Rickettsia, Ehrlichia and ‘Ca. Neoehrlichia spp.’ in ticks, and compared the diversity of tick-borne pathogens using molecular assays (PCR). Results Of the 1325 adults and nymphs, 6.2% were infected with at least one pathogen, with 4.4%, 1.7% and less than 0.5% being positive for the DNA of Rickettsia spp., A. phagocytophilum, Ehrlichia spp. and Ca. N. mikurensis, respectively. Although tick abundance was higher in natural habitats, the prevalence of the majority of pathogens was higher in urban forested areas. Conclusion We conclude that: (i) zoonotic genetic variants of A. phagocytophilum are widely distributed in the Polish tick population, (ii) although the diversity of tick borne pathogens was higher in natural habitats, zoonotic species/strains were detected only in urban forests, (iii) and we provide the first description of Ca. N. mikurensis infections in ticks in Poland.
Collapse
Affiliation(s)
- Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|