1
|
Hu Y, Zhan RJ, Lu SL, Zhang YY, Zhou MY, Huang H, Wang DD, Zhang T, Huang ZX, Zhou YF, Lv ZY. Global distribution of zoonotic digenetic trematodes: a scoping review. Infect Dis Poverty 2024; 13:46. [PMID: 38877531 PMCID: PMC11177464 DOI: 10.1186/s40249-024-01208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Rong-Jian Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Lin Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yi-Yang Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Min-Yu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Ding-Ding Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Tao Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zi-Xin Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yun-Fei Zhou
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, China
| | - Zhi-Yue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
Ibrahim K, Chatanga E, Mohamed NS, Ahmed A, Alasmari S, Almathen F, Nakao R, Salim B. Intra- and interspecies variation and population dynamics of Fasciola gigantica among ruminants in Sudan. Parasitol Res 2024; 123:210. [PMID: 38743097 DOI: 10.1007/s00436-024-08201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.
Collapse
Affiliation(s)
- Kamal Ibrahim
- Central Veterinary Research Laboratory, Khartoum, Sudan
| | - Elisha Chatanga
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo, Hokkaido, 060-0818, Japan
- Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Nouh S Mohamed
- Molecular Biology Unit, Sirius Training and Research Center, Khartoum, Sudan
| | - Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Saeed Alasmari
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, 1988, Kingdom of Saudi Arabia
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ryo Nakao
- Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan.
- Camel Research Center, King Faisal University, Al-Hofuf, Al-Hasa, Saudi Arabia.
| |
Collapse
|
3
|
Lyngdoh D, Sharma S, Roy B, Tandon V, Zas P. Secondary Structure Analysis of Fasciola from Semi-wild Ruminants of Northeast India. Acta Parasitol 2024; 69:599-608. [PMID: 38261242 DOI: 10.1007/s11686-023-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE The objective of this study is to study the secondary structure analysis of Fasciola flukes from a rare mithun host from Manipur. Fascioliasis, a neglected tropical trematodiasis, is poorly studied in India and is widely believed to be predominantly caused by F. gigantica. Through this study, we want to assess the flukes from the rare semi-wild ruminants of Northeast India. This study is important as the mithun population is semi-wild and its population is declining in Manipur. METHODS Sample collected from the difficult and challenging terrain of Northeast India. The sample was collected from mithun and observed under the microscope. DNA was isolated, sequenced, and analyzed using various bioinformatics tools. The secondary structure analysis of the Internal Transcribed Spacer 2 (ITS2) region was also performed. RESULTS The secondary structure species tree corroborated the Bayesian inference and, hence, strengthened the phylogeny reconstructed. The annotated ITS2 sequence and RNA secondary of the Manipur isolate displayed the typical four-helix or four-domain model. Helix III reveals the presence of the UGGU motif with other deviations like UGG and GGU. CONCLUSION This is an in-depth analysis of the secondary structure of Fasciola species. The present study has demonstrated the usefulness of ITS2 and its secondary structures for characterizing parasites. The information on fascioliasis in the mithun's population presents itself useful with regards to their conservation strategy as their populations in both Manipur and Nagaland are dwindling.
Collapse
Affiliation(s)
- Damanbha Lyngdoh
- Department of Zoology, St. Anthony's College, Shillong, 793001, Meghalaya, India.
| | - Sunil Sharma
- Biotech Hub, St. Edmund's College, Shillong, 793003, Meghalaya, India
| | - Bishnupada Roy
- Department of Zoology, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Veena Tandon
- NASI Senior Scientist Platinum Jubilee Fellow, Mahanagar, Uttar Pradesh, Lucknow, 226006, India
| | - Philayung Zas
- Department of Zoology, William Carey University, Shillong, 793019, Meghalaya, India
| |
Collapse
|
4
|
Huang F, Li X, Ye B, Zhou Y, Dang Z, Tang W, Wang L, Zhang H, Chui W, Kui J. Characterization of the Complete Mitochondrial Genome and Phylogenetic Analyses of Eurytrema coelomaticum (Trematoda: Dicrocoeliidae). Genes (Basel) 2023; 14:2199. [PMID: 38137020 PMCID: PMC10743053 DOI: 10.3390/genes14122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Eurytrema coelomaticum, a pancreatic fluke, is recognized as a causative agent of substantial economic losses in ruminants. This infection, commonly referred to as eurytrematosis, is a significant concern due to its detrimental impact on livestock production. However, there is a paucity of knowledge regarding the mitochondrial genome of E. coelomaticum. In this study, we performed the initial sequencing of the complete mitochondrial genome of E. coelomaticum. Our findings unveiled that the mitochondrial genome of E. coelomaticum spans a length of 15,831 bp and consists of 12 protein-coding genes, 22 tRNA genes, two rRNA genes, and two noncoding regions. The A+T content constituted 62.49% of the genome. Moreover, all 12 protein-coding genes of E. coelomaticum exhibit the same arrangement as those of E. pancreaticum and other published species belonging to the family Dicrocoeliidae. The presence of a short string of additional amino acids (approximately 20~23 aa) at the N-terminal of the cox1 protein in both E. coelomaticum and E. pancreaticum mitochondrial genomes has contributed to the elongation of the cox1 gene in genus Eurytrema, surpassing that of all previously sequenced Dicrocoeliidae. The phylogenetic analysis displayed a close relationship between E. coelomaticum and E. pancreaticum, along with a genus-level association between Eurytrema and Lyperosomum. These findings underscore the importance of mitochondrial genomic data for comparative studies of Dicrocoeliidae and even Digenea, offering valuable DNA markers for future investigations in the systematic, epidemiological, and population genetic studies of this parasite and other digenean trematodes.
Collapse
Affiliation(s)
- Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Bijin Ye
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Yule Zhou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China
| | - Long Wang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.)
| | - Wenting Chui
- Animal Disease Prevention and Control Center of Qinghai Province, Xining 810003, China
| | - Jun Kui
- Huangzhong District Animal Husbandry and Veterinary Station, Xining 811600, China
| |
Collapse
|
5
|
Atopkin DM, Semenchenko AA, Solodovnik DA, Ivashko YI. A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences. J Helminthol 2023; 97:e69. [PMID: 37655787 DOI: 10.1017/s0022149x23000500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
New data on the complete mitochondrial genome of Azygia robusta (Azygiidae) were obtained by the next-generation sequencing (NGS) approach. The mitochondrial DNA (mtDNA) of A. robusta had a length of 13 857 bp and included 12 protein-coding genes, two ribosomal genes, 22 transfer RNA genes, and two non-coding regions. The nucleotide sequences of the complete mitochondrial genomes of two A. robusta specimens differed from each other by 0.12 ± 0.03%. Six of 12 protein-coding genes demonstrated intraspecific variation. The difference between the nucleotide sequences of the complete mitochondrial genomes of A. robusta and Azygia hwangtsiyui was 26.95 ± 0.35%; the interspecific variation of protein-coding genes between A. robusta and A. hwangtsiyui ranged from 20.5 ± 0.9% (cox1) to 30.7 ± 1.2% (nad5). The observed gene arrangement in the mtDNA sequence of A. robusta was identical to that of A. hwangtsiyui. Codon usage and amino acid frequencies were highly similar between A. robusta and A. hwangtsiyui. The results of phylogenetic analyses based on mtDNA protein-coding regions showed that A. robusta is closely related to A. hwangtsiyui (belonging to the same suborder, Azygiida) that formed a distinct early-diverging branch relative to all other Digenea. A preliminary morphological analysis of paratypes of the two azygiid specimens studied showed visible morphological differences between them. The specimen extracted from Sakhalin taimen (Parahucho perryi) was most similar to A. robusta. Thus, we here provide the first record of a new definitive host, P. perryi, for A. robusta and also molecular characteristics of the trematode specimens.
Collapse
Affiliation(s)
- D M Atopkin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Cell Biology and Genetics, Far Eastern Federal University, Vladivostok, Russia
| | - A A Semenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - D A Solodovnik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Y I Ivashko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Gacad JLJ, Tanabe-Hosoi S, Yurlova NI, Urabe M. The complete mitogenome of Echinoparyphium aconiatum (Digenea: Echinostomatidae) and a comparison with other digenean species. Parasitol Int 2023; 92:102682. [DOI: 10.1016/j.parint.2022.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
7
|
An Q, Qiu YY, Lou Y, Jiang Y, Qiu HY, Zhang ZH, Li B, Zhang AH, Wei W, Chen YY, Gao JF, Wang CR. Characterization of the complete mitochondrial genomes of Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae): Comparison with the members of the superfamily Paramphistomoidea and phylogenetic implication. Int J Parasitol Parasites Wildl 2022; 19:9-17. [PMID: 35991946 PMCID: PMC9385452 DOI: 10.1016/j.ijppaw.2022.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae) are two important parasites in wood frogs, which have large infection rates and essential importance of ecology, economy and society. In this study, the complete mitochondrial (mt) genomes of D. japonicus and D. mehari were sequenced, then compared with other related trematodes in the superfamily Paramphistomoidea. The complete circular mt sequence of D. japonicus and D. mehari were 14,210 bp and 14,179 bp in length, respectively. Both mt genomes comprised 36 functional subunits, consisting of 12 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and one non-coding region. The mt genes of D. japonicus and D. mehari were transcribed in the same direction, and the gene arrangements were identical to those of Paramphistomoidea trematodes. In the 12 PCGs, GTG was the most common initiation codon, whereas TAG was the most common termination codon. All tRNAs had a typical cloverleaf structure except tRNA Ser1. A comparison with related Paramphistomoidea trematode mt genomes suggested that the cox1 gene of D. mehari was the longest in these trematodes. Phylogenetic analyses revealed that Paramphistomoidea trematodes formed a monophyletic branch, Paramphistomidae and Gastrothylacidae were more closely related than Diplodiscidae. And the further analysis with Pronocephalata branch found that the flukes parasitic in amphibians (frogs) formed one group, and the flukes from ruminants (cattle, sheep, ect) formed another group. Our study demonstrated the importance of sequencing mt genomes of D. japonicus and D. mehari, which will provide significant molecular resources for further studies of Paramphistomoidea taxonomy, population genetics and systematics. The complete mt genomes of Diplodiscus japonicus and D. mehari were determined first time. There is only one NCR in Diplodiscus japonicus and D. mehari complete mt genomes. Phylogenetic analyses revealed two monophyletic groups for the flukes parasitic in amphibians and ruminants.
Collapse
|
8
|
Le TH, Nguyen KT, Pham LTK, Doan HTT, Agatsuma T, Blair D. The complete mitogenome of the Asian lung fluke Paragonimus skrjabini miyazakii and its implications for the family Paragonimidae (Trematoda: Platyhelminthes). Parasitology 2022; 149:1709-1719. [PMID: 36101009 PMCID: PMC11010541 DOI: 10.1017/s0031182022001184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
The complete circular mitogenome of Paragonimus skrjabini miyazakii (Platyhelminthes: Paragonimidae) from Japan, obtained by PacBio long-read sequencing, was 17 591 bp and contained 12 protein-coding genes (PCGs), 2 mitoribosomal RNA and 22 transfer RNA genes. The atp8 gene was absent, and there was a 40 bp overlap between nad4L and nad4. The long non-coding region (4.3 kb) included distinct types of long and short repeat units. The pattern of base usage for PCGs and the mtDNA coding region overall in Asian and American Paragonimus species (P. s. miyazakii, P. heterotremus, P. ohirai and P. kellicotti) and the Indian form of P. westermani was T > G > A > C. On the other hand, East-Asian P. westermani used T > G > C > A. Five Asian and American Paragonimus species and P. westermani had TTT/Phe, TTG/Leu and GTT/Val as the most frequently used codons, whereas the least-used codons were different in each species and between regional forms of P. westermani. The phylogenetic tree reconstructed from a concatenated alignment of amino acids of 12 PCGs from 36 strains/26 species/5 families of trematodes confirmed that the Paragonimidae is monophyletic, with 100% nodal support. Paragonimus skrjabini miyazakii was resolved as a sister to P. heterotremus. The P. westermani clade was clearly separate from remaining congeners. The latter clade was comprised of 2 subclades, one of the East-Asian and the other of the Indian Type 1 samples. Additional mitogenomes in the Paragonimidae are needed for genomic characterization and are useful for diagnostics, identification and genetic/ phylogenetic/ epidemiological/ evolutionary studies of the Paragonimidae.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
The complete mitochondrial genome of Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae), their features and phylogenetic relationships in the superfamily Microphalloidea. Acta Trop 2022; 232:106469. [PMID: 35430263 DOI: 10.1016/j.actatropica.2022.106469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae) are common flukes of poultry and other birds which can cause severe impacts on animal health and losses to the poultry industry. However, there are limited studies on the molecular epidemiology, population genetics, and systematics of Prosthogonimus species. In the present study, the complete mitochondrial (mt) genomes of P. cuneatus and P. pellucidus were determined to be 14,829 bp and 15,013 bp in length, respectively. Both mt genomes contain 12 protein-coding genes (PCGs) (cox1-3, nad1-6, nad4L, cytb, and atp6), 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. Our comparative analysis shows that the atp6 genes of P. cuneatus and P. pellucidus are longer than any previously published atp6 genes of other trematodes. The lengths of the atp6 genes of P. cuneatus and P. pellucidus in this study seem unusual, and should therefore be studied further. The mt genes of P. cuneatus and P. pellucidus are transcribed in the same direction, and the gene arrangements are identical to those of Plagiorchis maculosus, Tamerlania zarudnyi, and Tanaisia sp., but different from those of Eurytrema pancreaticum, Dicrocoelium chinensis, and Brachycladium goliath. The mt genome A + T contents of P. cuneatus and P. pellucidus are 64.47% and 65.34%, respectively. In the 12 PCGs, ATG is the most common initiation codon, whereas TAG is the most common termination codon. The sequence identity of the same 12 PCGs among the eight trematodes (P. cuneatus, P. pellucidus, Pl. maculosus, D. chinensis, E. pancreaticum, B. goliath, T. zarudnyi, Tanaisia sp.) of Xiphidiata are 55.5%-81.7% at the nucleotide level and 43.9%-82.5% at the amino acid level. The nucleotide similarities among the complete mt genomes of the eight trematodes range from 54.1%-81.5%. Phylogenetic analysis based on the aligned concatenated amino acid sequences of the 12 PCGs shows that P. cuneatus and P. pellucidus cluster together and are sister to T. zarudnyi and Tanaisia sp., and this clade is more closely related to E. pancreaticum, Dicrocoelium spp. and Lyperosomum longicauda in the family Dicrocoeliidae, than it is to species in the families Plagiorchiidae and Brachycladiidae. These are the first reported complete mt genomes of Prosthogonimidae, and these data will provide additional molecular resources for further studies of Prosthogonimidae taxonomy, population genetics, and systematics.
Collapse
|
10
|
Characterization of complete mitochondrial genome and ribosomal operon for Carassotrema koreanum Park, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data. J Helminthol 2022; 96:e54. [PMID: 35894440 DOI: 10.1017/s0022149x22000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We obtained new data on the complete mitochondrial DNA (mtDNA) and the ribosomal operon of the trematode Carassotrema koreanum (Digenea: Haploporata: Haploporidae), an intestinal parasite of Carassius auratus, using next-generation sequencing. The mtDNA of C. koreanum contained 13,965 bp, including 12 protein-coding genes, two ribosomal genes, 22 transport RNA (tRNA) genes and a non-coding region. The ribosomal operon of C. koreanum was 10,644 bp in length, including ETS1 (1449 bp), 18S ribosomal RNA (rRNA) gene (1988 bp), ITS1 ribosomal DNA (rDNA) (558 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (274 bp), 28S rRNA gene (4152 bp) and ETS2 (2066 bp). Phylogenetic analysis based on mtDNA protein-coding regions showed that C. koreanum was closely related to Parasaccocoelium mugili, a species from the same suborder Haploporata. Bayesian phylogenetic tree topology was the most reliable and confirmed the validity of the Haploporata. The results of sequence cluster analysis based on codon usage bias demonstrated some agreement with the results of the phylogenetic analysis. In particular, Schistosoma spp. were differentiated from the other members of Digenea and the members of Pronocephalata were localized within the same cluster. Carassotrema koreanum and P. mugili fell within different clusters. The grouping of C. koreanum and P. mugili within the same cluster was obtained on the basis of frequencies of 13 specified codons, of which three codon pairs were degenerate. A similarity was found between two haploporid species and two Dicrocoelium spp. in the presence of TTG start codon of the mitochondrial nad5 gene. Our results confirmed the taxonomical status of the Haploporata identified in the previous studies and revealed some characteristic features of the codon usage in its representatives.
Collapse
|
11
|
Gao X, Wang D, Zhang Z, Quan C, Zhou S, Li K, Li Y, Zhao S, Kong X, Kulyar MFEA, Zeng J, Li J. Genetic Characterization and Phylogenetic Analysis of Fasciola Species Isolated From Yaks on Qinghai-Tibet Plateau, China. Front Vet Sci 2022; 9:824785. [PMID: 35647106 PMCID: PMC9133622 DOI: 10.3389/fvets.2022.824785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study determined the complete mitochondrial DNA (mt DNA) sequence of Fasciola intermediate (isolated from yaks) based on gene content and genome organization. According to our findings, the genome of Fasciola intermediate was 13,960 bp in length, containing 2 ribosomal RNA (rRNA) genes, 12 protein-coding genes (PCGs), and 22 transfer RNA (tRNA) genes. The A+T content of genomes was 63.19%, with A (15.17%), C (9.31%), G (27.51%), and T as the nucleotide composition (48.02%). Meanwhile, the results showed negative AT-skew (-0.52) and positive GC-skew (0.494). The AT bias significantly affected both the codon usage pattern and amino acid composition of proteins. There were 2715 codons in all 12 protein-coding genes, excluding termination codons. Leu (16.72%) was the most often used amino acid, followed by Val (12.74%), Phe (10.90%), Ser (10.09%), and Gly (8.39%). A phylogenetic tree was built using Maximum-Likelihood (ML) through MEGA 11.0 software. The entire mt DNA sequence of Fasciola intermediate gave more genetic markers for investigating Trematoda population genetics, systematics, and phylogeography. Hence, for the first time, our study confirmed that yaks on the Qinghai-Tibet plateau have the infestation of Fasciola intermediate parasite.
Collapse
Affiliation(s)
- Xing Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dongjing Wang
- Tibet Livestock Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suonan Zhao
- Haibei Agricultural and Animal Husbandry Sciences Institute, Haibei, China
| | - Xiangying Kong
- Haibei Agricultural and Animal Husbandry Sciences Institute, Haibei, China
| | | | - Jiangyong Zeng
- Tibet Livestock Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- *Correspondence: Jiangyong Zeng
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Jiakui Li
| |
Collapse
|
12
|
Effect of primary and secondary Fasciola gigantica infection on specific IgG responses, hepatic enzyme levels and weight gain in buffaloes. Parasitol Res 2022; 121:1709-1718. [PMID: 35416490 DOI: 10.1007/s00436-022-07519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Buffaloes, as highly susceptible definitive hosts of Fasciola gigantica, suffer from a high infection rate of fasciolosis, which causes enormous economic losses. Repeat infection is responsible for this high rate; thus, elucidating the protective immunity mechanism in repeat infection is decisive in fasciolosis prevention. Herein, a secondary experimental infection model was established to preliminarily reveal the protective immunity that occurs in repeat infection. In brief, animals were assigned to three groups: group A (uninfected control), group B (primary infection) and group C (secondary infection). Buffaloes were autopsied 20 weeks post-infection for measurements of the recovered flukes and hepatic examination. In addition, the detection of specific antibody (IgG) responses to F. gigantica excretory-secretory product (FgESP) throughout the whole period and weight gain throughout the first 4 months as a percentage (%) of the starting weight were also determined. The serum hepatic enzyme gamma glutathione transferase (GGT) levels were monitored to assess hepatic damage throughout the study period. Infection establishment was compared between group B and group C. Similar specific IgG patterns were observed between group B and group C, and hepatic damage was more severe in group C than group B. Significant differences in weight gain as a percentage of the start weight were observed between group A and group B at the 3rd and 4th months postprimary infection, while significant differences were not observed between group A and group C or group B and group C. Our results suggest that challenge infection cannot induce resistance against F. gigantica in buffaloes, which is consistent with the protective immunity against Fasciola hepatica reinfection observed in sheep and goats.
Collapse
|
13
|
Oh CS, Seo M, Lee HJ, Kim MJ, Lim DS, Shin DH. Genetic Analysis of Ancient Clonorchis sinensis Eggs Attained from Goryeong Mummy of Joseon Dynasty Period. J Parasitol 2022; 108:70-78. [DOI: 10.1645/21-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chang Seok Oh
- Department of Mortuary Science, College of Bio-convergence, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Korea
| | - Min Seo
- Department of Parasitology, Dankook University College of Medicine, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Hye Jin Lee
- Ministry of National Defense Agency for KIA Recovery & Identification, 250, Hyeonchung-ro, Dongjak-gu, Seoul 06984, Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Do-Seon Lim
- Department of Dental Hygiene, College of Health Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Korea
| | - Dong Hoon Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103, Daehak-ro, Chongno-gu, Seoul 03080, Korea
| |
Collapse
|
14
|
Pham LTK, Saijuntha W, Lawton SP, Le TH. Mitophylogenomics of the zoonotic fluke Echinostoma malayanum confirms it as a member of the genus Artyfechinostomum Lane, 1915 and illustrates the complexity of Echinostomatidae systematics. Parasitol Res 2022; 121:899-913. [PMID: 35142926 DOI: 10.1007/s00436-022-07449-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
The complete mitochondrial genome (mitogenome or mtDNA) of the trematode Echinostoma malayanum Leiper, 1911 was fully determined and annotated. The circular mtDNA molecule comprised 12 protein-coding genes (PCGs) (cox1 - 3, cob, nad1 - 6, nad4L, atp6), two mitoribosomal RNAs (MRGs) (16S or rrnL and 12S or rrnS), and 22 transfer RNAs (tRNAs or trn), and a non-coding region (NCR) rich in long and short tandem repeats (5.5 LRUs/336 bp/each and 7.5 SRUs/207 bp/each). The atp8 gene is absent and the 3' end of nad4L overlaps the 5' end of nad4 by 40 bp. Special DHU-arm missing tRNAs for Serine were found for both tRNASer1(AGN) and tRNASer2(UCN). Codons of TTT (for phenylalanine), TTG (for leucine), and GTT (for valine) were the most, and CGC (for Arginine) was the least frequently used. A similar usage pattern was seen in base composition, AT and GC skewness for PCGs, MRGs, and mtDNA* (coding cox3 to nad5) in E. malayanum and Echinostomatidae. The nucleotide use is characterized by (T > G > A > C) for PCGs/mtDNA*, and by (T > G ≈ A > C) for MRGs. E. malayanum exhibited the lowest genetic distance (0.53%) to Artyfechinostomum sufrartyfex, relatively high to the Echinostoma congeners (13.20-13.99%), higher to Hypoderaeum conoideum (16.18%), and the highest to interfamilial Echinochasmidae (26.62%); Cyclocoelidae (30.24%); and Himasthlidae (25.36%). Topology indicated the monophyletic position between E. malayanum/A. sufrartyfex and the group of Echinostoma caproni, Echinostoma paraensei, Echinostoma miyagawai, and Echinostoma revolutum, rendering Hypoderaeum conoideum and unidentified Echinostoma species paraphyletic. The strictly closed genomic/taxonomic/phylogenetic features (including base composition, skewness, codon usage/bias, genetic distance, and topo-position) reinforced Echinostoma malayanum to retake its generic validity within the Artyfechinostomum genus.
Collapse
Affiliation(s)
- Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute (WRBRI), Biodiversity and Conservation Research Unit, Mahasarakham University, Kham Riang, 44150, Mahasarakham, Thailand
| | - Scott P Lawton
- Department of Veterinary and Animal Sciences, Northern Faculty, Scotland's Rural College, An Lóchran, 10 Inverness Campus, Inverness, IV2 5NA, UK
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam. .,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
15
|
Identification of new polymorphic positions in rDNA sequences of the “intermediate” Fasciola forms. Parasitol Int 2022; 88:102555. [DOI: 10.1016/j.parint.2022.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
|
16
|
Kipyegen CK, Muleke CI, Otachi EO. Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumu counties, Kenya. Onderstepoort J Vet Res 2022; 89:e1-e6. [PMID: 35144443 PMCID: PMC8831969 DOI: 10.4102/ojvr.v89i1.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Cornelius K Kipyegen
- Department of Biological Sciences, Faculty of Science, Egerton University, Nakuru.
| | | | | |
Collapse
|
17
|
Sokolov S, Kalmykov A, Frolov E, Atopkin D. Taxonomic myths and phylogenetic realities in the systematics of the Opisthorchiidae (Trematoda). ZOOL SCR 2021. [DOI: 10.1111/zsc.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey Sokolov
- A.N. Severtsov Institute of Ecology and Evolution Moscow Russia
| | | | - Evgeniy Frolov
- Institute of Fisheries and Oceanography Sakhalin Branch (SakhNIRO) Yuzhno‐Sakhalinsk Russia
| | - Dmitry Atopkin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of the RAS Vladivostok Russia
- Institute of World Ocean Far Eastern Federal University Vladivostok Russia
| |
Collapse
|
18
|
Molecular identification and genetic-polymorphism analysis of Fasciola flukes in Dali Prefecture, Yunnan Province, China. Parasitol Int 2021; 85:102416. [PMID: 34217794 DOI: 10.1016/j.parint.2021.102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022]
Abstract
This study aimed to identify species of Fasciola flukes in Dali Prefecture (Yunnan Province, China) and analyze their genetic diversity. Fasciola flukes (n = 122) were collected from cattle livers in a farmers' market in Xiaguan Town, Dali Prefecture. Nucleotide sequences of ribosomal internal transcribed spacer (ITS) as well as nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) and mitochondrial cytochrome c oxidase subunit 1 (CO1) were amplified, sequenced, and subjected to homology analysis. The heterozygosity ratios of different ITS alleles were determined using the peak-height ratio of heterozygous loci. Multiplex PCR analysis of the nuclear protein coding gene, phosphoenolpyruvate carboxykinase (pepck), was used to identify Fasciola species. Multiple ND1 sequence alignments enabled further genetic diversity analysis of regional Fasciola flukes. Seven ITS sequences belonged to F. hepatica and 115 belonged to Fh/Fg heterozygous flukes. Sequencing analysis of heterozygous flukes revealed 11 heterozygous loci with double peaks, with significantly variable ratios among individuals. ND1 and CO1 results indicated that one specimen was identical to F. hepatica, while 121 specimens were identical to F. gigantica or contained one variable site. Multiplex PCR results for pepck showed that double bands for F. hepatica and F. gigantica were amplified from Dali Fasciola specimens; hence, they were all heterozygous. By combining ITS, ND1, and CO1 sequences with multiplex pepck PCR results, all 122 specimens were identified as Fh/Fg heterozygous Fasciola flukes. Our experimental results preliminarily confirmed a high degree of Fh/Fg heterozygosity among Fasciola flukes in the Dali area. Selecting multiple molecular markers for concurrent analysis will provide more comprehensive and accurate genetic information.
Collapse
|
19
|
Tatonova YV, Shumenko PG. Cytochrome b as a more promising marker for analysing the distribution vector for Metagonimus suifunensis (Trematoda: Heterophyidae). Parasitology 2021; 148:760-766. [PMID: 33583451 PMCID: PMC11010054 DOI: 10.1017/s0031182021000275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 11/06/2022]
Abstract
In this study of Metagonimus suifunensis (M. suifunensis) in the Russian Southern Far East, the variability of the full-length sequences of the cytochrome b (cytb) mtDNA gene was assessed for the first time. In addition, the cox1 mtDNA gene sequences were also obtained for this species from new localities. In total, 87 and 81 sequences of the cytb and cox1 genes, respectively, were used in the current study. The cytb gene proved more promising and revealed two haplogroups that are associated with the spatial distribution of the species: geographical isolation caused the fixation of differences between northern and southern populations. In addition, the results obtained for the cytb gene opened up new perspectives in the analysis of sequences of the cox1 gene, which was not sufficiently effective as a sole marker. Based on data for both mitochondrial genes, molecular processes influencing the formation of the modern population were analysed for M. suifunensis. The new data confirmed the previously expressed opinion that this species colonized the study territory from north to south and will form the basis for determining possible ways of its further expansion, which is important for predicting the emergence of new foci of metagonimosis.
Collapse
Affiliation(s)
- Yulia V. Tatonova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok, 690022, Russia
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street, 8, Vladivostok, 690091, Russia
| | - Polina G. Shumenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok, 690022, Russia
| |
Collapse
|
20
|
First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971. Parasitol Res 2021; 120:2037-2046. [PMID: 33893550 DOI: 10.1007/s00436-021-07159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The first data on a whole mitochondrial genome of Haploporidae, Parasaccocoelium mugili (Digenea: Haploporata: Haploporidae) was generated using the next-generation sequencing (NGS) approach. We sequenced the complete mitochondrial DNA (mtDNA) and ribosomal operon of Parasaccocoelium mugili, intestine parasite of mullet fish. The mtDNA of P. mugili contained 14,021 bp, including 12 protein-coding genes, two ribosomal genes, 22 tRNA genes, and non-coding region. The ribosomal operon of P. mugili was 8308 bp in length, including 18S rRNA gene (1981 bp), ITS1 rDNA (955 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (268 bp), 28S rRNA gene (4180 bp), and ETS (767 bp). We used the mtDNA protein-coding regions to make phylogenetic reconstructions of Haploporidae. Additionally, we performed the sequence cluster analysis based on codon usage bias of most of currently available mitochondrial genome data for trematodes. The observed gene arrangement in mtDNA sequence of P. mugili is identical to those of Plagiorchis maculosus (Rudolphi, 1802). Results of maximum likelihood (ML) phylogenetic analysis showed that P. mugili was closely related to Paragonimus species from the suborder Xiphidiata. The results of sequence cluster analysis based on codon usage bias showed that P. mugili has the highest similarity with Plagiorchis maculosus (Xiphidiata). Our results do not contradict to proposing a new suborder for Haploporoidea-Haploporata. On the basis of obtained results, the relationship between mitochondrial protein-coding gene rearrangements and synonymous nucleotide substitutions in mitochondrial genomes has been suggested.
Collapse
|
21
|
Xu G, Zhu P, Zhu W, Ma B, Li X, Li W. Characterization of the complete mitochondrial genome of Notocotylus sp. (Trematoda, Notocotylidae) and its phylogenetic implications. Parasitol Res 2021; 120:1291-1301. [PMID: 33559042 DOI: 10.1007/s00436-021-07075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
The parasite genus Notocotylus comprises at least 50 species colonizing mainly aquatic birds and to a lesser extent some mammals, particularly rodents. Here trematode specimens isolated from a wild black swan were characterized and identified to belong to the genus Notocotylus via morphological and molecular analyses. Phylogenetic position of the isolate among other trematodes was determined based on the ribosomal internal transcribed spacer (ITS) 1 and 2. The complete mitochondrial (mt) genome of the isolate was amplified, sequenced, assembled, analyzed, and annotated. The isolate has an AT-rich mt genome (14,317 bp in length) that comprises 12 protein-coding genes (PCGs), 22 transfer RNA genes, and two ribosomal RNA genes. The Notocotylus isolate identified in this study has relatively high mt genome sequence identity and identical gene content and arrangement to a known Notocotylidae species, Ogmocotyle sikae. The isolate formed a genetic clade with O. sikae in phylogenetic analysis of the concatenated PCG amino acid sequences. Compared to the ITS, the trematode mt genome appears more informative for resolving high-level phylogenies. To the best of our knowledge, this is the first study exploring the complete mt genome for the genus Notocotylus, and it offers a novel genomic resource that has important implications for trematode phylogenetics.
Collapse
Affiliation(s)
- Guoliang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Peng Zhu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weining Zhu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Ma
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoyun Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
22
|
Comparative analysis of the mitochondrial proteins reveals complex structural and functional relationships in Fasciola species. Microb Pathog 2021; 152:104754. [PMID: 33508415 DOI: 10.1016/j.micpath.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria is a cellular source of energy, appears to play an essential role in dealing with cellular stress induced by environmental stimuli. The genetic diversity of mitochondrial genes involved in oxidative phosphorylation affecting the production of cellular energy and regional adaptation to various ecological (climatic) pressures affecting amino acid sequences (variants of protein). However, little is known about the combined effect of protein changes on cell-level metabolic alterations in simultaneous exposure to various environmental conditions, including mitochondrial dysfunction and oxidative stress induction. The present study was designed to address this issue by analyzing the mitochondrial proteins in Fasciola species including Cytochrome oxidase (COX1, COX2, COX3, and CYTB) and NADH dehydrogenase (ND1, ND2, ND3, ND4, ND5, and ND6). Mitochondrial proteins were used for detailed computational investigation, using available standard bioinformatics tools to exploit structural and functional relationships. These proteins in Fasciola hepatica, Fasciola gigentica, and Fasciola jacksoni were functionally annotated using public databases. The results showed that the protein of COX1 of F. hepatica, F. gigantica, and F. jacksoni consist of 510, 513, and 517 amino acids, respectively. The alignment of proteins showed that these proteins are conserved in the same regions at ten positions in COX and CYTB proteins while at twelve locations in NADH. Three-dimensional structure of COX, CYTB, and NADH proteins were compared and showed differences in additional conserved and binding sites in COX and CYTB proteins as compared to NADH in three species of Fasciola. These results based on the amino acid diversity pattern were used to identify sites in the enzyme and the variations in mitochondrial proteins among Fasciola species. Our study provides valuable information for future experimental studies, including identification of therapeutic, diagnostic, and immunoprophylactic interests with novel mitochondrial proteins.
Collapse
|
23
|
Suleman, Muhammad N, Khan MS, Tkach VV, Ullah H, Ehsan M, Ma J, Zhu XQ. Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasit Vectors 2021; 14:48. [PMID: 33446249 PMCID: PMC7807500 DOI: 10.1186/s13071-020-04547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Eucotylidae Cohn, 1904 (Superfamily: Microphalloidea), is a family of digeneans parasitic in kidneys of birds as adults. The group is characterized by the high level of morphological similarities among genera and unclear systematic value of morphological characters traditionally used for their differentiation. In the present study, we sequenced the complete or nearly complete mitogenomes (mt genome) of two eucotylids representing the genera Tamerlania (T. zarudnyi) and Tanaisia (Tanaisia sp.). They represent the first sequenced mt genomes of any member of the superfamily Microphalloidea. Methods A comparative mitogenomic analysis of the two newly sequenced eucotylids was conducted for the investigation of mitochondrial gene arrangement, contents and genetic distance. Phylogenetic position of the family Eucotylidae within the order Plagiorchiida was examined using nucleotide sequences of mitochondrial protein-coding genes (PCGs) plus RNAs using maximum likelihood (ML) and Bayesian inference (BI) methods. BI phylogeny based on concatenated amino acids sequences of PCGs was also conducted to determine possible effects of silent mutations. Results The complete mt genome of T. zarudnyi was 16,188 bp and the nearly complete mt genome of Tanaisia sp. was 13,953 bp in length. A long string of additional amino acids (about 123 aa) at the 5′ end of the cox1 gene in both studied eucotylid mt genomes has resulted in the cox1 gene of eucotylids being longer than in all previously sequenced digeneans. The rrnL gene was also longer than previously reported in any digenean mitogenome sequenced so far. The TΨC and DHU loops of the tRNAs varied greatly between the two eucotylids while the anticodon loop was highly conserved. Phylogenetic analyses based on mtDNA nucleotide and amino acids sequences (as a separate set) positioned eucotylids as a sister group to all remaining members of the order Plagiorchiida. Both ML and BI phylogenies revealed the paraphyletic nature of the superfamily Gorgoderoidea and the suborder Xiphidiata. Conclusions The average sequence identity, combined nucleotide diversity and Kimura-2 parameter distances between the two eucotylid mitogenomes demonstrated that atp6, nad5, nad4L and nad6 genes are better markers than the traditionally used cox1 or nad1 for the species differentiation and population-level studies of eucotylids because of their higher variability. The position of the Dicrocoeliidae and Eucotylidae outside the clade uniting other xiphidiatan trematodes strengthened the argument for the need for re-evaluation of the taxonomic content of the Xiphidiata.![]()
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Shanghai, 20041, People's Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
24
|
A new second intermediate host and phylogenetic relationships based on the ITS2 sequence of Isoparorchis sp. (Digenea: Isoparorchiidae) in Thailand. J Helminthol 2021. [DOI: 10.1017/s0022149x2100050x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The genus Isoparorchis (Family: Isoparorchiidae) contains trematodes infecting the air bladder of freshwater catfishes in Asia and Australia. Isoparorchis spp. rely on freshwater shrimps and fishes as intermediate hosts. There is limited information about parasitic infections in freshwater shrimp in Thailand, and Isoparorchis infection in an intermediate host in this country has never been reported. Thus, this study reports infections in freshwater shrimp (Macrobrachium lanchesteri and Caridina sp.), including overall prevalence, mean intensity, morphological characters and molecular analyses. The parasite specimens were analysed by studying their morphological characters, together with a molecular approach based on internal transcribed spacer 2 (ITS2) sequence data. The overall prevalence and mean intensity of Isoparorchis infections were 92% and 1.89, respectively. The metacercariae were identified as Isoparorchis sp. based on their morphological characters and supported by the comparison with published ITS2 sequences of Isoparorchis species. The phylogenetic studies based on the ITS2 region demonstrated that all of the Isoparorchis sp. specimens in this study are distinct from Isoparorchis species in previous reports. Moreover, we show for the first time that the freshwater shrimp M. lanchesteri serves as a second intermediate host of Isoparorchis sp. and we provide a morphological description and molecular characterization of Isoparorchis sp. metacercariae based on ITS2 sequence data to clarify the status of Isoparorchis sp. in Thailand.
Collapse
|
25
|
Identification of Adult Fasciola spp. Using Matrix-Assisted Laser/Desorption Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry. Microorganisms 2020; 9:microorganisms9010082. [PMID: 33396299 PMCID: PMC7823262 DOI: 10.3390/microorganisms9010082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.
Collapse
|
26
|
Fasciola Species Introgression: Just a Fluke or Something More? Trends Parasitol 2020; 37:25-34. [PMID: 33097425 PMCID: PMC7575431 DOI: 10.1016/j.pt.2020.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
The threats posed by a range of viral and bacterial zoonotic diseases inevitably receive renewed attention in the wake of global pandemic events due to their overt and devastating impacts on human health and the economy. Parasitic zoonoses, however, many of which affect millions of people each day, are frequently ignored. In the case of fasciolosis, caused by infection with Fasciola hepatica or Fasciola gigantica, this oversight has allowed for the expansion of areas of parasite sympatry and thus increased the incidence of hybridization and possible introgression between the two species. Here we highlight how an increased demand for animal-derived protein, combined with a lack of appropriate tools for detection of these events, is changing the status quo of these zoonotic parasites. Increased demand for animal-derived protein from Fasciola hepatica-endemic countries has led to a growing number of reports of hybridization between F. hepatica and Fasciola gigantica in Southeast Asia. Hybridization and eventual introgression have been reported in a range of protozoan, helminth, and arthropod parasites and act as important drivers of evolutionary change and adaptation. Introgression between Fasciola spp. remains unproven but has potentially serious human and animal health consequences as seen in other parasites. New tools for the characterization of hybridization and introgression events between Fasciola spp. are needed.
Collapse
|
27
|
Shi H, Li M, Huang X, Yao C, Chen X, Du A, Yang Y. Development of SYBR Green real-time PCR for diagnosis of fasciolosis in sheep. Vet Parasitol 2020; 283:109193. [PMID: 32731054 DOI: 10.1016/j.vetpar.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Fasciolosis is commonly diagnosed by microscopic detection of egg following sedimentation. However, this technique is time-consuming when a large number of samples must be processed and requires sufficient experience. Quantitative real-time PCR based on the detection of liver fluke ribosomal DNA in feces has been introduced, which is more accurate and liable to reflect the presence of flukes in hosts. This study aimed to develop an efficient molecular detection method in laboratory diagnosis. A cross-sectional study of 250 sheep was performed to detect Fasciola hepatica infections using gold standard microscopic detection, conventional PCR and real-time PCR. Both conventional and real-time PCRs targeted the internal transcribed spacer 2 (ITS-2). A composite reference standard(CRS) was used to analyze the sensitivity and specificity of three methods. Furthermore, the minimal amount of plasmid DNA detected by the real-time PCR was 1.67 pg plasmid DNA (equivalent to 1.1 × 106 copies). In conclusion, a highly sensitive and specific method for fasciolosis in sheep was developed.
Collapse
Affiliation(s)
- Hengzhi Shi
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Minwei Li
- Suzhou Zoo, Suzhou, Jiangsu, 215008, China.
| | - Xiaocui Huang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies, Cote d'Ivoire.
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
28
|
Giovanoli Evack J, Schmidt RS, Boltryk SD, Voss TS, Batil AA, Ngandolo BN, Greter H, Utzinger J, Zinsstag J, Balmer O. Molecular Confirmation of a Fasciola gigantica × Fasciola hepatica Hybrid in a Chadian Bovine. J Parasitol 2020; 106:316-322. [PMID: 32330281 DOI: 10.1645/19-66] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Fascioliasis is a zoonotic infection of humans and, more commonly, ruminants. It is caused by 2 liver fluke species, Fasciola hepatica and Fasciola gigantica, which differ in size. The traditional morphological methods used to distinguish the 2 species can be unreliable, particularly in the presence of hybrids between the 2 species. The development of advanced molecular methods has allowed for more definitive identification of Fasciola species, including their hybrids. Hybrids are of concern, as it is thought that they could acquire advantageous traits such as increased pathogenicity and host range. In 2013, we collected flukes from Fasciola-positive cattle, sheep, and goats slaughtered in 4 Chadian abattoirs. DNA from 27 flukes was extracted, amplified, and analyzed to identify species using the ITS1+2 locus. Twenty-six of the 27 flukes were identified as F. gigantica, while the remaining fluke showed heterozygosity at all variable sites that distinguish F. hepatica and F. gigantica. Cloning and sequencing of both alleles confirmed the presence of 1 F. hepatica and 1 F. gigantica allele. To our knowledge, this is the first unambiguous, molecular demonstration of the presence of such a hybrid in a bovine in sub-Saharan Africa.
Collapse
Affiliation(s)
- Jennifer Giovanoli Evack
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Sylwia D Boltryk
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Till S Voss
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Annour A Batil
- Institut de Recherche en Elevage pour le Développement, Boîte Postale 473, N'Djamena, Chad
| | - Bongo N Ngandolo
- Institut de Recherche en Elevage pour le Développement, Boîte Postale 473, N'Djamena, Chad
| | - Helena Greter
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| |
Collapse
|
29
|
Wu YA, Gao JW, Cheng XF, Xie M, Yuan XP, Liu D, Song R. Characterization and comparative analysis of the complete mitochondrial genome of Azygia hwangtsiyui Tsin, 1933 (Digenea), the first for a member of the family Azygiidae. Zookeys 2020; 945:1-16. [PMID: 32714004 PMCID: PMC7351859 DOI: 10.3897/zookeys.945.49681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (-0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.
Collapse
Affiliation(s)
- Yuan-An Wu
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Jin-Wei Gao
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Xiao-Fei Cheng
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Xi-Ping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Dong Liu
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| |
Collapse
|
30
|
Rajapakse RPVJ, Pham KLT, Karunathilake KJK, Lawton SP, Le TH. Characterization and phylogenetic properties of the complete mitochondrial genome of Fascioloides jacksoni (syn. Fasciola jacksoni) support the suggested intergeneric change from Fasciola to Fascioloides (Platyhelminthes: Trematoda: Plagiorchiida). INFECTION GENETICS AND EVOLUTION 2020; 82:104281. [PMID: 32165245 DOI: 10.1016/j.meegid.2020.104281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/27/2022]
Abstract
Fascioloides jacksoni (syn. Fasciola jacksoni, Cobbold, 1869) (Platyhelminthes: Echinostomatoidea), is a liver fluke that causes severe morbidity and mortality of Asian elephants (Elephas maximus maximus). Understandings on molecular diagnosis, epidemiology, genetics and evolution of this flatworm are limited. In this study, we present the complete mitochondrial DNA (mt) sequence of 14,952 bp obtained from an individual fluke and comparative characterization of mitogenomic features with fasciolids, primarily, Fascioloides magna and other taxa in the superfamily Echinostomatoidea. Taxonomic relationship within and between Echinostomatoidea, Opisthorchioidea and Paramphistomoidea in the order Plagiorchiida, are also taxonomically considered. The complete circular mt molecule of Fas. jacksoni contained 12 protein-coding, two ribosomal RNA, 22 transfer RNA genes, and a non-coding region (NCR) rich in tandem repeat units. As common in digenean trematodes, Fas. jacksoni has the usual gene order, the absence of atp8 and the overlapped region by 40 bp between nad4L and nad4 genes. The NCR located between tRNAGlu (trnE) and cox3 contained nine nearly identical tandem repeat units (TRs of 113 bp each). Special DHU-arm missing tRNAs for Serine were found for both, tRNAS1(AGN) and tRNAS2(UCN). Base composition indicated that cox1 of Fas. jacksoni showed the lowest (11.8% to Fas. magna, 12.9 - 13.6% to Fasciola spp. and 18.1% to Fasciolopsis buski) and nad6 the highest divergence rate (19.2%, 23.8-26.5% and 27.2% to each fasciolid group), respectively. A clear bias in nucleotide composition, as of 61.68%, 62.88% and 61.54%, with a negative AT-skew of the corresponding values (-0.523, -0.225 and - 0.426) for PCGs, MRGs and mtDNA for Fas. jacksoni and likewise data for the fasciolids. Phylogenetic analysis confirmed the sister branch of Fas. jacksoni and Fas. magna with the nodal support of 100%, clearly separated from the taxonomically recognized Fasciola spp. With the previous studies, mitogenomic data presented in this study are strongly supportive for Fasciola jacksoni reappraisal as Fascioloides jacksoni in the Fascioloides genus.
Collapse
Affiliation(s)
- R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Khanh Linh Thi Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Viet Nam
| | - K J Kumari Karunathilake
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Surrey KT1 2EE, UK
| | - Thanh Hoa Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
31
|
Description and phylogenetic analyses of ribosomal transcription units from species of Fasciolidae (Platyhelminthes: Digenea). J Helminthol 2020; 94:e136. [PMID: 32138801 DOI: 10.1017/s0022149x20000164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many members of Fasciolidae are common trematodes in cattle, buffaloes, sheep, elephants, pigs, with some capable of infecting humans also. In this study, the complete or near-complete sequences of ribosomal transcription unit (rTU or rDNA), each of Fasciola hepatica (Australia), Fascioloides jacksoni (Sri Lanka), Fasciolopsis buski (Vietnam) and three isolates of F. gigantica (Vietnam), were obtained and characterized. The full length of rDNA for each F. hepatica, 'hybrid' Fasciola sp., Fas. jacksoni and Fa. Buski, was 7657 bp, 7966 bp, 7781 bp and 8361 bp, with the complete intergenic spacer region (IGS) (862 bp, 1170 bp, 987 bp and 561 bp), respectively. The rDNA of two 'pure' F. gigantica isolates from Vietnam was 6794 bp with unsequenced IGS. For 28S rRNA genes the Fasciola spp. are equal, 1958 bp for 18S, 160 bp for 5.8S, 3863 bp and 454 bp for ITS1 but ITS2 differ by one nucleotide (Thymine) (359 or 360 bp). The ITS1 of the sensu lato Fa. buski has some distinguishable features, 286 bp for ITS2, 3862 bp for 28S and four repeat units of 356-361 bp each found in ITS1. The 28S rDNA analysis showed the lowest level of divergence (0-0.57%) between F. hepatica and F. gigantica and higher (2.23-2.62%) and highest (6-6.42%) for Fas. jacksoni and Fasciolopsis, respectively. The tree of 43 strains/species clearly produced a well-supported phylogeny, where 18 fasciolids consistently grouped, forming a discrete Fasciolidae clade, distinct from Philophthalmidae, Echinostomatidae and Echinochasmidae in Echinostomatoidea. Fascioloides jacksoni is outside Fasciola spp.: basal with Fas. magna, as previously demonstrated.
Collapse
|
32
|
Suleman, Khan MS, Tkach VV, Muhammad N, Zhang D, Zhu XQ, Ma J. Molecular phylogenetics and mitogenomics of three avian dicrocoeliids (Digenea: Dicrocoeliidae) and comparison with mammalian dicrocoeliids. Parasit Vectors 2020; 13:74. [PMID: 32054541 PMCID: PMC7020495 DOI: 10.1186/s13071-020-3940-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background The Dicrocoeliidae are digenetic trematodes mostly parasitic in the bile ducts and gall bladder of various avian and mammalian hosts. Until recently their systematics was based on morphological data only. Due to the high morphological uniformity across multiple dicrocoeliid taxa and insufficient knowledge of relative systematic value of traditionally used morphological characters, their taxonomy has always been unstable. Therefore, DNA sequence data provide a critical independent source of characters for phylogenetic inference and improvement of the system. Methods We examined the phylogenetic affinities of three avian dicrocoeliids representing the genera Brachylecithum, Brachydistomum and Lyperosomum, using partial sequences of the nuclear large ribosomal subunit (28S) RNA gene. We also sequenced the complete or nearly complete mitogenomes of these three isolates and conducted a comparative mitogenomic analysis with the previously available mitogenomes from three mammalian dicrocoeliids (from 2 different genera) and examined the phylogenetic position of the family Dicrocoeliidae within the order Plagiorchiida based on concatenated nucleotide sequences of all mitochondrial genes (except trnG and trnE). Results Combined nucleotide diversity, Kimura-2-parameter distance, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently demonstrated that cox1, cytb, nad1 and two rRNAs were the most conserved and atp6, nad5, nad3 and nad2 were the most variable genes across dicrocoeliid mitogenomes. Phylogenetic analyses based on mtDNA sequences did not support the close relatedness of the Paragonimidae and Dicrocoeliidae and suggested non-monophyly of the Gorgoderoidea as currently recognized. Conclusions Our results show that fast-evolving mitochondrial genes atp6, nad5 and nad3 would be better markers than slow-evolving genes cox1 and nad1 for species discrimination and population level studies in the Dicrocoeliidae. Furthermore, the Dicrocoeliidae being outside of the clade containing other xiphidiatan trematodes suggests a need for the re-evaluation of the taxonomic content of the Xiphidiata.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
33
|
Comparative mitogenomics of the zoonotic parasite Echinostoma revolutum resolves taxonomic relationships within the ' E. revolutum' species group and the Echinostomata (Platyhelminthes: Digenea). Parasitology 2020; 147:566-576. [PMID: 31992373 DOI: 10.1017/s0031182020000128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complete mitochondrial sequence of 17,030 bp was obtained from Echinostoma revolutum and characterized with those of previously reported members of the superfamily Echinostomatoidea, i.e. six echinostomatids, one echinochasmid, five fasciolids, one himasthlid, and two cyclocoelids. Relationship within suborders and between superfamilies, such as Echinostomata, Pronocephalata, Troglotremata, Opisthorchiata, and Xiphiditata, are also considered. It contained 12 protein-coding, two ribosomal RNA, 22 transfer RNA genes and a tandem repetitive consisting non-coding region (NCR). The gene order, one way-positive transcription, the absence of atp8 and the overlapped region by 40 bp between nad4L and nad4 genes were similar as in common trematodes. The NCR located between tRNAGlu (trnE) and cox3 contained 11 long (LRUs) and short repeat units (SRUs) (seven LRUs of 317 bp, four SRUs of 207 bp each), and an internal spacer sequence between LRU7 and SRU4 specifying high-level polymorphism. Special DHU-arm missing tRNAs for Serine were found for both tRNAS1(AGN) and tRNAS2(UCN). Echinostoma revolutum indicated the lowest divergence rate to E. miyagawai and the highest to Tracheophilus cymbius and Echinochasmus japonicus. The usage of ATG/GTG start and TAG/TAA stop codons, the AT composition bias, the negative AT-skewness, and the most for Phe/Leu/Val and the least for Arg/Asn/Asp codons were noted. Topology indicated the monophyletic position of E. revolutum to E. miyagawai. Monophyly of Echinostomatidae and Fasciolidae was clearly solved with respect to Echinochasmidae, Himasthlidae, and Cyclocoelidae which were rendered paraphyletic in the suborder Echinostomata.
Collapse
|
34
|
HASANPOUR H, FALAK R, NADDAF SR, MAS-COMA S, ROKNI MB, BADIRZADEH A, MOKHTARIAN K, MOHEBALI M, JAFARPOUR AZAMI S, FADAVI A, GHARAGOZLOU MJ, MOHAMMAD K, MOWLAVI G. Molecular Characterization of Fasciola spp. from Some Parts of Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:157-166. [PMID: 32309234 PMCID: PMC7152647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Identification of liver flukes, Fasciola hepatica, and Fasciola gigantica by morphometric parameters is not always reliable due to the overlapping measurements. This study aimed to characterize the liver flukes of animals from different parts of Iran by the genetic markers, ITS1, and COXI. METHODS We collected flukes from infected livestock in six provinces of Iran from Sep to Nov 2016. The flukes were identified by amplification of a 680 bp sequence of ITS1 locus followed by a restriction fragment polymorphism (RFLP) assay. The genetic diversity among isolates was evaluated by amplification and sequencing of a 493 bp fragment of the COXI gene. RESULTS We obtained 38 specimens from Khuzestan, 22 from Tehran, 10 from Isfahan, 10 from Mazandaran, 4 from Kurdistan, and 3 from Ardabil provinces. PCR-RFLP analysis revealed two patterns, representing F. hepatica, and F. gigantica. Fifty specimens from cattle and sheep exhibited F. hepatica pattern and 37 from the cattle, sheep, buffalo, and goat that of F. gigantica. The phylogeny based on COXI revealed two distinct clades separating F. hepatica from F. gigantica. In our phylogeny, the Iranian F. gigantica isolates showed a distinct separation from the African flukes, while grouped with the East Asia specimens demonstrating a common ancestor. The F. hepatica isolates clustered with the flukes from different parts of the world, including East Asia, Europe, and South America. CONCLUSION The present study revealed a substantial genetic difference between F. gigantica populations of Asia and Africa, while F. hepatica isolates from different parts of the world shared high similarities.
Collapse
Affiliation(s)
- Hamid HASANPOUR
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Department of Parasitology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza FALAK
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saied Reza NADDAF
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author:
| | - Santiago MAS-COMA
- Department of Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Mohammad Bagher ROKNI
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza BADIRZADEH
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra MOKHTARIAN
- Department of Parasitology and Mycology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi MOHEBALI
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz JAFARPOUR AZAMI
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo FADAVI
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem MOHAMMAD
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza MOWLAVI
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
35
|
Locke SA, Caffara M, Barčák D, Sonko P, Tedesco P, Fioravanti ML, Li W. A new species of Clinostomum Leidy, 1856 in East Asia based on genomic and morphological data. Parasitol Res 2019; 118:3253-3265. [PMID: 31729573 DOI: 10.1007/s00436-019-06536-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022]
Abstract
Metacercariae of Clinostomum Leidy, 1856 are frequently encountered in freshwater fish. In 2015, a provisional species of Clinostomum in People's Republic of China (PRC) was distinguished from C. complanatum (Rudolphi, 1819) in Europe based on divergent cytochrome c oxidase I (CO1). However, in subsequent studies in East Asia, the same divergent CO1 genotype was identified as C. complanatum. These matching sequences suggest that either the provisional East Asian species was incorrectly distinguished from C. complanatum in 2015 or that C. complanatum in East Asia was misidentified in later studies. We tested these alternatives by sequencing the mitochondrial genome of C. complanatum in Italy, which was 5.7% divergent from a previously published sequence from Clinostomum in PRC, including differences in 80 of 3390 (2.4%) translated amino acids. Partial CO1 sequences of specimens from PRC and those from Italy, Romania, and Turkey also each formed reciprocally monophyletic clades. Partial CO1 from the East Asian clade varied by mean 3.6% (range 2.4-4.8%) from C. complanatum from Italy, Romania, and Turkey; mean intra-clade CO1 variation was 0.3% (range 0-1.9%). Metacercariae from Europe and East Asia display significant morphometric variation, and data from the literature suggest morphological differences in the genital complex of adults. Although sequences of nuclear rDNA did not differ between isolates from the west and East Asia, taken together, these results lead us to describe a new species of Clinostomum.
Collapse
Affiliation(s)
- Sean A Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez, 00681-9000, Puerto Rico.
| | - Monica Caffara
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Daniel Barčák
- Institute of Parasitology, SAS, Hlinkova 3, 040 01, Košice, Slovak Republic
| | - Pasaikou Sonko
- Department of International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Perla Tedesco
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Maria L Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Wenxiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| |
Collapse
|
36
|
Fu YT, Jin YC, Liu GH. The Complete Mitochondrial Genome of the Caecal Fluke of Poultry, Postharmostomum commutatum, as the First Representative from the Superfamily Brachylaimoidea. Front Genet 2019; 10:1037. [PMID: 31708971 PMCID: PMC6823182 DOI: 10.3389/fgene.2019.01037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Postharmostomum commutatum (Platyhelminthes: Brachylaimoidea), a parasite of the caeca of poultry, has been frequently reported from many countries and regions, including China. However, the molecular epidemiology, population genetics and phylogenetics of this parasite are poorly understood. In the present study, we determined and characterized the complete mitochondrial (mt) genome of P. commutatum, as the first representative from the superfamily Brachylaimoidea. The mt genome of P. commutatum is a circular DNA molecule of 13,799 bp in size and encodes the complete set of 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as a typical control region. The mt genome of P. commutatum presents a clear bias in nucleotide composition with a negative AT-skew on average (-0.306) and a positive GC-skew on average (0.466). Phylogenetic analyses showed that P. commutatum (superfamily Brachylaimoidea) and other ten members of the order Diplostomida were recovered as sister groups of the order Plagiorchiida, indicating that the order Diplostomida is paraphyletic. This is the first mt genome of any member of the superfamily Brachylaimoidea and should represent a rich source of genetic markers for molecular epidemiological, population genetic and phylogenetic studies of parasitic flukes of socio-economic importance in poultry.
Collapse
Affiliation(s)
- Yi-Tian Fu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yuan-Chun Jin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
37
|
Zhang XX, Cwiklinski K, Hu RS, Zheng WB, Sheng ZA, Zhang FK, Elsheikha HM, Dalton JP, Zhu XQ. Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts. BMC Genomics 2019; 20:729. [PMID: 31606027 PMCID: PMC6790025 DOI: 10.1186/s12864-019-6103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/13/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, People's Republic of China
| | - Krystyna Cwiklinski
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - John P Dalton
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
38
|
Li Y, Qiu YY, Zeng MH, Diao PW, Chang QC, Gao Y, Zhang Y, Wang CR. The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications. INFECTION GENETICS AND EVOLUTION 2019; 75:103961. [PMID: 31301425 DOI: 10.1016/j.meegid.2019.103961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022]
Abstract
Echinostoma miyagawai (Trematoda: Echinostomatidae) is a common parasite of poultry that also infects humans. Es. miyagawai belongs to the "37 collar-spined" or "revolutum" group, which is very difficult to identify and classify based only on morphological characters. Molecular techniques can resolve this problem. The present study, for the first time, determined, and presented the complete Es. miyagawai mitochondrial genome. A comparative analysis of closely related species, and a reconstruction of Echinostomatidae phylogeny among the trematodes, is also presented. The Es. miyagawai mitochondrial genome is 14,416 bp in size, and contains 12 protein-coding genes (cox1-3, nad1-6, nad4L, cytb, and atp6), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding region (NCR). All Es. miyagawai genes are transcribed in the same direction, and gene arrangement in Es. miyagawai is identical to six other Echinostomatidae and Echinochasmidae species. The complete Es. miyagawai mitochondrial genome A + T content is 65.3%, and full-length, pair-wise nucleotide sequence identity between the six species within the two families range from 64.2-84.6%. The Es. miyagawai sequences is most similar to Echinostoma caproni. Sequence difference are 15.0-33.5% at the nucleotide level, and 8.6-44.2% at the amino acid level, among the six species, for the 12 protein-coding genes. ATG and TAG are the most common initiation and termination codons, respectively. Twenty of the Es. miyagawai transfer RNA genes transcribe products of the conventional cloverleaf structure, while two of the transfer RNA genes, namely trnS1(AGC) and trnS2(UGA), have unpaired D-arms. Phylogenetic analyses using our mitochondrial data indicate that Es. miyagawai is closely related to other Echinostomatidae species, except for Echinostoma hortense, which forms a distinct paraphyletic branch, and Echinochasmus japonicus, which is outside the clade containing all other Echinostomatidae species. These phylogenetic results support the elevation of subfamily Echinostomatidae. Our dataset also provides a significant resource of molecular markers to study the taxonomy, population genetics, and systematics of the echinostomatids.
Collapse
Affiliation(s)
- Ye Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yang-Yuan Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Min-Hao Zeng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Pei-Wen Diao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yuan Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| |
Collapse
|
39
|
Molecular characterization of Fasciola jacksoni from wild elephants ( Elephas maximus maximus) of Sri Lanka: a taxonomic evaluation. Parasitology 2019; 146:1247-1255. [PMID: 31084638 DOI: 10.1017/s0031182019000519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fasciola jacksoni is a significant contributor to the health and mortality of Asian elephants, particularly those in Sri Lanka. Despite the impact of fascioliasis on elephant populations, it is a neglected veterinary disease with limited taxonomic understanding. Molecular characterization and phylogenetic analysis of F. jacksoni were carried out to evaluate its suggested basal position in the Fasciolidae. Adult worms were collected during post-mortem of elephants, and eggs were collected from living elephants in National parks across Sri Lanka. Using the mitochondrial genes nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome oxidase subunit 1 (cox1), and a partial 28S ribosomal DNA (28S rDNA), DNA sequences were generated from the F. jacksoni adult and egg material. Maximum likelihood (ML) phylogenetic analyses did not resolve F. jacksoni to be basal to the Fasciolidae. Furthermore, the ML analyses showed that the genus Fasciola was not monophyletic and that F. jacksoni was a sister species to the deer liver fluke Fascioloides magna. A clear framework is required to determine the taxonomic status of F. jacksoni and this current study provides the first detailed application of molecular techniques from multiple hosts across Sri Lanka with the production of reference DNA sequences for this important parasite.
Collapse
|
40
|
Le TH, Nguyen KT, Nguyen NTB, Doan HTT, Agatsuma T, Blair D. The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 2019; 7:e7031. [PMID: 31259095 PMCID: PMC6589331 DOI: 10.7717/peerj.7031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present the complete mitochondrial genome of Paragonimus ohirai Miyazaki, 1939 and compare its features with those of previously reported mitochondrial genomes of the pathogenic lung-fluke, Paragonimus westermani, and other members of the genus. The circular mitochondrial DNA molecule of the single fully sequenced individual of P. ohirai was 14,818 bp in length, containing 12 protein-coding, two ribosomal RNA and 22 transfer RNA genes. As is common among trematodes, an atp8 gene was absent from the mitogenome of P. ohirai and the 5' end of nad4 overlapped with the 3' end of nad4L by 40 bp. Paragonimusohirai and four forms/strains of P. westermani from South Korea and India, exhibited remarkably different base compositions and hence codon usage in protein-coding genes. In the fully sequenced P. ohirai individual, the non-coding region started with two long identical repeats (292 bp each), separated by tRNAGlu . These were followed by an array of six short tandem repeats (STR), 117 bp each. Numbers of the short tandem repeats varied among P. ohirai individuals. A phylogenetic tree inferred from concatenated mitochondrial protein sequences of 50 strains encompassing 42 species of trematodes belonging to 14 families identified a monophyletic Paragonimidae in the class Trematoda. Characterization of additional mitogenomes in the genus Paragonimus will be useful for biomedical studies and development of molecular tools and mitochondrial markers for diagnostic, identification, hybridization and phylogenetic/epidemiological/evolutionary studies.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Takeshi Agatsuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko, Nankoku City, Kochi, Japan
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
41
|
Suleman, Khan MS, Heneberg P, Zhou CY, Muhammad N, Zhu XQ, Ma J. Characterization of the complete mitochondrial genome of Uvitellina sp., representative of the family Cyclocoelidae and phylogenetic implications. Parasitol Res 2019; 118:2203-2211. [PMID: 31154527 DOI: 10.1007/s00436-019-06358-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/16/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial (mt) DNA has been useful in revealing the phylogenetic relationship of eukaryotic organisms including flatworms. Therefore, the use of mitogenomic data for the comparative and phylogenetic purposes is needed for those families of digenetic trematodes for which the mitogenomic data are still missing. Molecular data with sufficiently rich informative characters that can better resolve species identification, discrimination, and membership in different genera is also required for members of some morphologically difficult families of trematodes bearing few autapomorphic characters among its members. Here, the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and the complete mt genome of the trematode Uvitellina sp. (Cyclocoelidae: Haematotrephinae) was determined and annotated. The mt genome of this avian trematode is 14,217 bp in length, containing 36 genes plus a single non-coding region. The ITS rDNA sequences were used for the pairwise sequence comparison of Uvitellina sp. with European cyclocoelid species, and the mitochondrial 12 protein-coding genes (PCGs) and two ribosomal RNA genes were used to evaluate the position of the family within selected trematodes. The ITS rDNA analysis of Uvitellina sp. showed less nucleotide differences with Hyptiasmus oculeus (16.77%) than with other European cyclocoelids (18.63-23.58%). The Bayesian inference (BI) analysis using the 12 mt PCGs and two rRNA genes supported the placement of the family Cyclocoelidae within the superfamily Echinostomatoidea (Plagiorchiida: Echinostmata). The availability of the mt genome sequences of Uvitellina sp. provides a novel resource of molecular markers for phylogenetic studies of Cyclocoelidae and other trematodes.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Cheng-Yan Zhou
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
42
|
Ershov NI, Mordvinov VA, Prokhortchouk EB, Pakharukova MY, Gunbin KV, Ustyantsev K, Genaev MA, Blinov AG, Mazur A, Boulygina E, Tsygankova S, Khrameeva E, Chekanov N, Fan G, Xiao A, Zhang H, Xu X, Yang H, Solovyev V, Lee SMY, Liu X, Afonnikov DA, Skryabin KG. New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes. BMC Genomics 2019; 20:399. [PMID: 31117933 PMCID: PMC6530080 DOI: 10.1186/s12864-019-5752-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
Background The three epidemiologically important Opisthorchiidae liver flukes Opisthorchis felineus, O. viverrini, and Clonorchis sinensis, are believed to harbour similar potencies to provoke hepatobiliary diseases in their definitive hosts, although their populations have substantially different ecogeographical aspects including habitat, preferred hosts, population structure. Lack of O. felineus genomic data is an obstacle to the development of comparative molecular biological approaches necessary to obtain new knowledge about the biology of Opisthorchiidae trematodes, to identify essential pathways linked to parasite-host interaction, to predict genes that contribute to liver fluke pathogenesis and for the effective prevention and control of the disease. Results Here we present the first draft genome assembly of O. felineus and its gene repertoire accompanied by a comparative analysis with that of O. viverrini and Clonorchis sinensis. We observed both noticeably high heterozygosity of the sequenced individual and substantial genetic diversity in a pooled sample. This indicates that potency of O. felineus population for rapid adaptive response to control and preventive measures of opisthorchiasis is higher than in O. viverrini and C. sinensis. We also have found that all three species are characterized by more intensive involvement of trans-splicing in RNA processing compared to other trematodes. Conclusion All revealed peculiarities of structural organization of genomes are of extreme importance for a proper description of genes and their products in these parasitic species. This should be taken into account both in academic and applied research of epidemiologically important liver flukes. Further comparative genomics studies of liver flukes and non-carcinogenic flatworms allow for generation of well-grounded hypotheses on the mechanisms underlying development of cholangiocarcinoma associated with opisthorchiasis and clonorchiasis as well as species-specific mechanisms of these diseases. Electronic supplementary material The online version of this article (10.1186/s12864-019-5752-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikita I Ershov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia.
| | | | - Egor B Prokhortchouk
- Russian Federal Research Center for Biotechnology, 33/2 Leninsky prospect, Moscow, 119071, Russia. .,ZAO Genoanalytica, 1 Leninskie Gory street, Moscow, 119234, Russia.
| | - Mariya Y Pakharukova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str, Novosibirsk, 630090, Russia
| | - Konstantin V Gunbin
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Kirill Ustyantsev
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Mikhail A Genaev
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Alexander G Blinov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Alexander Mazur
- Russian Federal Research Center for Biotechnology, 33/2 Leninsky prospect, Moscow, 119071, Russia
| | | | | | | | - Nikolay Chekanov
- Russian Federal Research Center for Biotechnology, 33/2 Leninsky prospect, Moscow, 119071, Russia
| | - Guangyi Fan
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Xiao
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - He Zhang
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Victor Solovyev
- Softberry Inc., 116 Radio Circle, Suite 400, Mount Kisco, NY, 10549, USA
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Liu
- BGI-Shenzhen, 11 Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Dmitry A Afonnikov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str, Novosibirsk, 630090, Russia
| | - Konstantin G Skryabin
- Russian Federal Research Center for Biotechnology, 33/2 Leninsky prospect, Moscow, 119071, Russia.,Federal Research Center Kurchatov Institute, Moscow, Russia
| |
Collapse
|
43
|
Characterization of the complete mitochondrial genome of Plagiorchis maculosus (Digenea, Plagiorchiidae), Representative of a taxonomically complex digenean family. Parasitol Int 2019; 71:99-105. [PMID: 30946896 DOI: 10.1016/j.parint.2019.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
Despite the highly divergent morphology, pathogenicity and worldwide distribution of digenean parasites belonging to one of the largest families, the Plagiorchiidae, there are no complete mitochondrial (mt) genomes published to date for plagiorchiids. In this study, we obtained nuclear ribosomal DNA (ITS region and 28S rDNA) sequences and the complete mt genome sequences of Plagiorchis maculosus (Rudolphi 1802) Braun, 1902, and assessed its phylogenetic relationship with other xiphidiates, based on the mtDNA sequences. The obtained ITS and 28S rDNA sequences were identical to the corresponding sequences of P. maculosus available in GenBank. The complete mitochondrial genome of P. maculosus (14,124 bp) contained 36 genes (atp8 is absent) and a long non-coding region (NCR) with two sets of repeated sequences of 283 nucleotides each. The phylogenetic tree resulting from Bayesian inference (BI) analyses based on concatenated nucleotide sequences of all 36 genes of P. maculosus and other xiphidiates mitochondrial genomes, indicated that P. maculosus (and the Plagiorchiidae) is phylogenetically closest to the Brachycladiidae and Paragonimidae. The present study describes the first mitochondrial genome from the type genus of the family Plagiorchiidae. The overall gene arrangement, nucleotide composition, A + T contents, AT and GC skew and codon usage with relative synonymous codon usage (RSCU) for 12 PCGs are described. Characterization of mitochondrial genomes from additional plagiorchiid taxa is necessary to make further progress in phylogenetic and epidemiological studies of these digeneans as well as accurate diagnostics of these parasites including those parasitic in humans.
Collapse
|
44
|
Chougar L, Amor N, Farjallah S, Harhoura K, Aissi M, Alagaili AN, Merella P. New insight into genetic variation and haplotype diversity of Fasciola hepatica from Algeria. Parasitol Res 2019; 118:1179-1192. [PMID: 30847611 DOI: 10.1007/s00436-019-06270-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
The liver fluke Fasciola hepatica is the main cause of fasciolosis in North Africa leading to significant economic losses and public health problems. In this study, the ribosomal internal transcribed spacer (ITS), cytochrome c oxidase I (COI), the mitochondrial region spanning the COI-trnT-rrnL, and the NADH dehydrogenase subunit I (NADI) markers were used to characterize Fasciola flukes from Algeria. Fasciola appeared widespread from the east to the west of Algeria. Among 1701 sampled cattle from 8 Algerian provinces, 5% were infected. Using morphological and morphometric analysis, one morphotype of Fasciola was observed. Nuclear ITS marker indicated that all collected flukes belong to F. hepatica. Multiple alignments of ITS dataset revealed two haplotypes, one described here for the first time. Analysis of molecular variance (AMOVA) of mitochondrial markers revealed weak population structure in Algeria. Mismatch distributions, neutrality tests, and median-joining network analysis all were compatible with a recent expansion of Algerian F. hepatica population. Fasciolosis appeared common in Algerian cattle, it seems that the absence of control strategy coupled to the favorable Mediterranean climate may lead to a reconstruction and dispersion of its populations. This study provides important results concerning the genetic characterization and variability of F. hepatica in Algeria as well as the significant role of cattle importation in shaping its dispersal route worldwide.
Collapse
Affiliation(s)
- Linda Chougar
- Animal Health and Productions Laboratory, High National Veterinary School-Algiers, B.P. 228, Oued Samar, Algiers, Algeria
| | - Nabil Amor
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Sarra Farjallah
- Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Khaled Harhoura
- Animal Health and Productions Laboratory, High National Veterinary School-Algiers, B.P. 228, Oued Samar, Algiers, Algeria
| | - Miriem Aissi
- Animal Health and Productions Laboratory, High National Veterinary School-Algiers, B.P. 228, Oued Samar, Algiers, Algeria
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
45
|
Genetic characterisation of Fasciola gigantica from Ghana. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 14:106-110. [PMID: 31014713 DOI: 10.1016/j.vprsr.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
Fasciola hepatica and Fasciola gigantica are the causal agents of the zoonotic food-born disease fascioliasis. Africa is primarily endemic to F. gigantica, although sympatric presence of F. hepatica is known for some countries. The present situation of fascioliasis in western Africa, and Ghana in particular, is still poorly understood, and studies including molecular identification of species and variants are lacking. In this explorative study we genotyped 19 Fasciola isolates obtained by opportunistic sampling in the Upper East and Upper West Regions of Ghana. All isolates were identified as F. gigantica based on a partial sequence of the 28S rRNA (548 bp) gene. In addition, the complete mtDNA nad1 (903 bp) gene was employed to infer intraspecific microvariation among isolates. Six nad1 haplotypes were identified that clustered into two West African haplogroups when compared with previous records from Nigeria. These preliminary data suggest that fascioliasis in Ghana is (at least) mainly caused by F. gigantica, and that transmission may be principally autochthonous. However, the small number of isolates prevents firm conclusions, and this study is intended to stimulate molecular surveys on this neglected disease in a neglected region.
Collapse
|
46
|
Identification and characterization of the Fasciola hepatica sodium- and chloride-dependent taurine transporter. PLoS Negl Trop Dis 2018; 12:e0006428. [PMID: 29702654 PMCID: PMC5942844 DOI: 10.1371/journal.pntd.0006428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The parasitic liver fluke Fasciola hepatica infests mainly ruminants, but it can also cause fasciolosis in people, who ingest the metacercariae encysted on plants. The drug of choice to treat fasciolosis is triclabendazole (TBZ), which has been on the market for several decades. This is also true for the other available drugs. Accordingly, drug-resistant flukes have been emerging at an increasing rate making it desirable to identify alternative drug targets. Here, we focused on the fact that adult F. hepatica persists in the hostile environment of the bile ducts of infected organisms. A common way to render bile acids less toxic is to conjugate them to taurine (2-aminoethanesulfonic acid). We cloned a transporter from the solute carrier-6 (SLC6) family, which was most closely related to the GABA-transporter-2 of other organisms. When heterologously expressed, this F. hepatica transporter supported the high-affinity cellular uptake of taurine (KM = 12.0 ± 0.5 μM) but not of GABA. Substrate uptake was dependent on Na+- and Cl- (calculated stoichiometry 2:1). Consistent with the low chloride concentration in mammalian bile, the F. hepatica transporter had a higher apparent affinity for Cl- (EC50 = 14±3 mM) than the human taurine transporter (EC50 = 55±7 mM). We incubated flukes with unconjugated bile acids in the presence and absence of taurine: taurine promoted survival of flukes; the taurine transporter inhibitor guanidinoethansulfonic acid abolished this protective effect of taurine. Based on these observations, we conclude that the taurine transporter is critical for the survival of liver flukes in the bile. Thus, the taurine transporter represents a candidate drug target.
Collapse
|
47
|
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using 'omics' technologies. Int J Parasitol 2018; 48:321-331. [PMID: 29476869 DOI: 10.1016/j.ijpara.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of 'omics' datasets. In addition, we highlight the 'omics' studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK; Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
48
|
Dao TTH, Nguyen TTG, Gabriël S, Bui KL, Dorny P, Le TH. Updated molecular phylogenetic data for Opisthorchis spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam. Parasit Vectors 2017; 10:575. [PMID: 29157282 PMCID: PMC5697094 DOI: 10.1186/s13071-017-2514-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND An opisthorchiid liver fluke was recently reported from ducks (Anas platyrhynchos) in Binh Dinh Province of Central Vietnam, and referred to as "Opisthorchis viverrini-like". This species uses common cyprinoid fishes as second intermediate hosts as does Opisthorchis viverrini, with which it is sympatric in this province. In this study, we refer to the liver fluke from ducks as "Opisthorchis sp. BD2013", and provide new sequence data from the mitochondrial (mt) genome and the nuclear ribosomal transcription unit. A phylogenetic analysis was conducted to clarify the basal taxonomic position of this species from ducks within the genus Opisthorchis (Digenea: Opisthorchiidae). METHODS Adults and eggs of liver flukes were collected from ducks, metacercariae from fishes (Puntius brevis, Rasbora aurotaenia, Esomus metallicus) and cercariae from snails (Bithynia funiculata) in different localities in Binh Dinh Province. From four developmental life stage samples (adults, eggs, metacercariae and cercariae), the complete cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) genes, and near-complete 18S and partial 28S ribosomal DNA (rDNA) sequences were obtained by PCR-coupled sequencing. The alignments of nucleotide sequences of concatenated cob + nad1 + cox1, and of concatenated 18S + 28S were separately subjected to phylogenetic analyses. Homologous sequences from other trematode species were included in each alignment. RESULTS Phylogenetic trees were inferred from concatenated (cob + nad1 + cox1) nucleotide sequences and combined 18S + 28S nucleotide sequences of five Opisthorchis sp. BD2013 samples and additional reference taxa. Both trees demonstrated the anticipated clustering of taxa within the superfamily Opisthorchioidea, the paraphyly of the genus Opisthorchis and the sister-species relationship of Opisthorchis sp. BD2013 with O. viverrini. CONCLUSIONS While it is likely that Opisthorchis sp. BD2013 is distinct from O. viverrini, it is clearly a sister taxon of O. viverrini within the limited number of Opisthorchis species for which appropriate sequence data are available. The new sequences provided here will assist the diagnosis and the taxonomic clarification of the opisthorchiid species.
Collapse
Affiliation(s)
- Thanh Thi Ha Dao
- National Institute of Veterinary Research, 86. Truong Chinh Street, Dong Da District, Hanoi, Vietnam
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B2000 Antwerp, Belgium
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 133 Salisburylaan, B9820, Merelbeke, Belgium
| | - Thanh Thi Giang Nguyen
- National Institute of Veterinary Research, 86. Truong Chinh Street, Dong Da District, Hanoi, Vietnam
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B2000 Antwerp, Belgium
| | - Sarah Gabriël
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, 133 Salisburylaan, B-9820 Merelbeke, Belgium
| | - Khanh Linh Bui
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B2000 Antwerp, Belgium
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 133 Salisburylaan, B9820, Merelbeke, Belgium
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
49
|
Multilocus phylogenetic analysis and morphological data reveal a new species composition of the genus Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae), parasites of fish-eating birds in the Americas. J Helminthol 2017; 92:572-595. [DOI: 10.1017/s0022149x17000815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMembers of the genus Drepanocephalus are endoparasites of fish-eating birds of the families Phalacrocoracidae and Sulidae distributed across the Americas. Currently, Drepanocephalus contains three species, i.e. D. spathans (type species), D. olivaceus and D. auritus. Two additional species, D. parvicephalus and D. mexicanus were transferred to the genus Petasiger. In the current study, available DNA sequences of D. spathans, D. auritus and Drepanocephalus sp., were aligned with newly generated sequences of D. spathans and Petasiger mexicanus. Phylogenetic analyses inferred with three nuclear (LSU, SSU and ITS1, 5.8S, ITS2) and two mitochondrial (cox1, nad1) molecular markers showed that the sequences of D. spathans and D. auritus are nested together in a single clade with very low genetic divergence, with Petasiger mexicanus as its sister species. Additionally, P. mexicanus was not a close relative of other members of the genus Petasiger, showing that P. mexicanus actually belongs to the genus Drepanocephalus, suggesting the need to re-allocate Petasiger mexicanus back into the genus Drepanocephalus, as D. mexicanus. Morphological observations of the newly sampled individuals of D. spathans showed that the position of the testes is variable and testes might be contiguous or widely separated, which is one of the main diagnostic traits for D. auritus. Our results suggest that D. auritus might be considered a synonym of D. spathans and, as a result, the latter represents a species with a wide geographic range across the Americas, parasitizing both the Neotropical and the double-crested cormorant in Argentina, Brazil, Paraguay, Venezuela, Colombia, Mexico, USA and Canada.
Collapse
|
50
|
Wang D, Young ND, Koehler AV, Tan P, Sohn WM, Korhonen PK, Gasser RB. Mitochondrial genomic comparison of Clonorchis sinensis from South Korea with other isolates of this species. INFECTION GENETICS AND EVOLUTION 2017; 51:160-166. [DOI: 10.1016/j.meegid.2017.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
|