1
|
Muñoz-Gómez V, Torgerson PR. Global and regional prediction of heterakidosis population prevalence in extensive backyard chickens in low-income and middle-income countries. Vet Parasitol 2024; 332:110329. [PMID: 39418762 DOI: 10.1016/j.vetpar.2024.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Extensive backyard chickens are one of the most common production systems in low-income and middle-income countries (LMICs). In this production system, chickens are exposed to infectious forms of parasites as a result of the outdoor access and scavenging behaviour. Heterakis gallinarum is one of the most common nematode parasites present in the environment, and estimating its global and regional prevalence is essential for attributing the economic losses in extensive backyard chickens. The objective of this study is to predict the prevalence of heterakidosis in extensive backyard chickens at global and regional levels in LMICs using regression imputation methods. A binomial random effect model was developed using empirical data on heterakidosis prevalence and climatic factors as main predictors. Prevalence data were then imputed in all regions based on the regression model. Global and country prevalence were estimated based on regional predictions and their beta distributions. Minimum precipitation, minimum temperature and maximum temperature were selected as significant predictors. The population prevalence of heterakidosis was 0.24 (0.19-0.29). Countries with continental and dry climates had a higher mean prevalence, whereas countries with tropical climates had a lower mean prevalence of heterakidosis. As more empirical data on heterakidosis prevalence become available, this model and predictions should be redefined and updated to capture a more representative association and increase the accuracy of the predictions. The results of this study can be used to attribute the economic losses of extensive backyard chickens, taking into account a holistic approach as promoted by the GBADs programme and therefore, to identify which diseases are more costly to backyard farmers. Furthermore, results can be also served as a proxy for the risk of histomoniasis in extensive backyard chickens.
Collapse
Affiliation(s)
- Violeta Muñoz-Gómez
- Global Burden of Animal Diseases Programme, University of Liverpool, United Kingdom; Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Paul R Torgerson
- Global Burden of Animal Diseases Programme, University of Liverpool, United Kingdom; Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Oladosu OJ, Correia BSB, Grafl B, Liebhart D, Metges CC, Bertram HC, Daş G. 1H-NMR based-metabolomics reveals alterations in the metabolite profiles of chickens infected with ascarids and concurrent histomonosis infection. Gut Pathog 2023; 15:56. [PMID: 37978563 PMCID: PMC10655416 DOI: 10.1186/s13099-023-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut infections of chickens caused by Ascaridia galli and Heterakis gallinarum are associated with impaired host performance, particularly in high-performing genotypes. Heterakis gallinarum is also a vector of Histomonas meleagridis that is often co-involved with ascarid infections. Here, we provide a first insight into the alteration of the chicken plasma and liver metabolome as a result of gastrointestinal nematode infections with concomitant histomonosis. 1H nuclear magnetic resonance (1H-NMR) based-metabolomics coupled with a bioinformatics analysis was applied to explore the variation in the metabolite profiles of the liver (N = 105) and plasma samples from chickens (N = 108) experimentally infected with A. galli and H. gallinarum (+H. meleagridis). This was compared with uninfected chickens at different weeks post-infection (wpi 2, 4, 6, 10, 14, 18) representing different developmental stages of the worms. RESULTS A total of 31 and 54 metabolites were quantified in plasma and aqueous liver extracts, respectively. Statistical analysis showed no significant differences (P > 0.05) in any of the 54 identified liver metabolites between infected and uninfected hens. In contrast, 20 plasma metabolites including, amino acids, sugars, and organic acids showed significantly elevated concentrations in the infected hens (P < 0.05). Alterations of plasma metabolites occurred particularly in wpi 2, 6 and 10, covering the pre-patent period of worm infections. Plasma metabolites with the highest variation at these time points included glutamate, succinate, trimethylamine-N-oxide, myo-inositol, and acetate. Differential pathway analysis suggested that infection induced changes in (1) phenylalanine, tyrosine, and tryptophan metabolism, (2) alanine, aspartate and glutamate metabolism; and 3) arginine and proline metabolism (Pathway impact > 0.1 with FDR adjusted P-value < 0.05). CONCLUSION In conclusion, 1H-NMR based-metabolomics revealed significant alterations in the plasma metabolome of high performing chickens infected with gut pathogens-A. galli and H. gallinarum. The alterations suggested upregulation of key metabolic pathways mainly during the patency of infections. This approach extends our understanding of host interactions with gastrointestinal nematodes at the metabolic level.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
Oladosu OJ, Hennies M, Stehr M, Metges CC, Gauly M, Daş G. Pattern and repeatability of ascarid-specific antigen excretion through chicken faeces, and the diagnostic accuracy of coproantigen measurements as compared with McMaster egg counts and plasma and egg yolk antibody measurements in laying hens. Parasit Vectors 2023; 16:175. [PMID: 37264440 DOI: 10.1186/s13071-023-05782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND A coproantigen enzyme-linked immunosorbent assay (ELISA) has recently been proposed for detecting ascarid infections in chickens. The excretion pattern of ascarid antigens through chicken faeces and the consistency of measurements over the course of infections are currently unknown. This study evaluates the pattern and repeatability of worm antigen per gram of faeces (APG) and compares the diagnostic performance of the coproantigen ELISA with a plasma and egg yolk antibody ELISA and McMaster faecal egg counts (M-FEC) at different weeks post-infection (wpi). METHODS Faecal, blood and egg yolk samples were collected from laying hens that were orally infected with a mix of Ascaridia galli and Heterakis gallinarum eggs (N = 108) or kept as uninfected controls (N = 71). Measurements including (a) APG using a coproantigen ELISA, (b) eggs per gram of faeces (EPG) using the McMaster technique and (c) ascarid-specific IgY in plasma and in egg yolks using an ascarid-specific antibody ELISA) were performed between wpi 2 and 18. RESULTS Time-dependent significant differences in APG between infected and non-infected laying hens were quantified. At wpi 2 (t(164) = 0.66, P = 1.00) and 4 (t(164) = -3.09, P = 0.094) no significant differences were observed between the groups, whereas infected hens had significantly higher levels of APG than controls by wpi 6 (t(164) = -6.74, P < 0.001). As indicated by a high overall repeatability estimate of 0.91 (CI = 0.89-0.93), APG could be measured consistently from the same individual. Compared to McMaster and antibody ELISA, coproantigen ELISA showed the highest overall diagnostic performance (area under curve, AUC = 0.93), although the differences were time-dependent. From wpi 6 to 18 coproantigen ELISA had an AUC > 0.95, while plasma IgY ELISA showed the highest diagnostic performance in wpi 2 (AUC = 0.95). M-FEC had the highest correlation with total worm burden, while APG had highest correlations with weights and lengths of A. galli. CONCLUSION Ascarid antigen excretion through chicken faeces can be measured with high accuracy and repeatability using a coproantigen ELISA. The antigen excretion increases over time, and is associated with worm maturation, particularly with the size of A. galli. Our results suggest the necessity of complementary use of different diagnostic tools for a more accurate diagnosis of infections.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mark Hennies
- TECOmedical Group, Marie-Curie-Str. 1, 53359, Rheinbach, Germany
| | - Manuel Stehr
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Matthias Gauly
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, 39100, Bolzano, Italy
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Prevalence and magnitude of gastrointestinal helminth infections in cage-free laying chickens in Australia. Vet Parasitol Reg Stud Reports 2023; 37:100819. [PMID: 36623907 DOI: 10.1016/j.vprsr.2022.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Helminth infections have been re-emerging with the growing popularity of free-range and floor-based chicken production systems. The aim of this study was to determine the prevalence and worm burdens of intestinal helminth infection in cage-free laying chickens in Australia. In an online survey about worm prevalence, a high proportion of respondents reported the detection of Ascaridia galli (77%), followed by tapeworms (69%) and caecal worms (Heterakis gallinarum) (62%), whereas fewer respondents (23%) reported the presence of hair worms (Capillaria spp.) in their flocks. Total worm recovery from 407 laying hens on four farms found that 92.1% of hens harboured one or more helminth parasite with a prevalence of 73 to 100% across farms. Mixed infections were common with 79% of hens harbouring two or more helminth species. The prevalence of nematode species H. gallinarum, A. galli and Capillaria spp. was 87, 82 and 35% respectively. Five cestode species were found with a low individual chicken prevalence (Raillietina tetragona 4.7%, Raillietina echinobothrida 3.2%, Raillietina cesticillus 5.2%, Choanotaenia infundibulum 4.4%, and Hymenolepis cantaniana 4.4%). The hens harboured an average of 71 worms with H. gallinarum having the highest mean burden (45.5 worms/hen) followed by A. galli (22.0 worms/hen), Capillaria spp. (2.7 worms/hen) and cestodes (0.8 worms/hen). The sex ratio (female:male worms) was 1.38:1 for A. galli, and 1.77:1 for H. gallinarum. There was a strong positive correlation between A. galli female worm count and excreta egg count (EECs) (rs = 0.94, P < 0.0001) and also between total nematode worm count and EEC (rs = 0.82, P < 0.0001) in individual hens. When investigating intestinal excreta (n = 10) and caecal excreta (n = 10) of 16 chicken flocks the prevalence of infection with ascarid worms in intestinal and caecal excreta was 71 and 78% respectively and 27% prevalence of Capillaria spp. in intestinal excreta with mean EECs of 407, 404, and 18 eggs/g of excreta (EPG), respectively. These results suggest that most chickens kept in free-range or floor production systems are infected with one or more helminth parasite species. Heavy worm infections would likely affect the production performance and welfare of birds with adverse economic impact. Strategic or tactical anthelmintic treatment with effective anthelmintic could reduce this impact.
Collapse
|
5
|
Beer LC, Petrone-Garcia VM, Graham BD, Hargis BM, Tellez-Isaias G, Vuong CN. Histomonosis in Poultry: A Comprehensive Review. Front Vet Sci 2022; 9:880738. [PMID: 35601402 PMCID: PMC9120919 DOI: 10.3389/fvets.2022.880738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Histomonas meleagridis, the etiological agent of histomonosis, is a poultry parasite primarily detrimental to turkeys. Characteristic lesions occur in the liver and ceca, with mortalities in turkey flocks often reaching 80-100%. Chickens and other gallinaceous birds can be susceptible but the disease was primarily considered sub-clinical until recent years. Treating and preventing H. meleagridis infection have become more difficult since 2015, when nitarsone was voluntarily removed from the market, leaving the poultry industry with no approved prophylactics, therapeutics, or vaccines to combat histomonosis. Phytogenic compounds evaluated for chemoprophylaxis of histomonosis have varied results with in vitro and in vivo experiments. Some recent research successes are encouraging for the pursuit of antihistomonal compounds derived from plants. Turkeys and chickens exhibit a level of resistance to re-infection when recovered from H. meleagridis infection, but no commercial vaccines are yet available, despite experimental successes. Safety and stability of live-attenuated isolates have been demonstrated; furthermore, highly efficacious protection has been conferred in experimental settings with administration of these isolates without harming performance. Taken together, these research advancements are encouraging for vaccine development, but further investigation is necessary to evaluate proper administration age, dose, and route. A summary of the published research is provided in this review.
Collapse
Affiliation(s)
- Lesleigh C. Beer
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Mexico
| | - B. Danielle Graham
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| |
Collapse
|
6
|
Daş G, Klauser S, Stehr M, Tuchscherer A, Metges CC. Accuracy and precision of McMaster and Mini-FLOTAC egg counting techniques using egg-spiked faeces of chickens and two different flotation fluids. Vet Parasitol 2020; 283:109158. [PMID: 32544762 DOI: 10.1016/j.vetpar.2020.109158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Faecal egg counting techniques (ECTs) are useful tools for assessing anthelmintic efficacy and selecting hosts resistant to parasite infection. McMaster (MM) is one of the most commonly used ECTs, but it suffers from low sensitivity and precision. Mini-FLOTAC (MF) has been proposed to replace MM, but so far has not been evaluated for gastro-intestinal nematode infections in chickens. This study compared sensitivity, precision, and accuracy of MM and MF with two trials using egg-spiked faecal samples ranging from 50-1250 eggs per gram of faeces (EPG). In addition, effects of two flotation fluids with different specific gravities (SG), namely salt (SG = 1.20) and sucrose solutions (SG = 1.32), on accuracy and time-spent for both ECTs were evaluated. Overall sensitivity based on the composite reads across all EPG-levels was 97.1 % for MM and 100 % for MF. MF was, however, more sensitive (P = 0.003) or tended to (P = 0.087) be more sensitive than MM at only the lowest EPG-level (i.e. 50 EPG) using one of the duplicate reads, whereas there was no significant difference at any EPG-level using composite reads. Overall average precision of MF (79.5 %) was higher (P < 0.001) than that of MM (63.4 %) across all EPG-levels. Precision of MM increased from 22 to 87 % with increasing EPG-levels from 50-1250 EPG. Corresponding precision estimates for MF ranged from 76 to 91 %. Overall recovery rate of MM (74.6 %) was significantly higher (P < 0.001) than that of MF (60.1 %). There was no significant difference in recovery rate of spiked-eggs among different EPG-levels (P = 0.833). Recovery rate of MM ranged from 64 % to 79 % across different EPG-levels, while it ranged from 54 % to 64 % with MF without an interaction between ECT and EPG-level (P = 0.701). It took more time (P < 0.001) to process (prepare and read) samples with MF than with MM using the same flotation fluid. The sugar solution tended to (P = 0.100) increase egg-recovery with both ECTs, while increasing (P < 0.001) time-spent for processing the samples. Our data collectively suggest that MM is less sensitive than MF only at around minimum detection level of MM when using unrepeated reads. We conclude that McMaster is faster, relatively more accurate but less precise than Mini-FLOTAC. The sugar solution with higher SG increases accuracy of both techniques at the expense of increased labour time.
Collapse
Affiliation(s)
- Gürbüz Daş
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Stefanie Klauser
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manuel Stehr
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
7
|
Co-expulsion of Ascaridia galli and Heterakis gallinarum by chickens. Int J Parasitol 2018; 48:1003-1016. [PMID: 30240707 DOI: 10.1016/j.ijpara.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
Abstract
Worm expulsion is known to occur in mammalian hosts exposed to mono-species helminth infections, whilst this phenomenon is poorly described in avian hosts. Mono-species infections, however, are rather rare under natural circumstances. Therefore, we quantified the extent and duration of worm expulsion by chickens experimentally infected with both Ascaridia galli and Heterakis gallinarum, and investigated the accompanying humoral and cell-mediated host immune responses in association with population dynamics of the worms. Results demonstrated the strong co-expulsion of the two ascarid species in three phases. The expulsion patterns were characterized by non-linear alterations separated by species-specific time thresholds. Ascaridia galli burden decreased at a daily expulsion rate (e) of 4.3 worms up to a threshold of 30.5 days p.i., followed by a much lower second expulsion rate (e = 0.46), which resulted in almost, but not entirely, complete expulsion. Heterakis gallinarum was able to induce reinfection within the experimental period (9 weeks). First generation H. gallinarum worms were expelled at a daily rate of e = 0.8 worms until 36.4 days p.i., and thereafter almost no expulsion occurred. Data on both humoral and tissue-specific cellular immune responses collectively indicated that antibody production in chickens with multispecies ascarid infections is triggered by Th2 polarisation. Local Th2 immune responses and mucin-regulating genes are associated with the regulation of worm expulsion. In conclusion, the chicken host is able to eliminate the vast majority of both A. galli and H. gallinarum in three distinct phases. Worm expulsion was strongly associated with the developmental stages of the worms, where the elimination of juvenile stages was specifically targeted. A very small percentage of worms was nevertheless able to survive, reach maturity and induce reinfection if given sufficient time to complete their life cycle. Both humoral and local immune responses were associated with worm expulsion.
Collapse
|
8
|
Abstract
AbstractPeriodicity in nematode egg excretion may be of evolutionary origin as it can favour dispersal of the eggs in the environment. We investigated whether egg excretion by Heterakis gallinarum shows a repeatable pattern of periodicity. The faecal egg concentration and total number of eggs excreted within 4-h intervals were significantly affected by the sampling time within 1 day, but remained unaffected by the sampling day or interaction effects. By contrast, the total number of eggs excreted within 24 h did not differ among the 4 days of the study, collectively indicating repeatable egg excretion patterns. Both host feces and parasite egg excretion increased from night to late afternoon, followed by a decrease in the evening, resulting in higher egg excretion during daytime than the dark period. Feces excretion and worm fecundity showed overlapping diurnal rhythms with similarly timed phases, suggesting the existence of synchronicity between the host feces and nematode egg excretion patterns. We conclude that egg excretion by H. gallinarum is synchronized with host feces excretion and is higher during the daytime than during the dark period. This overlaps with the maximum activity of the day-active host and allows a maximal dispersal of the eggs in the environment.
Collapse
|
9
|
Thapa S, Thamsborg SM, Wang R, Meyling NV, Dalgaard TS, Petersen HH, Mejer H. Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens. Parasit Vectors 2018; 11:319. [PMID: 29843784 PMCID: PMC5975387 DOI: 10.1186/s13071-018-2898-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The nematophagous fungus Pochonia chlamydosporia can degrade ascarid (e.g. Ascaridia galli) eggs in agar and soil in vitro. However, it has not been investigated how this translates to reduced infection levels in naturally exposed chickens. We thus tested the infectivity of soil artificially contaminated with A. galli (and a few Heterakis gallinarum) eggs and treated with P. chlamydosporia. Sterilised and non-sterilised soils were used to examine any influence of natural soil biota. METHODS Unembryonated eggs were mixed with sterilised (S)/non-sterilised (N) soil, either treated with the fungus (F) or left as untreated controls (C) and incubated (22 °C, 35 days) to allow eggs to embryonate and fungus to grow. Egg number in soil was estimated on days 0 and 35 post-incubation. Hens were exposed to the soil (SC/SF/NC/NF) four times over 12 days by mixing soil into the feed. On day 42 post-first-exposure (p.f.e.), the hens were euthanized and parasites were recovered. Serum A. galli IgY level and ascarid eggs per gram of faeces (EPG) were examined on days -1 and 36 (IgY) or 40 p.f.e. (EPG). RESULTS Egg recovery in SF soil was substantially lower than in SC soil, but recovery was not significantly different between NF and NC soils. SF hens had a mean worm count of 76 whereas the other groups had means of 355-453. Early mature/mature A. galli were recovered from SF hens whereas hens in the other groups harboured mainly immature A. galli. Heterakis gallinarum counts were low overall, especially in SF. The SF post-exposure IgY response was significantly lower while EPG was significantly higher compared to the other groups. CONCLUSIONS Pochonia chlamydosporia was very effective in reducing ascarid egg numbers in sterilised soil and thus worm burdens in the exposed hens. However, reduced exposure of hens shifted A. galli populations toward a higher proportion of mature worms and resulted in a higher faecal egg excretion within the study period. This highlights a fundamental problem in ascarid control: if not all eggs in the farm environment are inactivated, the resulting low level infections may result in higher contamination levels with associated negative long-term consequences.
Collapse
Affiliation(s)
- Sundar Thapa
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Stig M. Thamsborg
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018 People’s Republic of China
| | - Nicolai V. Meyling
- Section for Organismal Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tina S. Dalgaard
- Section for Immunology and Microbiology, Department of Animal Science, Aarhus University, Blichers Allé 20, Building P25, 3334, 8830 Tjele, Denmark
| | - Heidi H. Petersen
- Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Helena Mejer
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| |
Collapse
|
10
|
Daş G, Hennies M, Sohnrey B, Rahimian S, Wongrak K, Stehr M, Gauly M. A comprehensive evaluation of an ELISA for the diagnosis of the two most common ascarids in chickens using plasma or egg yolks. Parasit Vectors 2017; 10:187. [PMID: 28420423 PMCID: PMC5395908 DOI: 10.1186/s13071-017-2121-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical faecal egg counts (FEC) provide less reliable diagnostic information for nematode infections in chickens. We developed an ELISA based on Ascaridia galli antigens and tested two hypotheses, as follows: (i) IgY antibodies developed against A. galli will also be useful to identify Heterakis gallinarum infections, and (ii) circulating antibodies stored in egg yolks are as good as plasma samples, so a non-invasive diagnosis is possible. The aim of this study, therefore, was to compare the diagnostic accuracy of the ELISA system with FEC, using both plasma and egg yolks from experimentally infected hens. In addition, naturally infected animals were evaluated to validate the assay. RESULTS The assay quantified large differences (P < 0.001) in plasma or in egg-yolk IgY concentrations between infected and uninfected animals in two experiments, each performed with either of the nematode species. The assay performed with high accuracy as quantified with the area under the ROC curve (AUC) values of > 0.90 for both nematodes using either plasma or egg yolks. Sensitivity of the assay was 94 and 93% with plasma and egg yolk samples, respectively, whereas FEC yielded in a sensitivity of 84% in A. galli experiment. Total test accuracy of the assay with plasma samples (AUC = 0.99) tended to be higher (P = 0.0630) than FEC (AUC = 0.92) for A. galli, while the assay with either sample matrix performed similar to FEC (AUC ≥ 0.91) for H. gallinarum. Among the three tests, the FECs correlated better with A. galli burden than the ELISA. Although 90% of naturally infected hens were correctly identified by the ELISA, 45% of the infected hens tested negative with FEC, indicating the validity of the higher test accuracy of the ELISA. CONCLUSIONS Antigens of A. galli can be used successfully to identify H. gallinarum-infected animals, indicating that chickens develop cross-reactive antibodies against the two closely related species. Egg yolks are as informative as plasma samples, so that animal welfare-friendly sampling is possible. Although the assay with plasma samples reveals qualitative information of higher quality than FECs on the infection status of naturally infected birds, the latter is still a better tool to assess the intensity of A. galli but not of H. gallinarum infections.
Collapse
Affiliation(s)
- Gürbüz Daş
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Mark Hennies
- TECOdevelopment GmbH, Marie-Curie-Str. 1, 53359, Rheinbach, Germany
| | - Birgit Sohnrey
- Department of Animal Sciences, University of Göttingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Shayan Rahimian
- Department of Animal Sciences, University of Göttingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Kalyakorn Wongrak
- Faculty of Agriculture and Life Science, Chandrakasem Rajabhat University, 39/1 Ratchadaphisek Road, Chatuchak, 10900, Bangkok, Thailand
| | - Manuel Stehr
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Matthias Gauly
- Free University of Bozen - Bolzano, Faculty of Science and Technology, Universitätsplatz 5, 39100, Bolzano, Italy
| |
Collapse
|
11
|
Diurnal fluctuations in nematode egg excretion in naturally and in experimentally infected chickens. Vet Parasitol 2015; 208:195-203. [DOI: 10.1016/j.vetpar.2015.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
|