1
|
Delanghe JR, Delrue C, Speeckaert R, Speeckaert MM. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: insights and implications. Crit Rev Clin Lab Sci 2024; 61:275-297. [PMID: 38013410 DOI: 10.1080/10408363.2023.2285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Haptoglobin (Hp) is a polymorphic protein that was initially described as a hemoglobin (Hb)-binding protein. The major functions of Hp are to scavenge Hb, prevent iron loss, and prevent heme-based oxidation. Hp regulates angiogenesis, nitric oxide homeostasis, immune responses, and prostaglandin synthesis. Genetic polymorphisms in the Hp gene give rise to different phenotypes, including Hp 1-1, Hp 2-1, and Hp 2-2. Extensive research has been conducted to investigate the association between Hp polymorphisms and several medical conditions including cardiovascular disease, inflammatory bowel disease, cancer, transplantation, and hemoglobinopathies. Generally, the Hp 2-2 phenotype is associated with increased disease risk and poor outcomes. Over the years, the Hp 2 allele has spread under genetic pressures. Individuals with the Hp 2-2 phenotype generally exhibit lower levels of CD163 expression in macrophages. The decreased expression of CD163 may be associated with the poor antioxidant capacity in the serum of subjects carrying the Hp 2-2 phenotype. However, the Hp 1-1 phenotype may confer protection in some cases. The Hp1 allele has strong antioxidant, anti-inflammatory, and immunomodulatory properties. It is important to note that the benefits of the Hp1 allele may vary depending on genetic and environmental factors as well as the specific disease or condition under consideration. Therefore, the Hp1 allele may not necessarily confer advantages in all situations, and its effects may be context-dependent. This review highlights the current understanding of the role of Hp polymorphisms in cardiovascular disease, inflammatory bowel disease, cancer, transplantation, hemoglobinopathies, and polyuria.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
2
|
Longitudinal proteomics study of serum changes after allogeneic HSCT reveals potential markers of metabolic complications related to aGvHD. Sci Rep 2022; 12:14002. [PMID: 35977993 PMCID: PMC9385631 DOI: 10.1038/s41598-022-18221-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Even though hematopoietic stem cell transplantation (HSCT) allows successful treatment for many malignant and non-malignant disorders, its curative potential remains limited by severe side effects, including infections and other transplant-related complications such as graft-versus-host disease (GvHD). This study examined changes in serum proteome via high-performance two-dimensional gel electrophoresis (2-DE) during HSCT to search for diagnostic biomarkers for post-HSCT complications. Longitudinal proteomic analysis revealed proteins related to metabolic complications and hemolytic anemia. Retinol-binding protein 4 (RBP4), a reliable marker of insulin resistance, was identified, and is possibly associated with the onset mechanism of acute graft-versus-host disease (aGvHD) and/or skin GvHD. Although the cause of insulin resistance is not fully understood, it is thought to be associated with adipocytes inflammation induced by RBP4, iron overload and hemolytic anemia after HSCT, as observed in this study. The present study has demonstrated that insulin resistance and metabolic complications could be immediate complications after transplantation and are associated with aGvHD. The biomarkers revealed in this study are promising tools to be used for improving the early diagnosis of HSCT-associated complications, especially aGvHD, possibly even before clinical manifestations.
Collapse
|
3
|
Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft-versus-host disease (GVHD). J Cell Physiol 2022; 237:3480-3495. [PMID: 35842836 DOI: 10.1002/jcp.30830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a functional therapy for a plethora of hematologic malignancies and immune disorders. Graft-versus-host disease (GVHD), on the other hand, is one of the major complications ahead of a successful HSCT, contributing to transplant-associated morbidity and mortality. Notably, little is known about the underlying mechanism of this event; therefore, exploring precise biomarkers and uncovering the molecular pathogenesis of GVHD is valuable for early diagnosis and treatment optimization. Thanks to the advances in sequencing techniques, the noncoding sequences of the human genome-formerly considered "junk"-are now identified as functional molecules. Noncoding RNAs (ncRNA) control cellular responses by regulating gene expression, and previous studies have shown that these tiny molecules, especially microRNAs (miRNAs), can affect allogeneic T cell responses in both animal models and clinical experiments. The present study gives an overview of the functions of various miRNAs in regulating T cell responses in GVHD. We also provide an outlook on miRNAs and long noncoding RNAs (lncRNAs) potential role in GVHD with the hope of providing a future research direction for expanding their application as the sensitive and noninvasive diagnostic or prognostic biomarkers and also the promising therapeutic targets for improving outcomes after allogeneic HSCT.
Collapse
Affiliation(s)
- Mahdi K Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ramalingam S, Siamakpour-Reihani S, Bohannan L, Ren Y, Sibley A, Sheng J, Ma L, Nixon AB, Lyu J, Parker DC, Bain J, Muehlbauer M, Ilkayeva O, Kraus VB, Huebner JL, Spitzer T, Brown J, Peled JU, van den Brink M, Gomes A, Choi T, Gasparetto C, Horwitz M, Long G, Lopez R, Rizzieri D, Sarantopoulos S, Chao N, Sung AD. A phase 2 trial of the somatostatin analog pasireotide to prevent GI toxicity and acute GVHD in allogeneic hematopoietic stem cell transplant. PLoS One 2021; 16:e0252995. [PMID: 34170918 PMCID: PMC8232534 DOI: 10.1371/journal.pone.0252995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation (HCT) is an often curative intent treatment, however it is associated with significant gastrointestinal (GI) toxicity and treatment related mortality. Graft-versus-host disease is a significant contributor to transplant-related mortality. We performed a phase 2 trial of the somatostatin analog pasireotide to prevent gastrointestinal toxicity and GVHD after myeloablative allogeneic HCT. Methods Patients received 0.9mg pasireotide every 12 hours from the day prior to conditioning through day +4 after HCT (or a maximum of 14 days). The primary outcomes were grade 3–4 gastrointestinal toxicity through day 30 and acute GVHD. Secondary outcomes were chronic GVHD, overall survival and relapse free survival at one year. Stool and blood samples were collected from before and after HCT for analyses of stool microbiome, local inflammatory markers, and systemic inflammatory and metabolic markers. Results were compared with matched controls. Results Twenty-six patients received pasireotide and were compared to 52 matched contemporaneous controls using a 1–2 match. Grade 3–4 GI toxicity occurred in 21 (81%) patients who received pasireotide and 35 (67%) controls (p = 0.33). Acute GVHD occurred in 15 (58%) patients in the pasireotide group and 28 (54%) controls (p = 0.94). Chronic GVHD occurred in 16 patients in the pasireotide group (64%) versus 22 patients in the control group (42%) (p = 0.12). Overall survival at 1 year in the pasireotide group was 63% (95% CI: 47%,86%) versus 82% (95% CI: 72%, 93%) in controls (log-rank p = 0.006). Relapse-free survival rate at one year was 40% (95% CI: 25%, 65%) in the pasireotide group versus 78% (95% CI: 68%, 91%) in controls (log-rank p = 0.002). After controlling for the effect of relevant covariates, patients in the pasireotide group had attenuated post-HCT loss of microbial diversity. Analysis of systemic inflammatory markers and metabolomics demonstrated feasibility of such analyses in patients undergoing allogeneic HCT. Baseline level and pre-to-post transplant changes in several inflammatory markers (including MIP1a, MIP1b, TNFa, IL8Pro, and IL6) correlated with likelihood of survival. Conclusions Pasireotide did not prevent gastrointestinal toxicity or acute GVHD compared to contemporaneous controls. Pasireotide was associated with numerically higher chronic GVHD and significantly decreased OS and RFS compared to contemporaneous controls. Pasireotide may provide a locally protective effect in the stool microbiome and in local inflammation as measured by stool calprotectin, stool beta-defensin, and stool diversity index.
Collapse
Affiliation(s)
- Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Sharareh Siamakpour-Reihani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Lauren Bohannan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Yi Ren
- Duke Cancer Institute, Durham, NC, United States of America
| | | | - Jeff Sheng
- Duke Cancer Institute, Durham, NC, United States of America
| | - Li Ma
- Department of Statistical Science, Duke University, Durham, NC, United States of America
| | - Andrew B. Nixon
- Department of Medicine, Duke University, Durham, NC, United States of America
| | - Jing Lyu
- Duke Cancer Institute, Durham, NC, United States of America
| | - Daniel C. Parker
- Division of Geriatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - James Bain
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Thomas Spitzer
- Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jami Brown
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Marcel van den Brink
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Antonio Gomes
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Mitchell Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Richard Lopez
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lelas A, Greinix HT, Wolff D, Eissner G, Pavletic SZ, Pulanic D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:676756. [PMID: 33995421 PMCID: PMC8119744 DOI: 10.3389/fimmu.2021.676756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is an immune mediated late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). Discovery of adequate biomarkers could identify high-risk patients and provide an effective pre-emptive intervention or early modification of therapeutic strategy, thus reducing prevalence and severity of the disease among long-term survivors of alloHSCT. Inflammation, endothelial injury, and endothelial dysfunction are involved in cGvHD development. Altered levels of acute phase reactants have shown a strong correlation with the activity of several immune mediated disorders and are routinely used in clinical practice. Since elevated von Willebrand factor (VWF) and factor VIII (FVIII) levels have been described as acute phase reactants that may indicate endothelial dysfunction and inflammation in different settings, including chronic autoimmune diseases, they could serve as potential candidate biomarkers of cGvHD. In this review we focused on reported data regarding VWF and FVIII as well as other markers of inflammation and endothelial dysfunction, evaluating their potential role in cGvHD.
Collapse
Affiliation(s)
- Antonela Lelas
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Steven Zivko Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Drazen Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Cao XN, Kong Y, Song Y, Shi MM, Zhao HY, Wen Q, Lyu ZS, Duan CW, Wang Y, Xu LP, Zhang XH, Huang XJ. Impairment of bone marrow endothelial progenitor cells in acute graft-versus-host disease patients after allotransplant. Br J Haematol 2018; 182:870-886. [PMID: 29984829 DOI: 10.1111/bjh.15456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xie-Na Cao
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Yuan Kong
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Yang Song
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Min-Min Shi
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Hong-Yan Zhao
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Qi Wen
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Zhong-Shi Lyu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute; Shanghai Children's Medical Center; Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology; Shanghai Jiao Tong University School of medicine; Shanghai China
| | - Yu Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Lan-Ping Xu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Hui Zhang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Jun Huang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| |
Collapse
|
7
|
Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses. Am J Transplant 2017; 17:320-327. [PMID: 27232285 PMCID: PMC5124552 DOI: 10.1111/ajt.13887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 01/25/2023]
Abstract
Cell damage and death releases alarmins, self-derived immunomodulatory molecules that recruit and activate the immune system. Unfortunately, numerous processes critical to the transplantation of allogeneic materials result in the destruction of donor and recipient cells and may trigger alarmin release. Alarmins, often described as damage-associated molecular patterns, together with exogenous pathogen-associated molecular patterns, are potent orchestrators of immune responses; however, the precise role that alarmins play in alloimmune responses remains relatively undefined. We examined evolving concepts regarding how alarmins affect solid organ and allogeneic hematopoietic cell transplantation outcomes and the mechanisms by which self molecules are released. We describe how, once released, alarmins may act alone or in conjunction with nonself materials to contribute to cytokine networks controlling alloimmune responses and their intensity. It is becoming recognized that this class of molecules has pleotropic functions, and certain alarmins can promote both inflammatory and regulatory responses in transplant models. Emerging evidence indicates that alarmins and their receptors may be promising transplantation biomarkers. Developing the therapeutic ability to support alarmin regulatory mechanisms and the predictive value of alarmin pathway biomarkers for early intervention may provide opportunities to benefit graft recipients.
Collapse
Affiliation(s)
- Benjamin M. Matta
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dawn K. Reichenbach
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hēth R. Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Hēth R. Turnquist, PhD,
| |
Collapse
|
8
|
Pidala J, Sigdel TK, Wang A, Hsieh S, Inamoto Y, Martin PJ, Flowers ME, Hansen JA, Lee SJ, Sarwal MM. A combined biomarker and clinical panel for chronic graft versus host disease diagnosis. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 3:3-16. [PMID: 28138397 PMCID: PMC5259564 DOI: 10.1002/cjp2.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/18/2016] [Indexed: 12/30/2022]
Abstract
Whilst many chronic graft versus host disease (cGVHD) biomarkers have been previously reported, few have been verified in an independent cGVHD cohort. We aimed to verify the diagnostic accuracy of previously reported markers of cGVHD in a multi-centre Chronic GVHD Consortium. A total of 42 RNA and 18 protein candidate biomarkers were assessed amongst 59 cGVHD cases and 33 matched non-GVHD controls. Total RNA was isolated from PBMC, and RNA markers were quantified using PCR. Serum protein markers were quantified using ELISA. A combined 3 RNA biomarker (IRS2, PLEKHF1 and IL1R2) and 2 clinical variables (recipient CMV serostatus and conditioning regimen intensity) panel accurately (AUC 0.81) segregated cGVHD cases from controls. Other studied RNA and protein markers were not confirmed as accurate cGVHD diagnostic biomarkers. The studied markers failed to segregate higher risk cGVHD (per overall NIH 0-3 score, and overlap versus classic cGVHD status). These data support the need for multiple independent verification studies for the ultimate clinical application of cGVHD diagnostic biomarkers.
Collapse
Affiliation(s)
- Joseph Pidala
- Department of Blood and Marrow Transplantation H. Lee Moffitt Cancer Center and Research Institute Tampa FL USA
| | - Tara K Sigdel
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Anyou Wang
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Sue Hsieh
- Department of Surgery University of California San Francisco San Francisco CA USA
| | - Yoshi Inamoto
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Paul J Martin
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Mary Ed Flowers
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - John A Hansen
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Stephanie J Lee
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA USA
| | - Minnie M Sarwal
- Department of Surgery University of California San Francisco San Francisco CA USA
| |
Collapse
|
9
|
Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2015; 258:132-44. [PMID: 24517430 DOI: 10.1111/imr.12146] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solid organ transplantation is a vital therapy for end stage diseases. Decades of research have established that components of the adaptive immune system are critical for transplant rejection, but the role of the innate immune system in organ transplantation is just emerging. Accumulating evidence indicates that the innate immune system is activated at the time of organ implantation by the release of endogenous inflammatory triggers. This review discusses the nature of these triggers in organ transplantation and also potential mediators that may enhance inflammation resolution after organ implantation.
Collapse
Affiliation(s)
- Daniel N Mori
- Departments of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
10
|
Paczesny S, Hakim FT, Pidala J, Cooke KR, Lathrop J, Griffith LM, Hansen J, Jagasia M, Miklos D, Pavletic S, Parkman R, Russek-Cohen E, Flowers MED, Lee S, Martin P, Vogelsang G, Walton M, Schultz KR. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: III. The 2014 Biomarker Working Group Report. Biol Blood Marrow Transplant 2015; 21:780-92. [PMID: 25644957 DOI: 10.1016/j.bbmt.2015.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Biology-based markers to confirm or aid in the diagnosis or prognosis of chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation or monitor its progression are critically needed to facilitate evaluation of new therapies. Biomarkers have been defined as any characteristic that is objectively measured and evaluated as an indicator of a normal biological or pathogenic process, or of a pharmacologic response to a therapeutic intervention. Applications of biomarkers in chronic GVHD clinical trials or patient management include the following: (1) diagnosis and assessment of chronic GVHD disease activity, including distinguishing irreversible damage from continued disease activity; (2) prognostic risk to develop chronic GVHD; and (3) prediction of response to therapy. Sample collection for chronic GVHD biomarkers studies should be well documented following established quality control guidelines for sample acquisition, processing, preservation, and testing, at intervals that are both calendar and event driven. The consistent therapeutic treatment of subjects and standardized documentation needed to support biomarker studies are most likely to be provided in prospective clinical trials. To date, no chronic GVHD biomarkers have been qualified for use in clinical applications. Since our previous chronic GVHD Biomarkers Working Group report in 2005, an increasing number of chronic GVHD candidate biomarkers are available for further investigation. This paper provides a 4-part framework for biomarker investigations: identification, verification, qualification, and application with terminology based on Food and Drug Administration and European Medicines Agency guidelines.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University of Medicine, Indianapolis, Indiana.
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph Pidala
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Julia Lathrop
- Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Madan Jagasia
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Miklos
- Stanford Bone Marrow Transplant-Cellular Therapy Facility, Stanford University, Stanford, California
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robertson Parkman
- Department of Pediatrics, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, California
| | - Estelle Russek-Cohen
- Division of Biostatistics, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Stephanie Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Paul Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Marc Walton
- Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Zeng W, Huang L, Meng F, Liu Z, Zhou J, Sun H. Reduced-intensity and myeloablative conditioning allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia and myelodysplastic syndrome: a meta-analysis and systematic review. Int J Clin Exp Med 2014; 7:4357-4368. [PMID: 25550955 PMCID: PMC4276213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND We performed a systematic review and meta-analysis to compare the clinical outcomes and toxicity of reduced-intensity conditioning (RIC) and myeloablative conditioning (MAC) allogeneic hematopoietic stem cell transplantation (alloHSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). EVIDENCE ACQUISITION A comprehensive PubMed and Embase search was performed using the following keywords: "reduced-intensity", "myeloablative", "AML", and "MDS". The primary endpoints were overall survival (OS) and event-free survival (EFS), and the secondary endpoints were relapse incidence (RI), non-relapse mortality (NRM), grade II-IV acute graft-versus-host disease (aGVHD), and chronic GVHD (cGVHD). RESULTS Eight studies (2 prospective and 6 retrospective) involving 6464 patients who received RIC (n = 1571) or MAC (n = 4893) alloHSCT were included in the analysis. Median age and the number of patients with low hematopoietic cell transplantation-specific comorbidity index scores and who received ex vivo or in vivo T cell depletion were higher in the RIC arm than in the MAC arm. Significant heterogeneity was not found among the studies for any of the endpoints except for grade II-IV aGVHD. OS (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.84-1.08; p = 0.47) and EFS (OR, 0.88; 95% CI, 0.77-1.00; p = 0.05) were similar in the RIC and MAC arms, whereas RI (OR, 1.41; 95% CI, 1.24-1.59; p < 0.00001) was higher in the RIC arm than in the MAC arm. The incidence of grade II-IV aGVHD (OR, 0.59; 95% CI, 0.36-0.96; p = 0.03) was lower in the RIC arm than in the MAC arm; however, NRM (OR, 0.99; 95% CI, 0.87-1.13; p = 0.85), total cGVHD (OR, 1.10; 95% CI, 0.88-1.38; p = 0.38), and extensive cGVHD (OR, 1.01; 95% CI, 0.75-1.37; p = 0.95) were not significantly different between the two arms. CONCLUSION RIC alloHSCT may be an effective treatment strategy for AML/MDS patients who are not suitable candidates for MAC alloHSCT. However, heterogeneity in baseline patient characteristics and treatment protocols may have influenced the outcomes of RIC alloHSCT in our analysis. Future randomized controlled trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Lifang Huang
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Zeming Liu
- Department of General surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology1277# Jiefang Avenue, Wuhan 430022, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Hanying Sun
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
12
|
Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults. Blood 2014; 124:645-53. [PMID: 24876561 DOI: 10.1182/blood-2014-03-564997] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transplant-associated thrombotic microangiopathy (TMA) leads to generalized endothelial dysfunction that can progress to multiorgan injury, and severe cases are associated with poor outcomes after hematopoietic stem cell transplantation (HSCT). Identifying patients at highest risk for severe disease is challenging. We prospectively evaluated 100 consecutive HSCT recipients to determine the incidence of moderate and severe TMA and factors associated with poor overall outcomes. Thirty-nine subjects (39%) met previously published criteria for TMA. Subjects with TMA had a significantly higher nonrelapse mortality (43.6% vs 7.8%, P < .0001) at 1 year post-HSCT compared with those without TMA. Elevated lactate dehydrogenase, proteinuria on routine urinalysis, and hypertension were the earliest markers of TMA. Proteinuria (>30 mg/dL) and evidence of terminal complement activation (elevated sC5b-9) in the blood at the time of TMA diagnosis were associated with very poor survival (<20% at 1 year), whereas all TMA subjects without proteinuria and a normal sC5b-9 serum concentration survived (P < .01). Based on these prospective observations, we conclude that severe TMA occurred in 18% of HSCT recipients in our cohort and propose an algorithm to identify the highest-risk patients who might benefit from prompt clinical interventions.
Collapse
|
13
|
Biologic markers of chronic GVHD. Bone Marrow Transplant 2013; 49:324-31. [PMID: 23872737 DOI: 10.1038/bmt.2013.97] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022]
Abstract
Biologic markers of chronic GVHD may provide insight into the pathogenesis of the syndrome, identify molecular targets for novel interventions, and facilitate advances in clinical management. Despite extensive work performed to date largely focused on prediction and diagnosis of the syndrome, little synthesis of findings and validation of promising candidate markers in independent populations has been performed. Studies suggest that risk for subsequent chronic GVHD development may be associated with donor-recipient genetic polymorphism, deficiency in regulatory immune cell populations (NK, Treg, DC2), and variation in inflammatory and immunoregulatory mediators post-HCT (increased TNFα, IL-10 and BAFF, and decreased TGFβ and IL-15). Established chronic GVHD is associated with alteration in immune cell populations (increased CD3(+) T cells, Th17, CD4(+) and CD8(+) effector memory cells, monocytes, CD86 expression, BAFF/B cell ratio, and deficiency of Treg, NK cells, and naïve CD8(+) T cells). Inflammatory and immunomodulatory factors (TNFα, IL-6, IL-1β, IL-8, sIL-2R, and IL-1Ra, BAFF, anti-dsDNA, sIL-2Rα, and sCD13) are also perturbed. Little is known about biologic markers of chronic GVHD phenotype and severity, response to therapy, and prognosis.
Collapse
|
14
|
Salivary Proteomic Analysis and Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2013; 19:888-92. [DOI: 10.1016/j.bbmt.2013.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
15
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
16
|
Abstract
Chronic graft-versus-host disease (cGVHD ) is a leading cause of allogeneic hematopoietic stem-cell transplantation-related mortality and morbidity. It is an immune-mediated disorder that can target almost any organ in the body, often with devastating consequences. The immune-suppressive medications currently used to treat it are equally toxic and are often not very effective. At this time, our understanding of its pathophysiology is limited. The discovery of potential biomarkers offers new possibilities in the clinical management of cGVHD. They could potentially be used for diagnosing cGVHD, for predicting or evaluating response to therapy and for unique insights into the pathophysiology underlying the clinical manifestations of cGVHD. Understanding the biological origins of these biomarkers can help us construct a more comprehensive and clinically relevant model for the pathogenesis of this disease. In this article, we review existing evidence for candidate biomarkers that have been identified in the framework of how they may contribute to the pathophysiology of cGVHD. Issues regarding the discovery and application of biomarkers are discussed.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Oncology, Hematology and BMT, Department of Pediatrics, BC Children’s Hospital/University of British Columbia, Vancouver, BC, Canada
| | - Kirk R Schultz
- Division of Oncology, Hematology and BMT, Department of Pediatrics, BC Children’s Hospital/University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Boutin M, Ahmad I, Jauhiainen M, Lachapelle N, Rondeau C, Roy J, Thibault P. NanoLC-MS/MS analyses of urinary desmosine, hydroxylysylpyridinoline and lysylpyridinoline as biomarkers for chronic graft-versus-host disease. Anal Chem 2010; 81:9454-61. [PMID: 19848412 DOI: 10.1021/ac9018796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a common and potentially lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). cGVHD as well as the transplant procedure itself (chemotherapy with or without radiotherapy) can lead to the degradation of connective tissue components such as elastin and collagen. The catabolism of these structural proteins releases desmosine (DES), lysylpyridinoline (LP), hydroxylysylpyridonoline (HP), and related pyridinium-based cross-linkers analogues that could represent potential biomarkers for cGVHD. This study reports the development of a sensitive liquid chromatography/tandem mass spectrometry method for the simultaneous analysis of N-propyl derivatives of DES, HP, and LP. The concentrations of free and total forms of urinary DES, HP, and LP were determined using synthetic deuterated internal standards. This method enabled accurate quantitation of these pyridinium-based cross-linkers from as little as 100 microL of urine with detection limits of 0.03-0.10 ng/mL. These compounds were analyzed in urine samples from three groups of patients: (1) Healthy volunteers, (2) Autologous HSCT recipients (who cannot develop cGVHD), and (3) Allogeneic HSCT recipients at onset of cGHVD. These analyses revealed that the urinary concentrations of DES, HP, and LP in the autologous recipients were greater or equal to the cGVHD group although both groups showed marked increase in the levels of these compounds compared to healthy individuals. These results suggest that the chemotherapy treatment has significant effects on the turnover of elastin and collagen, and that these biomarkers could be effective during prospective analyses to determine the onset of cGVHD.
Collapse
Affiliation(s)
- Michel Boutin
- Institute for Research in Immunology and Cancer, Université de Montreal, P.O. Box 6128, Station Centre-ville, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|