1
|
Zhang N, Tan Q, Tao D, Song Y, Song W, Wang J, Ma L, Wu D, Feng Y, Yao J, Han X, Shi Y. Cytokines screening identifies MIG (CXCL9) for postoperative recurrence prediction in operated non-small cell lung cancer patients. Cytokine 2021; 149:155759. [PMID: 34775109 DOI: 10.1016/j.cyto.2021.155759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exploration of reliable biomarkers most likely to identify non-small cell lung cancer (NSCLC) patients at high risk for recurrence after surgery is needed. METHODS Quantibody® Human Cytokine Antibody 6000 was used as screening tool to measure serum levels of 280 cytokines in ten healthy individuals and nine samples from three NSCLC patients before operation, after operation and postoperative recurrence. Selected cytokines were validated in two independent sets (89 patients before surgery, 69 patients after surgery and 40 patients with postoperative recurrence for each set) using ELISA method. The association of the selected cytokine with clinicopathologic features was also evaluated. RESULTS Thirty-six cytokines were declined after surgery and again elevated when recurrence. We selected MIG to be further assessed in 2 validation sets, the mean value of serum MIG levels in 396 NSCLC patients was 253.42 ± 274.48 pg/mL and was significantly higher than the level in 60 healthy controls (47.65 ± 33.23 pg/mL, P < 0.0001). The serum MIG levels were 366.36 ± 324.04 pg/mL pre-operation, 134.04 ± 127.52 pg/mL post-operation and 208.05 ± 239.39 pg/mL in recurrence in NSCLC patients. The serum MIG levels were significant differences among NSCLC patients of pre-operation, post-operation and recurrence and controls (P < 0.0001). Moreover, Serum MIG levels were decreased markedly after operation and notably increased when disease relapsed (P < 0.0005). Serum MIG levels trend to be higher in patients with male gender, older age, smoking habit, poor tumor differentiation, and non-adenocarcinoma histology. CONCLUSIONS These data indicated that MIG might be an indicator of postoperative recurrence and help to identify NSCLC patient who was easy to relapse after surgery.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Dan Tao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yuanyuan Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wenya Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianfei Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Li Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Di Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yun Feng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China; Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 41 Damucang Hutong, Xicheng District, Beijing 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
2
|
Tandon I, Sharma NK. Macrophage Flipping from Foe to Friend: A Matter of Interest in Breast Carcinoma Heterogeneity Driving Drug Resistance. Curr Cancer Drug Targets 2019; 19:189-198. [DOI: 10.2174/1568009618666180628102247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
Tumor heterogeneity within various cancer types including breast carcinoma is pivotal in the manifestations of tumor hallmarks. Tumor heterogeneity is seen as a common landscape where intra-tumoral components including cellular and non-cellular factors create an interface with outside environment that leads to the unique identity of a specific cancer type. Among various contributors to tumor heterogeneity, cellular heterogeneity immensely plays a role in drug resistance and relapse of cancer. Within cellular heterogeneity of tumor, tumor-associated macrophages (TAMs) are the pro-tumor type of immune cells that promote growth, metastasis and drug resistance in breast carcinoma and other cancer types. Revealing the molecular aspects of TAMs can provide a breakthrough to remove therapeutics blockade to existing drugs and this understanding in future will pave the way for a new class of cancer immunotherapeutic. This review addresses current understanding of the role of TAMs in breast carcinoma hallmarks and clarifies the current scenario of pre-clinical drugs directed to tame pro-cancer TAMs.
Collapse
Affiliation(s)
- Ishita Tandon
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
3
|
Cai Y, Zhu J, He J, Wen Y, Ma C, Xiong F, Li F, Chen W, Chen P. Magnet Patterned Superparamagnetic Fe 3 O 4 /Au Core-Shell Nanoplasmonic Sensing Array for Label-Free High Throughput Cytokine Immunoassay. Adv Healthc Mater 2019; 8:e1801478. [PMID: 30645037 PMCID: PMC6486820 DOI: 10.1002/adhm.201801478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Indexed: 01/28/2023]
Abstract
Rapid and accurate immune monitoring plays a decisive role in effectively treating immune-related diseases especially at point-of-care, where an immediate decision on treatment is needed upon precise determination of the patient immune status. Derived from the emerging clinical demands, there is an urgent need for a cytokine immunoassay that offers unprecedented sensor performance with high sensitivity, throughput, and multiplexing capability, as well as short turnaround time at low system complexity, manufacturability, and scalability. In this paper, a label-free, high throughput cytokine immunoassay based on a magnet patterned Fe3 O4 /Au core-shell nanoparticle (FACSNP) sensing array is developed. By exploiting the unique superparamagnetic and plasmonic properties of the core-shell nanomaterials, a facile microarray patterning technique is established that allows the fabrication of a uniform, self-assembled microarray on a large surface area with remarkable tunability and scalability. The sensing performance of the FACSNP microarray is validated by real-time detection of four cytokines in complex biological samples, showing high sensitivity (≈20 pg mL-1 ), selectivity and throughput with excellent statistical accuracy. The developed immunoassay is successfully applied for rapid determination of the functional immunophenotype of leukemia tumor-associated macrophages, manifesting its potential clinical applications for real-time immune monitoring, early cancer detection, and therapeutic drug stratification toward personalized medicine.
Collapse
Affiliation(s)
- Yuxin Cai
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Jingyi Zhu
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Jiacheng He
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Yang Wen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Feng Xiong
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
- Department of Biomedical Engineering, New York University, New York, NY, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
4
|
Myeloid-restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal promotion of CXCL9 and IFN-γ production in tumor microenvironment. Oncogene 2018; 37:5088-5100. [PMID: 29795405 DOI: 10.1038/s41388-018-0337-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp2) is generally considered to be an oncogene owing to its ability in enhancing the malignancy of multiple types of tumor cells; however, its role in modulating tumor immunity remains largely elusive. Here, we reported that myeloid-restricted ablation of Shp2 suppressed melanoma growth. Mechanistically, loss of Shp2 potentiates macrophage production of CXCL9 in response to IFN-γ and tumor cell-derived cytokines, thereby facilitating the tumor infiltration of IFN-γ-producing T cells that could in turn support CXCL9 production within tumor microenvironment. Collectively, our findings highlight a causative role of myeloid Shp2 in dampening T cell-mediated antitumor immunity by restraining the macrophage/CXCL9-T cell/IFN-γ feedback loop. Thus, targeting macrophage Shp2 may help to create a Th1-dominant tumor immune microenvironment.
Collapse
|
5
|
Wang R, Feng W, Yang F, Yang X, Wang L, Chen C, Hu Y, Ren Q, Zheng G. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia. Immunol Cell Biol 2017; 96:190-203. [PMID: 29363207 DOI: 10.1111/imcb.1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017; 10:58. [PMID: 28241846 PMCID: PMC5329931 DOI: 10.1186/s13045-017-0430-2] [Citation(s) in RCA: 600] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known. With the introduction of concept that macrophages differentiate into a classically or alternatively activated phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as “protumoral macrophages,” contributing to disease progression. TAMs can promote initiation and metastasis of tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of cancer in clinics.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,School of Life Science, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
7
|
Ding Q, Lu P, Xia Y, Ding S, Fan Y, Li X, Han P, Liu J, Tian D, Liu M. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med 2016; 5:3246-3259. [PMID: 27726306 PMCID: PMC5119981 DOI: 10.1002/cam4.934] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/06/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023] Open
Abstract
Chemokines are a group of low molecular weight peptides. Their major function is the recruitment of leukocytes to inflammation sites, but they also play a key role in tumor growth, angiogenesis, and metastasis. In the last few years, accumulated experimental evidence supports that monokine induced by interferon (IFN)‐gamma (CXCL9), a member of CXC chemokine family and known to attract CXCR3‐ (CXCR3‐A and CXCR3‐B) T lymphocytes, is involved in the pathogenesis of a variety of physiologic diseases during their initiation and their maintenance. This review for the first time presents the most comprehensive summary for the role of CXCL9 in different types of tumors, and demonstrates its contradictory role of CXCL9 in tumor progression. Altogether, this is a useful resource for researchers investigating therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Shuping Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yuhui Fan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xin Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
8
|
Bandow K, Kusuyama J, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages. FEBS Lett 2012; 586:1540-6. [PMID: 22673523 DOI: 10.1016/j.febslet.2012.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/09/2012] [Accepted: 04/14/2012] [Indexed: 12/30/2022]
Abstract
LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-?B, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88(-/-) and cot/tpl2(-/-) macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages.
Collapse
Affiliation(s)
- Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Pageau SC, Sazonova OV, Wong JY, Soto AM, Sonnenschein C. The effect of stromal components on the modulation of the phenotype of human bronchial epithelial cells in 3D culture. Biomaterials 2011; 32:7169-80. [PMID: 21724251 DOI: 10.1016/j.biomaterials.2011.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 12/18/2022]
Abstract
The stroma plays an important role in the development and progression of human diseases. Pulmonary diseases such as asthma, fibrosis and cancer are thought to be the result of altered communications between the epithelial and stromal tissue compartments. In order to study these epithelial-mesenchymal interactions, we developed a three dimensional (3D) in vitro model of the human airway that mimics bronchial morphology and function. This model consists of a type-I collagen matrix, normal human fetal lung fibroblasts (IMR-90) or primary human adult lung cancer-associated fibroblasts (LuCAFs), and a surface epithelium of normal human bronchial epithelial cells (HBECs). When cultured at an air-liquid interface (ALI), the epithelial component generated a well-differentiated pseudo-stratified bronchial epithelium that contained basal, ciliated, and non-ciliated (secretory) epithelial cells. IMR-90 and LuCAFs differentially altered the phenotype of HBECs in distinct ways. While IMR-90 permitted HBECs to form a typical respiratory surface epithelium, LuCAFs promoted HBECs to invade the collagen gel forming both epithelial nodules and cysts, suggesting that LuCAFs may alter the HBEC phenotype by modifying biomechanical signals conveyed through the extracellular matrix (ECM). Furthermore, LuCAFs secreted soluble factors that induced HBECs to express genes associated with immune responses, apoptosis, mitosis, cell survival, differentiation and cancer.
Collapse
Affiliation(s)
- Steven C Pageau
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|