1
|
Yusipov I, Kalyakulina A, Trukhanov A, Franceschi C, Ivanchenko M. Map of epigenetic age acceleration: A worldwide analysis. Ageing Res Rev 2024; 100:102418. [PMID: 39002646 DOI: 10.1016/j.arr.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.
Collapse
Affiliation(s)
- Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, Moscow 124489, Russia.
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
2
|
Varma SJ, Calvani E, Grüning NM, Messner CB, Grayson N, Capuano F, Mülleder M, Ralser M. Global analysis of cytosine and adenine DNA modifications across the tree of life. eLife 2022; 11:81002. [PMID: 35900202 PMCID: PMC9333990 DOI: 10.7554/elife.81002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.
Collapse
Affiliation(s)
| | - Enrica Calvani
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Grayson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Michael Mülleder
- Core Facility-High Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.,The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Lancaster EE, Vladimirov VI, Riley BP, Landry JW, Roberson-Nay R, York TP. LARGE-SCALE INTEGRATION OF DNA METHYLATION AND GENE EXPRESSION ARRAY PLATFORMS IDENTIFIES BOTH cis AND trans RELATIONSHIPS. Epigenetics 2022; 17:1753-1773. [PMID: 35608069 PMCID: PMC9621057 DOI: 10.1080/15592294.2022.2079293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although epigenome-wide association studies (EWAS) have been successful in identifying DNA methylation (DNAm) patterns associated with disease states, any further characterization of etiologic mechanisms underlying disease remains elusive. This knowledge gap does not originate from a lack of DNAm–trait associations, but rather stems from study design issues that affect the interpretability of EWAS results. Despite known limitations in predicting the function of a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in a concomitant change of transcription at the most proximal gene. This study integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG sites associated with trans GE were also enriched in areas of known regulatory significance, including enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and question the validity of assuming a cis DNAm–GE pathway. Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic support and further research should identify genomic regions in which GE-associated DNAm is overrepresented. An in-depth characterization of GE-associated CpG sites could improve predictions of the downstream functional impact of altered DNAm and inform best practices for interpreting DNAm–trait associations generated by EWAS.
Collapse
Affiliation(s)
- Eva E Lancaster
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220
| | | | - Brien P Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220
| | - Roxann Roberson-Nay
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220.,Department of Psychology, Virginia Commonwealth University, Richmond, VA 23220
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23220
| |
Collapse
|
4
|
Torkamaneh D, Laroche J, Boyle B, Belzile F. DepthFinder: a tool to determine the optimal read depth for reduced-representation sequencing. Bioinformatics 2020; 36:26-32. [PMID: 31173057 DOI: 10.1093/bioinformatics/btz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Identification of DNA sequence variations such as single nucleotide polymorphisms (SNPs) is a fundamental step toward genetic studies. Reduced-representation sequencing methods have been developed as alternatives to whole genome sequencing to reduce costs and enable the analysis of many more individual. Amongst these methods, restriction site associated sequencing (RSAS) methodologies have been widely used for rapid and cost-effective discovery of SNPs and for high-throughput genotyping in a wide range of species. Despite the extensive improvements of the RSAS methods in the last decade, the estimation of the number of reads (i.e. read depth) required per sample for an efficient and effective genotyping remains mostly based on trial and error. RESULTS Herein we describe a bioinformatics tool, DepthFinder, designed to estimate the required read counts for RSAS methods. To illustrate its performance, we estimated required read counts in six different species (human, cattle, spruce budworm, salmon, barley and soybean) that cover a range of different biological (genome size, level of genome complexity, level of DNA methylation and ploidy) and technical (library preparation protocol and sequencing platform) factors. To assess the prediction accuracy of DepthFinder, we compared DepthFinder-derived results with independent datasets obtained from an RSAS experiment. This analysis yielded estimated accuracies of nearly 94%. Moreover, we present DepthFinder as a powerful tool to predict the most effective size selection interval in RSAS work. We conclude that DepthFinder constitutes an efficient, reliable and useful tool for a broad array of users in different research communities. AVAILABILITY AND IMPLEMENTATION https://bitbucket.org/jerlar73/DepthFinder. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Amaral AFS, Imboden M, Wielscher M, Rezwan FI, Minelli C, Garcia-Aymerich J, Peralta GP, Auvinen J, Jeong A, Schaffner E, Beckmeyer-Borowko A, Holloway JW, Jarvelin MR, Probst-Hensch NM, Jarvis DL. Role of DNA methylation in the association of lung function with body mass index: a two-step epigenetic Mendelian randomisation study. BMC Pulm Med 2020; 20:171. [PMID: 32546146 PMCID: PMC7298775 DOI: 10.1186/s12890-020-01212-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/09/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Low lung function has been associated with increased body mass index (BMI). The aim of this study was to investigate whether the effect of BMI on lung function is mediated by DNA methylation. METHODS We used individual data from 285,495 participants in four population-based cohorts: the European Community Respiratory Health Survey, the Northern Finland Birth Cohort 1966, the Swiss Study on Air Pollution and Lung Disease in Adults, and the UK Biobank. We carried out Mendelian randomisation (MR) analyses in two steps using a two-sample approach with SNPs as instrumental variables (IVs) in each step. In step 1 MR, we estimated the causal effect of BMI on peripheral blood DNA methylation (measured at genome-wide level) using 95 BMI-associated SNPs as IVs. In step 2 MR, we estimated the causal effect of DNA methylation on FEV1, FVC, and FEV1/FVC using two SNPs acting as methQTLs occurring close (in cis) to CpGs identified in the first step. These analyses were conducted after exclusion of weak IVs (F statistic < 10) and MR estimates were derived using the Wald ratio, with standard error from the delta method. Individuals whose data were used in step 1 were not included in step 2. RESULTS In step 1, we found that BMI might have a small causal effect on DNA methylation levels (less than 1% change in methylation per 1 kg/m2 increase in BMI) at two CpGs (cg09046979 and cg12580248). In step 2, we found no evidence of a causal effect of DNA methylation at cg09046979 on lung function. We could not estimate the causal effect of DNA methylation at cg12580248 on lung function as we could not find publicly available data on the association of this CpG with SNPs. CONCLUSIONS To our knowledge, this is the first paper to report the use of a two-step MR approach to assess the role of DNA methylation in mediating the effect of a non-genetic factor on lung function. Our findings do not support a mediating effect of DNA methylation in the association of lung function with BMI.
Collapse
Affiliation(s)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthias Wielscher
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gabriela P. Peralta
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Juha Auvinen
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Beckmeyer-Borowko
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marjo-Riitta Jarvelin
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Nicole M. Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Deborah L. Jarvis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - for the ALEC consortium
- National Heart and Lung Institute, Imperial College London, London, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Effects of PON1 Gene Promoter DNA Methylation and Genetic Variations on the Clinical Outcomes of Dual Antiplatelet Therapy for Patients Undergoing Percutaneous Coronary Intervention. Clin Pharmacokinet 2019; 57:817-829. [PMID: 28875477 DOI: 10.1007/s40262-017-0595-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION AND OBJECTIVE The relationship between either paraoxonase 1 (PON1) gene promoter DNA methylation or genetic variations and bleeding or major adverse cardiac events after dual antiplatelet therapy has been incompletely characterized. We aimed to systematically investigate the role of genetic variations and DNA methylation of the PON1 CpG island promoter on the clinical outcomes of dual antiplatelet therapy for patients with coronary artery disease (CAD) who underwent percutaneous coronary intervention (PCI). METHODS This study included 653 patients with CAD undergoing PCI and receiving dual antiplatelet therapy. Genomic DNAs were isolated from whole blood and were genotyped for the three single nucleotide polymorphisms (SNPs) of the PON1 gene. The DNA methylation levels in the PON1 promoter region were determined by bisulfite sequencing or pyrosequencing at five CpG sites (positions -142, -161, -163, -170, and -184 from the transcription start site). Clopidogrel and its metabolites in plasma were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and platelet function analysis was performed using the VerifyNow assay. RESULTS Statistically significant associations between methylation levels at five PON1 CpG sites and bleeding were observed: -184 [odds ratio (OR) 0.98, 95% confidence interval (CI) 0.96-1.00, p = 0.028]; -170 (OR 0.99, 95% CI 0.97-1.00, p = 0.048); -163 (OR 0.98, 95% CI 0.96-1.00, p = 0.029); -161 (OR 0.98, 95% CI 0.97-1.00, p = 0.026); and -142 (OR 0.98, 95% CI 0.97-1.00, p = 0.042) at a false discovery rate of <5%. Statistical analysis also revealed that aspirin reaction units (ARUs) were significantly associated with PON1 methylation level at CpG site -163 (p = 0.0342). The ARUs of patients with the PON1 126 CC genotype was 527 ± 94, which was higher than the ARUs (473 ± 89) of patients with the 126 CG genotype (p = 0.0163). Multivariate logistic regression analysis indicated that the PON1 methylation level at CpG site -161 (OR 0.95, 95% CI 0.92-0.98, p = 0.002) and the use of angiotensin-converting enzyme inhibitors (OR 0.48, 95% CI 0.26-0.89, p = 0.021) were associated with a decreased risk of bleeding events. CONCLUSIONS Hypomethylation of CpGs in the PON1 promoter may be a weak, albeit statistically significant, risk factor of bleeding after dual antiplatelet therapy. Further large-scale studies are needed to verify our results.
Collapse
|
7
|
Guo Q, Zheng R, Huang J, He M, Wang Y, Guo Z, Sun L, Chen P. Using Integrative Analysis of DNA Methylation and Gene Expression Data in Multiple Tissue Types to Prioritize Candidate Genes for Drug Development in Obesity. Front Genet 2018; 9:663. [PMID: 30619480 PMCID: PMC6305755 DOI: 10.3389/fgene.2018.00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity has become a major public health issue which is caused by a combination of genetic and environmental factors. Genome-wide DNA methylation studies have identified that DNA methylation at Cytosine-phosphate-Guanine (CpG) sites are associated with obesity. However, subsequent functional validation of the results from these studies has been challenging given the high number of reported associations. In this study, we applied an integrative analysis approach, aiming to prioritize the drug development candidate genes from many associated CpGs. Association data was collected from previous genome-wide DNA methylation studies and combined using a sample-size-weighted strategy. Gene expression data in adipose tissues and enriched pathways of the affiliated genes were overlapped, to shortlist the associated CpGs. The CpGs with the most overlapping evidence were indicated as the most appropriate CpGs for future studies. Our results revealed that 119 CpGs were associated with obesity (p ≤ 1.03 × 10−7). Of the affiliated genes, SOCS3 was the only gene involved in all enriched pathways and was differentially expressed in both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). In conclusion, our integrative analysis is an effective approach in highlighting the DNA methylation with the highest drug development relevance. SOCS3 may serve as a target for drug development of obesity and its complications.
Collapse
Affiliation(s)
- Qingjie Guo
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ruonan Zheng
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Jiarui Huang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Meng He
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yuhan Wang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Zonghao Guo
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
8
|
Global methylation in relation to methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. PLoS One 2018; 13:e0199574. [PMID: 29985926 PMCID: PMC6037363 DOI: 10.1371/journal.pone.0199574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background Children with acute lymphoblastic leukemia (ALL) often suffer from toxicity of chemotherapeutic drugs such as Methotrexate (MTX). Previously, we reported that 20% of patients receiving high-dose MTX developed oral mucositis. MTX inhibits folate metabolism, which is essential for DNA methylation. We hypothesize that MTX inhibits DNA methylation, which results into adverse effects. We studied DNA methylation markers during high-dose methotrexate treatment in pediatric acute lymphoblastic leukemia (ALL) in relation to developing oral mucositis. Materials & methods S-Adenosyl-Methionine (SAM) and S-Adenosyl-Homocysteine (SAH) levels and LINE1 DNA methylation were measured prospectively before and after high-dose methotrexate (HD-MTX 4 x 5g/m2) therapy in 82 children with ALL. Methotrexate-induced oral mucositis was registered prospectively. Oral mucositis (grade ≥ 3 National Cancer Institute Criteria) was used as clinical endpoint. Results SAM levels decreased significantly during methotrexate therapy (-16.1 nmol/L (-144.0 –+46.0), p<0.001), while SAH levels and the SAM:SAH ratio did not change significantly. LINE1 DNA methylation (+1.4% (-1.1 –+6.5), p<0.001) increased during therapy. SAM and SAH levels were not correlated to LINE1 DNA methylation status. No association was found between DNA methylation markers and developing oral mucositis. Conclusions This was the first study that assessed DNA methylation in relation to MTX-induced oral mucositis in children with ALL. Although global methylation markers did change during methotrexate therapy, methylation status was not associated with developing oral mucositis.
Collapse
|
9
|
Vidaki A, Kalamara V, Carnero-Montoro E, Spector TD, Bell JT, Kayser M. Investigating the Epigenetic Discrimination of Identical Twins Using Buccal Swabs, Saliva, and Cigarette Butts in the Forensic Setting. Genes (Basel) 2018; 9:E252. [PMID: 29758014 PMCID: PMC5977192 DOI: 10.3390/genes9050252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| | - Vivian Kalamara
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| | - Elena Carnero-Montoro
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Differentially methylated embryonal Fyn-associated substrate (EFS) gene as a blood-specific epigenetic marker and its potential application in forensic casework. Forensic Sci Int Genet 2017; 29:165-173. [DOI: 10.1016/j.fsigen.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
|
11
|
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DMH, Miller R, Murphy SK. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:511-526. [PMID: 28362264 PMCID: PMC5382002 DOI: 10.1289/ehp595] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Characterization of the epigenome is a primary interest for children's environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children's Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children's health. CONCLUSION The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli.
Collapse
Affiliation(s)
| | | | | | - Kari Nadeau
- Stanford University, Palo Alto, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Nina Holland
- University of California, Berkeley, Berkeley, California, USA
| | | | | | - Paul Yousefi
- University of California, Berkeley, Berkeley, California, USA
| | | | - Bonnie R. Joubert
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Joseph Wiemels
- University of California at San Francisco, San Francisco, California, USA
| | | | - Ivana V. Yang
- University of Colorado, Denver, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
| | - Rui Chen
- Stanford University, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
12
|
Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, Broekman BFP. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017; 5:53-64. [PMID: 27743978 PMCID: PMC5245733 DOI: 10.1016/s2213-8587(16)30107-3] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/07/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
In addition to immediate implications for pregnancy complications, increasing evidence implicates maternal obesity as a major determinant of offspring health during childhood and later adult life. Observational studies provide evidence for effects of maternal obesity on her offspring's risks of obesity, coronary heart disease, stroke, type 2 diabetes, and asthma. Maternal obesity could also lead to poorer cognitive performance and increased risk of neurodevelopmental disorders, including cerebral palsy. Preliminary evidence suggests potential implications for immune and infectious-disease-related outcomes. Insights from experimental studies support causal effects of maternal obesity on offspring outcomes, which are mediated at least partly through changes in epigenetic processes, such as alterations in DNA methylation, and perhaps through alterations in the gut microbiome. Although the offspring of obese women who lose weight before pregnancy have a reduced risk of obesity, few controlled intervention studies have been done in which maternal obesity is reversed and the consequences for offspring have been examined. Because the long-term effects of maternal obesity could have profound public health implications, there is an urgent need for studies on causality, underlying mechanisms, and effective interventions to reverse the epidemic of obesity in women of childbearing age and to mitigate consequences for offspring.
Collapse
Affiliation(s)
- Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Rebecca M Reynolds
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, Scotland, UK
| | - Susan L Prescott
- School of Paediatrics and Child Health, and Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Moffat Nyirenda
- London School of Hygiene & Tropical Medicine, London, UK; College of Medicine, University of Malawi, Blantyre, Malawi
| | - Vincent W V Jaddoe
- Departments of Epidemiology and Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National University Health System, Singapore, Singaporre
| |
Collapse
|
13
|
González C, Salces-Ortiz J, Calvo JH, Serrano MM. In silico analysis of regulatory and structural motifs of the ovine HSP90AA1 gene. Cell Stress Chaperones 2016; 21:415-27. [PMID: 26810179 PMCID: PMC4837184 DOI: 10.1007/s12192-016-0668-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 01/21/2023] Open
Abstract
Gene promoters are essential regions of DNA where the transcriptional molecular machinery to produce RNA molecules is recruited. In this process, DNA epigenetic modifications can acquire a fundamental role in the regulation of gene expression. Recently, in a previous work of our group, functional features and DNA methylation involved in the ovine HSP90AA1 gene expression regulation have been observed. In this work, we report a combination of methylation analysis by bisulfite sequencing in several tissues and at different developmental stages together with in silico bioinformatic analysis of putative regulating factors in order to identify regulative mechanisms both at the promoter and gene body. Our results show a "hybrid structure" (TATA box + CpG island) of the ovine HSP90AA1 gene promoter both in somatic and non-differentiated germ tissues, revealing the ability of the HSP90AA1 gene to be regulated both in an inducible and constitutive fashion. In addition, in silico analysis showed that several putative alternative spliced regulatory motifs, exonic splicing enhancers (ESEs), and G-quadruplex secondary structures were somehow related to the DNA methylation pattern found. The results obtained here could help explain the differences in cell-type transcripts, tissue expression rate, and transcription silencing mechanisms found in this gene.
Collapse
Affiliation(s)
| | | | - Jorge H Calvo
- Unidad de Tecnología en Producción Animal, CITA, 59059, Zaragoza, Spain
| | | |
Collapse
|
14
|
Non AL, Thayer ZM. Epigenetics for anthropologists: An introduction to methods. Am J Hum Biol 2015; 27:295-303. [DOI: 10.1002/ajhb.22679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/22/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Amy L. Non
- Department of Anthropology; Vanderbilt University; Nashville Tennessee 37235-7703
| | - Zaneta M. Thayer
- Department of Anthropology; University of Colorado Denver; Denver Colorado 80217-3364
| |
Collapse
|
15
|
DNA methylation and expression of the folate transporter genes in colorectal cancer. Tumour Biol 2015; 36:5581-90. [PMID: 25697897 DOI: 10.1007/s13277-015-3228-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Folate has a central role in the cell metabolism. This study aims to explore the DNA methylation pattern of the folate transporter genes FOLR1, PCFT, and RFC1 as well as the corresponding protein expressions in colorectal cancer (CRC) tissue and adjacent non-cancerous mucosa (ANCM). Our results showed statistically significant differences in the DNA-methylated fraction of all three genes at several gene regions; we identified three differentially methylated CpG sites in the FOLR1 gene, five CpG sites in the PCFT gene, and six CpG sites in the RFC1 gene. There was a pronounced expression of the FRα and RFC proteins in both the CRC and ANCM tissues, though the expression was attenuated in cancer compared to the paired ANCM tissues. The PCFT protein was undetectable or expressed at a very low level in both tissue types. Higher methylated fractions of the CpG sites 3-5 in the RFC1 gene were associated with a lower protein expression, suggestive of epigenetic regulation by DNA methylation of the RFC1 gene in the colorectal cancer. Our results did not show any association between the RFC and FRα protein expression and tumor stage, TNM classification, or tumor location. In conclusion, this is the first study to simultaneously evaluate both DNA methylation and protein expression of all three folate transporter genes, FOLR1, PCFT, and RFC1, in colorectal cancer. The results encourage further investigation into the possible prognostic implications of folate transporter expression and DNA methylation.
Collapse
|
16
|
Mao Y. Hypermethylation of RASAL1: A Key for Renal Fibrosis. EBioMedicine 2014; 2:7-8. [PMID: 26137526 PMCID: PMC4484502 DOI: 10.1016/j.ebiom.2014.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
17
|
Nakanishi MO, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S. Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics 2014; 7:173-82. [DOI: 10.4161/epi.7.2.18962] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 2014; 33:363-74. [PMID: 24011578 DOI: 10.1016/j.semnephrol.2013.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epigenetic modifications are important in the normal functioning of the cell, from regulating dynamic expression of essential genes and associated proteins to repressing those that are unneeded. Epigenetic changes are essential for development and functioning of the kidney, and aberrant methylation, histone modifications, and expression of microRNA could lead to chronic kidney disease (CKD). Here, epigenetic modifications modulate transforming growth factor β signaling, inflammation, profibrotic genes, and the epithelial-to-mesenchymal transition, promoting renal fibrosis and progression of CKD. Identification of these epigenetic changes is important because they are potentially reversible and may serve as therapeutic targets in the future to prevent subsequent renal fibrosis and CKD. In this review we discuss the different types of epigenetic control, methods to study epigenetic modifications, and how epigenetics promotes progression of CKD.
Collapse
Affiliation(s)
- Maria R Wing
- Division of Renal Disease and Hypertension, The George Washington University, Washington, DC
| | | | | | | | | |
Collapse
|
19
|
Epigenetic modification of FOXP3 in patients with chronic HIV infection. J Acquir Immune Defic Syndr 2014; 65:19-26. [PMID: 23846566 DOI: 10.1097/qai.0b013e3182a1bca4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES HIV-1 modulates host cell epigenetic machinery to control its own replication and induce immune suppression. HIV-1 infection leads to activation of T regulatory cell (T(reg)), but the mechanism underlying this immune modulation is unclear. T(reg) plays a prominent role in gut-mucosal immune tolerance by restraining excessive effector T-cell responses, a mechanism that is known to be disturbed in chronic HIV-1 infection. DNA methylation plays a major role in T(reg) lineage commitment and immune homeostasis, which may be regulated by HIV. To investigate the mechanisms of aberrant methylation of the T(reg) marker FOXP3 in HIV-1 infection, we evaluated the expression pattern of methylation-related enzymes and its correlation to FOXP3 methylation. METHODS FOXP3 promoter methylation in the colon mucosa and peripheral blood from HIV-infected patients and control subjects was measured using Pyrosequencing. Gene expression pattern of DNA methylation enzymes in the colon mucosa was investigated by Microarray and quantitative reverse transcriptase-polymerase chain reaction analysis in the same subjects. RESULTS FOXP3 promoter was significantly (P ≤ 0.0001) demethylated in HIV-infected patients compared with control subjects in both tissues. Expression of DNA methyltransferase 1 (DNAMT1), DNA methyltransferase 1-associated protein 1(DMAP1), methyltransferase-like 7B (METTL7B), and methyltransferase-like 10 (METTL10) were significantly down regulated in HIV-infected patients compared with controls and had a significant positive correlation to FOXP3 promoter methylation. CONCLUSIONS We present evidence suggesting that altered methylation pattern of FOXP3 and accordingly higher T(reg) frequency in gut mucosa of HIV-infected patients may be because of aberrant methylation processing in HIV.
Collapse
|
20
|
Armstrong DA, Lesseur C, Conradt E, Lester BM, Marsit CJ. Global and gene-specific DNA methylation across multiple tissues in early infancy: implications for children's health research. FASEB J 2014; 28:2088-97. [PMID: 24478308 DOI: 10.1096/fj.13-238402] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An increasing number of population studies are assessing epigenetic variation in relation to early-life outcomes in tissues accessible to epidemiologic researchers. Epigenetic mechanisms are highly tissue specific, however, and it is unclear whether the variation observed in one of the tissue types is representative of other sources or whether the variation in DNA methylation is distinct, reflecting potential functional differences across tissues. To assess relations between DNA methylation in various samples from newborns and children in early infancy, we measured promoter or gene-body DNA methylation in matched term placenta, cord blood, and 3-6 mo saliva samples from 27 unrelated infants enrolled in the Rhode Island Child Health Study. We investigated 7 gene loci (KLF15, NR3C1, LEP, DEPTOR, DDIT4, HSD11B2, and CEBPB) and global methylation, using repetitive region LINE-1 and ALUYb8 sequences. We observed a great degree of interlocus, intertissue, and interindividual epigenetic variation in most of the analyzed loci. In correlation analyses, only cord blood NR3C1 promoter methylation correlated negatively with methylation in saliva. We conclude that placenta, cord blood, and saliva cannot be used as a substitute for one another to evaluate DNA methylation at these loci during infancy. Each tissue has a unique epigenetic signature that likely reflects their differential functions. Future studies should consider the uniqueness of these features, to improve epigenetic biomarker discovery and translation.
Collapse
Affiliation(s)
- David A Armstrong
- 2Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
21
|
Decreased expression of alpha-L-fucosidase gene FUCA1 in human colorectal tumors. Int J Mol Sci 2013; 14:16986-98. [PMID: 23965968 PMCID: PMC3759947 DOI: 10.3390/ijms140816986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/26/2022] Open
Abstract
In previous studies we described a decreased alpha-l-fucosidase activity in colorectal tumors, appearing as a prognostic factor of tumoral recurrence. The aim of this work was to extend the knowledge about tissue alpha-l-fucosidase in colorectal cancer by quantifying the expression of its encoding gene FUCA1 in tumors and healthy mucosa. FUCA1 mRNA levels were measured by RT-qPCR in paired tumor and normal mucosa tissues from 31 patients. For the accuracy of the RT-qPCR results, five candidate reference genes were validated in those samples. In addition, activity and expression of alpha-l-fucosidase in selected matched tumor and healthy mucosa samples were analyzed. According to geNorm and NormFinder algorithms, RPLP0 and HPRT1 were the best reference genes in colorectal tissues. These genes were used for normalization of FUCA1 expression levels. A significant decrease of more than 60% in normalized FUCA1 expression was detected in tumors compared to normal mucosa (p = 0.002). Moreover, a gradual decrease in FUCA1 expression was observed with progression of disease from earlier to advanced stages. These findings were confirmed by Western blot analysis of alpha-l-fucosidase expression. Our results demonstrated diminished FUCA1 mRNA levels in tumors, suggesting that expression of tissue alpha-l-fucosidase could be regulated at transcriptional level in colorectal cancer.
Collapse
|
22
|
Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin 2013; 6:25. [PMID: 23916067 PMCID: PMC3750649 DOI: 10.1186/1756-8935-6-25] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. RESULTS In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3' half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. CONCLUSIONS Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5' promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.
Collapse
Affiliation(s)
- Koji Tsumagari
- Hayward Human Genetics Program and Tulane Cancer Center, Tulane Health Sciences Center, New Orleans LA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reynolds RM, Jacobsen GH, Drake AJ. What is the evidence in humans that DNA methylation changes link events in utero and later life disease? Clin Endocrinol (Oxf) 2013; 78:814-22. [PMID: 23374091 DOI: 10.1111/cen.12164] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/30/2012] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
Development in utero is now recognized as crucial to determining later life disease susceptibility. Whilst mechanisms are poorly understood, there has been considerable interest in the potential role of epigenetic processes in intra-uterine programming of disease. Epigenetic modifications include various mechanisms that influence chromatin structure and gene expression. Here, we review emerging data from human studies that altered DNA methylation links intra-uterine events with later life disease. Further research in this field is needed to determine whether altered DNA methylation in target tissues can be used as a biomarker for the early identification of and intervention in individuals most at risk of later life disease.
Collapse
Affiliation(s)
- Rebecca M Reynolds
- Endocrinology Unit, University/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Edinburgh, UK.
| | | | | |
Collapse
|
24
|
Liberman SA, Mashoodh R, Thompson RC, Dolinoy DC, Champagne FA. Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse. Ecol Evol 2012; 2:3123-31. [PMID: 23301177 PMCID: PMC3539005 DOI: 10.1002/ece3.416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022] Open
Abstract
Recent advances in genomic technologies now enable a reunion of molecular and evolutionary biology. Researchers investigating naturally living animal populations are thus increasingly able to capitalize upon genomic technologies to connect molecular findings with multiple levels of biological organization. Using this vertical approach in the laboratory, epigenetic gene regulation has emerged as an important mechanism integrating genotype and phenotype. To connect phenotype to population fitness, however, this same vertical approach must now be applied to naturally living populations. A major obstacle to studying epigenetics in noninvasive samples is tissue specificity of epigenetic marks. Here, using the mouse as a proof-of-principle model, we present the first known attempt to validate an epigenetic assay for use in noninvasive samples. Specifically, we compare DNA methylation of the NGFI-A (nerve growth factor-inducible protein A) binding site in the promoter of the glucocorticoid receptor (Nr3c1) gene between central (hippocampal) and peripheral noninvasive (fecal) tissues in juvenile Balb/c mice that had received varying levels of postnatal maternal care. Our results indicate that while hippocampal DNA methylation profiles correspond to maternal behavior, fecal DNA methylation levels do not. Moreover, concordance in methylation levels between these tissues within individuals only emerges after accounting for the effects of postnatal maternal care. Thus, although these findings may be specific to the Nr3c1 gene, we urge caution when interpreting DNA methylation patterns from noninvasive tissues, and offer suggestions for further research in this field.
Collapse
Affiliation(s)
- Shayna A Liberman
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, Michigan, 48109
| | | | | | | | | |
Collapse
|
25
|
Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, Eiriksdottir G, Smith AV, Gudnason V. Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS One 2012; 7:e46705. [PMID: 23071618 PMCID: PMC3465258 DOI: 10.1371/journal.pone.0046705] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022] Open
Abstract
Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179) and in two white blood cell fractions (n = 20), isolated using density gradient centrifugation, in four CGIs (CpG Islands) located in genes HHEX (10 CpG sites assayed), KCNJ11 (8 CpGs), KCNQ1 (4 CpGs) and PM20D1 (7 CpGs). Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter) explained up to 40% (p<0.0001) of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.
Collapse
Affiliation(s)
- Bjorn T. Adalsteinsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | | | - Albert V. Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
26
|
Meldi KM, Gaconnet GA, Mayo KE. DNA methylation and histone modifications are associated with repression of the inhibin α promoter in the rat corpus luteum. Endocrinology 2012; 153:4905-17. [PMID: 22865368 PMCID: PMC3512026 DOI: 10.1210/en.2012-1292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum. This study examines the role of epigenetic changes, including DNA methylation and histone modification, in silencing of inhibin α gene expression. Bisulfite sequencing reveals that methylation of the inhibin α proximal promoter is low in preovulatory and ovulatory follicles but is elevated in the corpus luteum. Increased methylation during luteinization is observed within the cAMP response element in the promoter, and EMSA demonstrate that methylation of this site inhibits cAMP response element binding protein binding in vitro. Chromatin immunoprecipitation reveals that repressive histone marks H3K9 and H3K27 trimethylation are increased on the inhibin α promoter in primary luteal cells, whereas the activation mark H3K4 trimethylation is decreased. The changes in histone modification precede the alterations in DNA methylation, suggesting that they facilitate the recruitment of DNA methyltransferases. We show that the DNA methyltransferase DNMT3a is present in the ovary and in luteal cells when the inhibin α promoter becomes methylated and observe recruitment of DNMT3a to the inhibin promoter during luteinization.
Collapse
Affiliation(s)
- Kristen M Meldi
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
27
|
DNA Hypomethylation and Hemimethylation in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 754:31-56. [DOI: 10.1007/978-1-4419-9967-2_2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Stephens KE, Miaskowski CA, Levine JD, Pullinger CR, Aouizerat BE. Epigenetic regulation and measurement of epigenetic changes. Biol Res Nurs 2012; 15:373-81. [PMID: 22661641 DOI: 10.1177/1099800412444785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms provide an adaptive layer of control in the regulation of gene expression that enables an organism to adjust to a changing environment. Epigenetic regulation increases the functional complexity of deoxyribonucleic acid (DNA) by altering chromatin structure, nuclear organization, and transcript stability. These changes may additively or synergistically influence gene expression and result in long-term molecular and functional consequences independent of the DNA sequence that may ultimately define an individual's phenotype. This article (1) describes histone modification, DNA methylation, and expression of small noncoding RNA species; (2) reviews the most common methods used to measure these epigenetic changes; and (3) presents factors that need to be considered when choosing a specific tissue to evaluate for epigenetic changes.
Collapse
Affiliation(s)
- Kimberly E Stephens
- 1Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Linking the epigenome to the genome: correlation of different features to DNA methylation of CpG islands. PLoS One 2012; 7:e35327. [PMID: 22558141 PMCID: PMC3340366 DOI: 10.1371/journal.pone.0035327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/.
Collapse
|
30
|
Philibert RA, Plume JM, Gibbons FX, Brody GH, Beach SRH. The impact of recent alcohol use on genome wide DNA methylation signatures. Front Genet 2012; 3:54. [PMID: 22514556 PMCID: PMC3322340 DOI: 10.3389/fgene.2012.00054] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022] Open
Abstract
Chronic alcohol intake is associated with a wide variety of adverse health outcomes including depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in this process, we examined the relationship of recent alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months immediately prior to phlebotomy was associated with, severity-dependent changes in the degree of genome wide methylation that preferentially hypermethylate the central portion of CpG islands with methylation at cg05600126, a probe in ABR, and the 5′ untranslated region of BLCAP attaining genome wide significance in two point and sliding window analyses of probe methylation data, respectively. We conclude that recent alcohol use is associated with widespread changes in DNA methylation in women and that further study to confirm these findings and determine their relationship to somatic function are in order.
Collapse
|
31
|
Philibert RA, Sears RA, Powers LS, Nash E, Bair T, Gerke AK, Hassan I, Thomas CP, Gross TJ, Monick MM. Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression. J Leukoc Biol 2012; 92:621-31. [PMID: 22427682 DOI: 10.1189/jlb.1211632] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cigarette smoking is implicated in numerous diseases, including emphysema and lung cancer. The clinical expression of lung disease in smokers is not well explained by currently defined variations in gene expression or simple differences in smoking exposure. Alveolar macrophages play a critical role in the inflammation and remodeling of the lung parenchyma in smoking-related lung disease. Significant gene expression changes in alveolar macrophages from smokers have been identified. However, the mechanism for these changes remains unknown. One potential mechanism for smoking-altered gene expression is via changes in cytosine methylation in DNA regions proximal to gene-coding sequences. In this study, alveolar macrophage DNA from heavy smokers and never smokers was isolated and methylation status at 25,000 loci determined. We found differential methylation in genes from immune-system and inflammatory pathways. Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune-system and inflammatory pathways. A significant number of genes with smoking-altered mRNA expression had inverse changes in methylation status. One gene highlighted by this data was the FLT1, and further studies found particular up-regulation of a splice variant encoding a soluble inhibitory form of the receptor. In conclusion, chronic cigarette smoke exposure altered DNA methylation in specific gene promoter regions in human alveolar macrophages.
Collapse
|
32
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Dwivedi RS, Herman JG, McCaffrey TA, Raj DSC. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int 2010; 79:23-32. [PMID: 20881938 DOI: 10.1038/ki.2010.335] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to a heritable change in the pattern of gene expression that is mediated by a mechanism specifically not due to alterations in the primary nucleotide sequence. Well-known epigenetic mechanisms encompass DNA methylation, chromatin remodeling (histone modifications), and RNA interference. Functionally, epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal physiological development, as well as in pathological conditions. Aberrant DNA methylation is implicated in immune dysfunction, inflammation, and insulin resistance. Epigenetic changes may be responsible for 'metabolic memory' and development of micro- and macrovascular complications of diabetes. MicroRNAs are critical in the maintenance of glomerular homeostasis and hence RNA interference may be important in the progression of renal disease. Recent studies have shown that epigenetic modifications orchestrate the epithelial-mesenchymal transition and eventually fibrosis of the renal tissue. Oxidative stress, inflammation, hyperhomocysteinemia, and uremic toxins could induce epimutations in chronic kidney disease. Epigenetic alterations are associated with inflammation and cardiovascular disease in patients with chronic kidney disease. Reversible nature of the epigenetic changes gives a unique opportunity to halt or even reverse the disease process through targeted therapeutic strategies.
Collapse
Affiliation(s)
- Rama S Dwivedi
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, District of Columbia 20037, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The study of CpG methylation of genomic DNA in neurons has emerged from the shadow of cancer biology into a fundamental investigation of neuronal physiology. This advance began with the discovery that catalytic and receptor proteins related to the insertion and recognition of this chemical mark are robustly expressed in neurons. At the smallest scale of analysis is the methylation of a single cytosine base within a regulatory cognate sequence. This singular alteration in a nucleotide can profoundly modify transcription factor binding with a consequent effect on the primary 'transcript'. At the single promoter level, the methylation-demethylation of CpG islands and associated alterations in local chromatin assemblies creates a type of cellular 'memory' capable of long-term regulation of transcription particularly in stages of brain development, differentiation, and maturation. Finally, at the genome-wide scale, methylation studies from post-mortem brains suggest that CpG methylation may serve to cap the genome into active and inactive territories introducing a 'masking' function. This may facilitate rapid DNA-protein interactions by ambient transcriptional proteins onto actively networked gene promoters. Beyond this broad portrayal, there are vast gaps in our understanding of the pathway between neuronal activity and CpG methylation. These include the regulation in post-mitotic neurons of the executor proteins, such as the DNA methyltransferases, the elusive and putative demethylases, and the interactions with histone modifying enzymes.
Collapse
|
36
|
Abstract
The characteristics of epigenetic control, including the potential for long-lasting, stable effects on gene expression that outlive an initial transient signal, could be of singular importance for post-mitotic neurons, which are subject to changes with short- to long-lasting influence on their activity and connectivity. Persistent changes in chromatin structure are thought to contribute to mechanisms of epigenetic inheritance. Recent advances in chromatin biology offer new avenues to investigate regulatory mechanisms underlying long-lasting changes in neurons, with direct implications for the study of brain function, behaviour and diseases.
Collapse
Affiliation(s)
- Catherine Dulac
- Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
37
|
Wjst M, Heimbeck I, Kutschke D, Pukelsheim K. Epigenetic regulation of vitamin D converting enzymes. J Steroid Biochem Mol Biol 2010; 121:80-3. [PMID: 20304056 DOI: 10.1016/j.jsbmb.2010.03.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/26/2022]
Abstract
While 25-OH-D3 serum levels in humans undergo a large seasonal variation, 1,25-(OH)2-D3 is regulated within a narrow range. We speculate that in addition to the known genomic and nongenomic regulation there could be further epigenetic mechanisms involved. We annotated the human CYP27B1 (alpha-1-hydroxylase) and CYP24A1 (24-hydroxylase) genes for CpG islands and sequenced these in bisulfite treated DNA extracted of peripheral blood lymphocytes from 384 individuals. 40 CpG sites could be analyzed, of these 15 in CYP27B1 and 25 in CYP24A1. The average methylation ratio (MR) in CYP27B1 was 11% (s.d. 5%) with the highest ratio observed in exon 1 (38%). CYP24A1 showed only a 6.5% MR (s.d. 5%). Neither CYP24A1 nor CYP27B1 MR correlated with season of examination date nor with current 25-OH-D3 and 1,25-(OH)2-D3 serum levels except of a weak association of three consecutive CYP27B1 CpG sites and 25-OH-D3 levels. In summary, human PBLs showed only weak methylation in the upstream region of CYP27B1 and none in CYP24A1. As PBLs represent an heterogeneous pool of cells, a further analysis of the seasonal methylation pattern in B or T cell subsets (or other tissues like liver or kidney) is warranted including an extended coverage of the CYP27B1 promotor.
Collapse
Affiliation(s)
- Matthias Wjst
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, German Research Center for Environmental Health, Ingolstädter Landstr. 1, München, D-85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
38
|
Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int 2010; 2010:302051. [PMID: 20671914 PMCID: PMC2910495 DOI: 10.1155/2010/302051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 05/12/2010] [Indexed: 12/20/2022] Open
Abstract
The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.
Collapse
|
39
|
Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci 2010; 30:6355-9. [PMID: 20445061 DOI: 10.1523/jneurosci.6119-09.2010] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-synuclein (SNCA) is a major risk gene for Parkinson's disease (PD), and increased SNCA gene dosage results in a parkinsonian syndrome in affected families. We found that methylation of human SNCA intron 1 decreased gene expression, while inhibition of DNA methylation activated SNCA expression. Methylation of SNCA intron 1 was reduced in DNA from sporadic PD patients' substantia nigra, putamen, and cortex, pointing toward a yet unappreciated epigenetic regulation of SNCA expression in PD.
Collapse
|
40
|
Choudhuri S, Cui Y, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 2010; 245:378-93. [PMID: 20381512 DOI: 10.1016/j.taap.2010.03.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 12/31/2022]
Abstract
The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.
Collapse
Affiliation(s)
- Supratim Choudhuri
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, College Park, MD, USA.
| | | | | |
Collapse
|
41
|
Athanasiadou R, de Sousa D, Myant K, Merusi C, Stancheva I, Bird A. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells. PLoS One 2010; 5:e9937. [PMID: 20376339 PMCID: PMC2848578 DOI: 10.1371/journal.pone.0009937] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 02/07/2023] Open
Abstract
Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the ∼2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.
Collapse
Affiliation(s)
- Rodoniki Athanasiadou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dina de Sousa
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Myant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cara Merusi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Sun S, Yan PS, Huang THM, Lin S. Identifying differentially methylated genes using mixed effect and generalized least square models. BMC Bioinformatics 2009; 10:404. [PMID: 20003206 PMCID: PMC2800121 DOI: 10.1186/1471-2105-10-404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation plays an important role in the process of tumorigenesis. Identifying differentially methylated genes or CpG islands (CGIs) associated with genes between two tumor subtypes is thus an important biological question. The methylation status of all CGIs in the whole genome can be assayed with differential methylation hybridization (DMH) microarrays. However, patient samples or cell lines are heterogeneous, so their methylation pattern may be very different. In addition, neighboring probes at each CGI are correlated. How these factors affect the analysis of DMH data is unknown. Results We propose a new method for identifying differentially methylated (DM) genes by identifying the associated DM CGI(s). At each CGI, we implement four different mixed effect and generalized least square models to identify DM genes between two groups. We compare four models with a simple least square regression model to study the impact of incorporating random effects and correlations. Conclusions We demonstrate that the inclusion (or exclusion) of random effects and the choice of correlation structures can significantly affect the results of the data analysis. We also assess the false discovery rate of different models using CGIs associated with housekeeping genes.
Collapse
Affiliation(s)
- Shuying Sun
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|