1
|
Yin Z, Li L, Zhang Q, Zhang X, Shi R, Xia X, Wang Z, Li S, Ye M, Liu Y, Tan W, Chen Z. PerC B-Cells Activation via Thermogenetics-Based CXCL12 Generator for Intraperitoneal Immunity Against Metastatic Disseminated Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411731. [PMID: 39865939 DOI: 10.1002/adma.202411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Indexed: 01/28/2025]
Abstract
During cancer peritoneal metastasis (PM), conventional antigen-presenting cells (dendritic cells, macrophages) promote tumorigenesis and immunosuppression in peritoneal cavity. While intraperitoneal immunotherapy (IPIT) has been used in clinical investigations to relieve PM, the limited knowledge of peritoneal immunocytes has hindered the development of therapeutic IPIT. Here, a dendritic cell-independent, next-generation IPIT is described that activates peritoneal cavity B (PerC B) cell subsets for intraperitoneal anti-tumor immunity via exogenous antigen presentation. The PerC B-cell-involved IPIT framework consists of an isotropic-porous, cell-fitting, thermogenetics-based CXCL12 generator. Such nanoscale thermal-confined generator can programmatically fine-tune the expression of CXCL12 to recruit disseminated tumor cells (DTCs) through CXCL12-CXCR4 axis while avoiding cytokine storm, subsequently release DTC-derived antigen to trigger PerC B-cell-involved immunity. Notably, antigen-presenting B-cell cluster, expressing the regulatory signaling molecules Ptpn6, Ms4a1, and Cd52, is identified playing the key role in the IPIT via single-cell RNA sequencing. Moreover, such IPIT availably assuages peritoneal effusion and PM in an orthotopic gastric cancer and metastatic model. Overall, this work offers a perspective on PerC B-cell-involved antigen-presenting in intraperitoneal immunity and provides a configurable strategy for activating anti-DTC immunity for next-generation IPIT.
Collapse
Affiliation(s)
- Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaoshen Zhang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhaoxin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Zhou X, Sheng W, Huang T, Ren W. Effect of omentum preservation on long-term prognosis of locally advanced gastric cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:236. [PMID: 39243034 PMCID: PMC11378409 DOI: 10.1186/s12957-024-03521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND The effect of omentum preservation (OP) on locally advanced gastric cancer (LAGC) remains controversial. This study aimed to investigate the long-term prognosis of LAGC patients with OP versus omentum resection (OR). METHODS A comprehensive search of databases including PubMed, Web of Science, Embase, and Cochrane Library was conducted up until February 2024. Statistical analysis was performed using Stata 12.0 software. The primary outcome was to assess the impact of OP on the long-term prognosis of patients with LAGC, including overall survival (OS) and recurrence-free survival (RFS). RESULTS A total of six case-control studies were included, encompassing a cohort of 1897 patients. The OP group consisted of 844 patients, while the OR group comprised 1053 patients. The study results showed that the OS (HR = 0.72, 95% CI: 0.58-0.90, P = 0.003) and 5-year RFS (HR = 0.79, 95% CI: 0.63-0.99, P = 0.038) in the OP group were superior to those observed in the OR group. Subgroup analysis indicated that 5-year OS (HR = 0.64, P = 0.003) and 5-year RFS (HR = 0.69, P = 0.005) in the OP group were also better than those in the OR group in Korea. However, the subgroup analysis conducted on stage T3-T4 tumors revealed no statistically significant differences in OS (P = 0.083) and 5-year RFS (P = 0.173) between the two groups. CONCLUSION Compared with OR, OP shows non-inferiority in patients with LAGC and can be considered a potential treatment option for radical gastrectomy.
Collapse
Affiliation(s)
- Xiaoshuai Zhou
- Department of Anus and Intestine Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Wentao Sheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tongmin Huang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Ren
- General Family Medicine, Ningbo Yinzhou No. 2 Hospital, 998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
3
|
Jin Y, Wang C, Zhang B, Sun Y, Ji J, Cai Q, Jiang J, Zhang Z, Zhao L, Yu B, Zhang J. Blocking EGR1/TGF-β1 and CD44s/STAT3 Crosstalk Inhibits Peritoneal Metastasis of Gastric Cancer. Int J Biol Sci 2024; 20:1314-1331. [PMID: 38385088 PMCID: PMC10878142 DOI: 10.7150/ijbs.90598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-β1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-β1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-β1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-β1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihao Zhang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, 201203, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| |
Collapse
|
4
|
Pan S, Zhu J, Liu P, Wei Q, Zhang S, An W, Tong Y, Cheng Z, Liu F. FN1 mRNA 3'-UTR supersedes traditional fibronectin 1 in facilitating the invasion and metastasis of gastric cancer through the FN1 3'-UTR-let-7i-5p-THBS1 axis. Theranostics 2023; 13:5130-5150. [PMID: 37771777 PMCID: PMC10526670 DOI: 10.7150/thno.82492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Current clinical treatments for gastric cancer (GC), particularly advanced GC, lack infallible therapeutic targets. The 3'-untranslated region (3'-UTR) has attracted increasing attention as a drug target. Methods: In vitro and in vivo experiments were conducted to determine the function of FN1 3'-UTR and FN1 protein in invasion and metastasis. RNA pull-down assay and high-throughput sequencing were used to screen the factors regulated by FN1 3'-UTR and construct the regulatory network. Western blotting and polymerase chain reaction were used to examine the correlation of intermolecular expression levels. RNA-binding protein immunoprecipitation was used to verify the correlation between FN1 3'-UTR and target mRNAs. Results: The FN1 3'-UTR may have stronger prognostic implications than the FN1 protein in GC patients. Upregulation of FN1 3'-UTR significantly promoted the invasive and metastatic abilities of GC cells to a greater extent than FN1 protein in vitro and in vivo. A novel regulatory network was constructed based on the FN1 3'-UTR-let-7i-5p-THBS1 axis, wherein FN1 3'-UTR displayed stronger oncogenic effects than the FN1 protein. Conclusions: FN1 3'-UTR may be a better therapeutic target for constructing targeted drugs in GC than the FN1 protein.
Collapse
Affiliation(s)
- Siwei Pan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Pengfei Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Qiaochu Wei
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Siyu Zhang
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Wen An
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Yuxin Tong
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhenzhou 450000, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| |
Collapse
|
5
|
Shen X, Liu H, Zhou H, Cheng Z, Liu G, Huang C, Dou R, Liu F, You X. Galectin-1 promotes gastric cancer peritoneal metastasis through peritoneal fibrosis. BMC Cancer 2023; 23:559. [PMID: 37328752 DOI: 10.1186/s12885-023-11047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Peritoneal metastasis is one of the main causes of death in patients with gastric cancer (GC). Galectin-1 regulates various undesirable biological behaviors in GC and may be key in GC peritoneal metastasis. METHODS In this study, we elucidated the regulatory role of galectin-1 in GC cell peritoneal metastasis. GC and peritoneal tissues underwent hematoxylin-eosin (HE), immunohistochemical (IHC), and Masson trichrome staining to analyze the difference in galectin-1 expression and peritoneal collagen deposition in different GC clinical stages. The regulatory role of galectin-1 in GC cell adhesion to mesenchymal cells and in collagen expression was determined using HMrSV5 human peritoneal mesothelial cells (HPMCs). Collagen and corresponding mRNA expression were detected with western blotting and reverse transcription PCR, respectively. The promoting effect of galectin-1 on GC peritoneal metastasis was verified in vivo. Collagen deposition and collagen I, collagen III, and fibronectin 1 (FN1) expression in the peritoneum of the animal models were detected by Masson trichrome and IHC staining. RESULTS Galectin-1 and collagen deposition in the peritoneal tissues was correlated with GC clinical staging and were positively correlated. Galectin-1 enhanced the ability of GC cells to adhere to the HMrSV5 cells by promoting collagen I, collagen III, and FN1 expression. The in vivo experiments confirmed that galectin-1 promoted GC peritoneal metastasis by promoting peritoneal collagen deposition. CONCLUSION Galectin-1-induced peritoneal fibrosis may create a favorable environment for GC cell peritoneal metastasis.
Collapse
Affiliation(s)
- Xianhe Shen
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Huilan Liu
- Oncology department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Haihua Zhou
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Zhiyi Cheng
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Guiyuan Liu
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Chuanjiang Huang
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Rongrong Dou
- Department of the Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Fuxing Liu
- Department of the Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Xiaolan You
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
6
|
Al-Marzouki L, Stavrakos VS, Pal S, Giannias B, Bourdeau F, Rayes R, Bertos N, Najmeh S, Spicer JD, Cools-Lartigue J, Bailey SD, Ferri L, Sangwan V. Soluble factors in malignant ascites promote the metastatic adhesion of gastric adenocarcinoma cells. Gastric Cancer 2023; 26:55-68. [PMID: 36059037 DOI: 10.1007/s10120-022-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adenocarcinoma of the proximal stomach is the fastest rising malignancy in North America. It is commonly associated with peritoneal accumulation of malignant ascites (MA), a fluid containing cancer and inflammatory cells and soluble proteins. Peritoneal metastasis (PM) is the most common site of gastric cancer (GC) progression after curative-intent surgery and is the leading cause of death among GC patients. METHODS/RESULTS Using a panel of gastric adenocarcinoma cell lines (human: MKN 45, SNU-5; murine: NCC-S1M), we demonstrate that prior incubation of GC cells with MA results in a significant (> 1.7-fold) increase in the number of cells capable of adhering to human peritoneal mesothelial cells (HPMC) (p < 0.05). We then corroborate these findings using an ex vivo PM model and show that MA also significantly enhances the ability of GC cells to adhere to strips of human peritoneum (p < 0.05). Using a multiplex ELISA, we identify MIF and VEGF as consistently elevated across MA samples from GC patients (p < 0.05). We demonstrate that agents that block the effects of MIF or VEGF abrogate the ability of MA to stimulate the adhesion of GC cells to adhere to human peritoneum and promote both ex vivo and in vivo metastases. CONCLUSION Agents targeting MIF or VEGF may be relevant to the treatment or prevention of PM in GC patients.
Collapse
Affiliation(s)
- Luai Al-Marzouki
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vivian S Stavrakos
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sanjima Pal
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Betty Giannias
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - France Bourdeau
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Roni Rayes
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicholas Bertos
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sara Najmeh
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Jonathan D Spicer
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Jonathan Cools-Lartigue
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada
| | - Swneke D Bailey
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Lorenzo Ferri
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada.
- Division of Thoracic and Upper GI Surgery, Montreal General Hospital, 1650 Cedar Avenue, Room L8-325, Montreal, QC, H3G 1A4, Canada.
| | - Veena Sangwan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Surgery, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Development of the Peritoneal Metastasis: A Review of Back-Grounds, Mechanisms, Treatments and Prospects. J Clin Med 2022; 12:jcm12010103. [PMID: 36614904 PMCID: PMC9821147 DOI: 10.3390/jcm12010103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis is a malignant disease which originated from several gastrointestinal and gynecological carcinomas and has been leading to a suffering condition in patients for decades. Currently, as people have gradually become more aware of the severity of peritoneal carcinomatosis, new molecular mechanisms for targeting and new treatments have been proposed. However, due to the uncertainty of influencing factors involved and a lack of a standardized procedure for this treatment, as well as a need for more clinical data for specific evaluation, more research is needed, both for preventing and treating. We aim to summarize backgrounds, mechanisms and treatments in this area and conclude limitations or new aspects for treatments.
Collapse
|
8
|
Gwee YX, Chia DKA, So J, Ceelen W, Yong WP, Tan P, Ong CAJ, Sundar R. Integration of Genomic Biology Into Therapeutic Strategies of Gastric Cancer Peritoneal Metastasis. J Clin Oncol 2022; 40:2830. [PMID: 35649219 PMCID: PMC9390822 DOI: 10.1200/jco.21.02745] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The peritoneum is a common site of metastasis in advanced gastric cancer (GC). Diagnostic laparoscopy is now routinely performed as part of disease staging, leading to an earlier diagnosis of synchronous peritoneal metastasis (PM). The biology of GCPM is unique and aggressive, leading to a dismal prognosis. These tumors tend to be resistant to traditional systemic therapy, and yet, this remains the current standard-of-care recommended by most international clinical guidelines. As this is an area of unmet clinical need, several translational studies and clinical trials have focused on addressing this specific disease state. Advances in genomic sequencing and molecular profiling have revealed several promising therapeutic targets and elucidated novel biology, particularly on the role of the surrounding tumor microenvironment in GCPM. Peritoneal-specific clinical trials are being designed with a combination of locoregional therapeutic strategies with systemic therapy. In this review, we summarize the new knowledge of cancer biology, advances in surgical techniques, and emergence of novel therapies as an integrated strategy emerges to address GCPM as a distinct clinical entity.
Collapse
Affiliation(s)
- Yong Xiang Gwee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Daryl Kai Ann Chia
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
| | - Jimmy So
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), National Cancer Centre Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Singapore General Hospital, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
| |
Collapse
|
9
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
10
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
11
|
Zhang C, Zhao S, Tan Y, Pan S, An W, Chen Q, Wang X, Xu H. The SKA3-DUSP2 Axis Promotes Gastric Cancer Tumorigenesis and Epithelial-Mesenchymal Transition by Activating the MAPK/ERK Pathway. Front Pharmacol 2022; 13:777612. [PMID: 35295342 PMCID: PMC8918524 DOI: 10.3389/fphar.2022.777612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Spindle and kinetochore-related complex subunit 3 (SKA3), a member of the SKA family of proteins, is associated with the progression of multiple cancers. However, the role of SKA3 in gastric cancer has not been studied.Methods: The expression levels of SKA3 and dual-specificity phosphatase 2 (DUSP2) proteins were detected by immunohistochemistry. The effects of SKA3 and DUSP2 on the proliferation, migration, invasion, adhesion, and epithelial-mesenchymal transition of gastric cancer were studied in vitro and in vivo.Results: Immunohistochemical analysis of 164 cases of gastric cancer revealed that high expression of SKA3 was negatively correlated with DUSP2 expression and related to N stage, peritoneal metastasis, and poor prognosis. In vitro studies showed that silencing SKA3 expression inhibited the proliferation, migration, invasion, adhesion and epithelial-mesenchymal transition of gastric cancer. In vivo experiments showed that silencing SKA3 inhibited tumor growth and peritoneal metastasis. Mechanistically, SKA3 negative regulates the tumor suppressor DUSP2 and activates the MAPK/ERK pathway to promote gastric cancer.Conclusion: Our results indicate that the SKA3-DUSP2-ERK1/2 axis is involved in the regulation of gastric cancer progression, and SKA3 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shutao Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuen Tan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Wen An
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Qingchuan Chen
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Shenyang, China
- *Correspondence: Xudong Wang, ; Huimian Xu,
| |
Collapse
|
12
|
Veen LM, Skrabanja TLP, Derks S, de Gruijl TD, Bijlsma MF, van Laarhoven HWM. The role of transforming growth factor β in upper gastrointestinal cancers: A systematic review. Cancer Treat Rev 2021; 100:102285. [PMID: 34536730 DOI: 10.1016/j.ctrv.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/02/2023]
Abstract
Esophageal and gastric malignancies are associated with poor prognosis, in part due to development of recurrences or metastases after curative treatment. The transforming growth factor β (TGF-β) pathway might play a role in the development of treatment resistance. In this systematic review, we provide an overview of preclinical studies investigating the role of TGF-β in esophageal and gastric malignancies. We systematically searched MEDLINE/PubMed and EMBASE for eligible preclinical studies describing the effect of TGF-β or TGF-β inhibition on hallmarks of cancer, such as proliferation, migration, invasion, angiogenesis and immune evasion. In total, 2107 records were screened and 45 articles were included, using mouse models and 45 different cell lines. TGF-β failed to induce apoptosis in twelve of sixteen tested cell lines. TGF-β could either decrease (five cell lines) or increase proliferation (seven cell lines) in gastric cancer cells, but had no effect in esophageal cancer cells. In all esophageal and all but two gastric cancer cell lines, TGF-β increased migratory, adhesive and invasive capacities. In vivo studies showed increased metastasis in response to TGF-β treatment. Additionally, TGF-β was shown to induce vascular endothelial growth factor production and differentiation of cancer-associated fibroblasts and regulatory T-cells. In conclusion, we found that TGF-β enhances hallmarks of cancer in most gastric and esophageal cancer cell lines, but not in all. Therefore, targeting the TGF-β pathway could be an attractive strategy in patients with gastric or esophageal cancer, but additional clinical trials are needed to define patient groups who would benefit most.
Collapse
Affiliation(s)
- Linde M Veen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands.
| | - Tim L P Skrabanja
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Binienda A, Ziolkowska S, Pluciennik E. The Anticancer Properties of Silibinin: Its Molecular Mechanism and Therapeutic Effect in Breast Cancer. Anticancer Agents Med Chem 2021; 20:1787-1796. [PMID: 31858905 DOI: 10.2174/1871520620666191220142741] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Silibinin (SB), the main component of Silymarin (SM), is a natural substance obtained from the seeds of the milk thistle. SM contains up to 70% of SB as two isoforms: A and B. It has an antioxidant and anti-inflammatory effect on hepatocytes and is known to inhibit cell proliferation, induce apoptosis, and curb angiogenesis. SB has demonstrated activity against many cancers, such as skin, liver, lung, bladder, and breast carcinomas. METHODS This review presents current knowledge of the use of SM in breast cancer, this being one of the most common types of cancer in women. It describes selected molecular mechanisms of the action of SM; for example, although SB influences both Estrogen Receptors (ER), α and β, it has opposite effects on the two. Its action on ERα influences the PI3K/AKT/mTOR and RAS/ERK signaling pathways, while by up-regulating ERβ, it increases the numbers of apoptotic cells. In addition, ERα is involved in SB-induced autophagy, while ERβ is not. Interestingly, SB also inhibits metastasis by suppressing TGF-β2 expression, thus suppressing Epithelial to Mesenchymal Transition (EMT). It also influences migration and invasive potential via the Jak2/STAT3 pathway. RESULTS SB may be a promising enhancement of BC treatment: when combined with chemotherapeutic drugs such as carboplatin, cisplatin, and doxorubicin, the combination exerts a synergistic effect against cancer cells. This may be of value when treating aggressive types of mammary carcinoma. CONCLUSION Summarizing, SB inhibits proliferation, induces apoptosis, and restrains metastasis via several mechanisms. It is possible to combine SB with different anticancer drugs, an approach that represents a promising therapeutic strategy for patients suffering from BC.
Collapse
Affiliation(s)
- Agata Binienda
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Pluciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Dey L, Mukhopadhyay A. A systems biology approach for identifying key genes and pathways of gastric cancer using microarray data. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Yan D, Liu X, Xu H, Guo SW. Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition. J Clin Endocrinol Metab 2020; 105:5894452. [PMID: 32813013 DOI: 10.1210/clinem/dgaa550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion. OBJECTIVE To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT. SETTING, DESIGN, PATIENTS, INTERVENTION, AND MAIN OUTCOME MEASURES Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms' tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production. RESULTS The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs. CONCLUSIONS MCs contribute to lesional progression and fibrosis through platelet-induced MMT.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
17
|
Abdel-Ghany S, Mahfouz M, Ashraf N, Sabit H, Cevik E, El-Zawahri M. Gold nanoparticles induce G2/M cell cycle arrest and enhance the expression of E-cadherin in breast cancer cells. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1728553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mennatallah Mahfouz
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Nada Ashraf
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Mokhtar El-Zawahri
- Department of Medical and Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
- Center for Research and Development, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
18
|
Yin S, Miao Z, Tan Y, Wang P, Xu X, Zhang C, Hou W, Huang J, Xu H. SPHK1-induced autophagy in peritoneal mesothelial cell enhances gastric cancer peritoneal dissemination. Cancer Med 2019; 8:1731-1743. [PMID: 30791228 PMCID: PMC6488120 DOI: 10.1002/cam4.2041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer peritoneal dissemination (GCPD) has been recognized as the most common form of metastasis in advanced gastric cancer (GC), and the survival is pessimistic. The injury of mesothelial cells plays an important role in GCPD. However, its molecular mechanism is not entirely clear. Here, we focused on the sphingosine kinase 1 (SPHK1) in human peritoneal mesothelial cells (HPMCs) which regulates HPMCs autophagy in GCPD progression. Initially, we analyzed SPHK1 expression immunohistochemically in 120 GC peritoneal tissues, and found high SPHK1 expression to be significantly associated with LC3B expression and peritoneal recurrence, leading to poor prognosis. Using a coculture system, we observed that GC cells promoted HPMCs autophagy and this process was inhibited by blocking TGF-β1 secreted from GC cells. Autophagic HPMCs induced adhesion and invasion of GC cells. We also confirmed that knockdown of SPHK1 expression in HPMCs inhibited TGF-β1-induced autophagy. In addition, SPHK1-driven autophagy of HPMCs accelerated GC cells occurrence of GCPD in vitro and in vivo. Moreover, we explored the relationship between autophagy and fibrosis in HPMCs, observing that overexpression of SPHK1 induced HPMCs fibrosis, while the inhibition of autophagy weakened HPMCs fibrosis. Taken together, our results provided new insights for understanding the mechanisms of GCPD and established SPHK1 as a novel target for GCPD.
Collapse
Affiliation(s)
- Songcheng Yin
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Yuen Tan
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Pengliang Wang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Xiaoyu Xu
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Zhang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Wenbin Hou
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Jinyu Huang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, Heping District, Shenyang, China
| |
Collapse
|
19
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
20
|
Lv ZD, Zhao WJ, Jin LY, Wang WJ, Dong Q, Li N, Xu HM, Wang HB. Blocking TGF-β1 by P17 peptides attenuates gastric cancer cell induced peritoneal fibrosis and prevents peritoneal dissemination in vitro and in vivo. Biomed Pharmacother 2017; 88:27-33. [PMID: 28092842 DOI: 10.1016/j.biopha.2017.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/25/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
Our previous study demonstrated that the peritoneal stroma environment favors proliferation of tumor cells by serving as a rich source of growth factors and chemokines known to be involved in tumor metastasis. In this study, we investigated the interaction between gastric cancer cells and peritoneal mesothelial cells, and determined the effects of TGF-β1 in this processing. Human peritoneal tissues and peritoneal wash fluid were obtained, which examined by hematoxylin and eosin staining or ELISA for measurements of TGF-β1 levels. The peritoneal mesothelial cells were co-incubated with the supernatants of gastric cancer, the expression of TGF-β1, collagen and fibronectin was observed by ELISA and western blot. We then investigated the effects of serum-free conditioned media from HSC-39 gastric cancer cells on the peritoneum of nude mice, and the effects of peritoneal fibrosis on the development of peritoneal metastasis in vivo. The peritoneum from gastric patients were thickened and contained extensive fibrosis. After co-culture both gastric tumor cells and mesothelial cells, we found that TGF-β1 expression was greatly increased in the co-culture system compared to individual culture condition. Serum-free Conditioned Media from HSC-39 was able to induce extracellular matrix expression in vitro and in vivo, and tumorigenicity in mice with peritoneal fibrosis was greater than in mice with normal peritoneum, while blocking TGF-β1 by peptide P17 can partially inhibit these effects. In conclusion, these results indicated that the interaction of gastric cancer with peritoneal fibrosis and determined that TGF-β1 plays a key role in induction of peritoneal fibrosis, which in turn affected dissemination of gastric cancer.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China; Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Wei-Jun Zhao
- Department of General Surgery, The Affiliated Hospital of Chifeng University, Chifeng 024000, PR China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute and (e)Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Wen-Juan Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Qian Dong
- Departments of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Na Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Hui-Mian Xu
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
21
|
Cancer-associated peritoneal mesothelial cells lead the formation of pancreatic cancer peritoneal dissemination. Int J Oncol 2016; 50:457-467. [PMID: 28035373 DOI: 10.3892/ijo.2016.3829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022] Open
Abstract
The interaction between the cancer cells and the peritoneal mesothelial cells (PMCs) plays an important role in the peritoneal dissemination in several types of cancer. However, the role of PMCs in the peritoneal dissemination of pancreatic cancer remains unclear. In the present study, we investigated the interaction between the pancreatic cancer cells (PCCs) and the PMCs in the formation of peritoneal dissemination in vitro and in vivo. The tumor-stromal interaction of PCCs and PMCs significantly enhanced their mobility and invasiveness and enhanced the proliferation and anoikis resistance of PCCs. In a 3D organotypic culture model of peritoneal dissemination, co-culture of PCCs and PMCs significantly increased the cells invading into the collagen gel layer compared with mono-culture of PCCs. PMCs pre-invaded into the collagen gel, remodeled collagen fibers, and increased parallel fiber orientation along the direction of cell invasion. In the tissues of peritoneal dissemination of the KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+;Pdx-1-Cre) transgenic mouse, the monolayer of PMCs was preserved in tumor-free areas, whereas PMCs around the invasive front of peritoneal dissemination proliferated and invaded into the muscle layer. In vivo, intraperitoneal injection of PCCs with PMCs significantly promoted peritoneal dissemination compared with PCCs alone. The present data suggest that the cancer-associated PMCs have important promoting roles in the peritoneal dissemination of PCCs. Therapy targeting cancer-associated PMCs may improve the prognosis of patients with pancreatic cancer.
Collapse
|
22
|
Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression. Tumour Biol 2016; 37:11397-407. [PMID: 26984157 DOI: 10.1007/s13277-016-5000-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.
Collapse
|
23
|
Endoglin overexpression mediates gastric cancer peritoneal dissemination by inducing mesothelial cell senescence. Hum Pathol 2016; 51:114-23. [PMID: 27067789 DOI: 10.1016/j.humpath.2015.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Peritoneal dissemination (PD), which is highly frequent in gastric cancer (GC) patients, is the main cause of death in advanced GC. Senescence of human peritoneal mesothelial cells (HPMC) may contribute to GC peritoneal dissemination (GCPD). In this study of 126 patients, we investigated the association between Endoglin expression in GC peritoneum and the clinicopathological features. The prognosis of patients was evaluated according to Endoglin and ID1 expression. In vitro, GC cell (GCC)-HPMC coculture was established. Endoglin and ID1 expression was evaluated by Western blot. Cell cycle and HPMC senescence were analyzed after harvesting HPMC from the coculture. GCC adhesion and invasion to HPMC were also assayed. Our results showed that positive staining of Endoglin (38%) was associated with a higher TNM stage and higher incidence of GCPD (both P < .05). Kaplan-Meier analysis showed that the patients who were Endoglin positive had a shorter survival time compared with Endoglin-negative patients (P = .02). Using the HPMC and GCC adherence and invasion assay, we demonstrated that transforming growth factor beta 1 (TGF-β)1-induced HPMC senescence was attenuated by silencing the Endoglin expression, which also prevented GCC attachment and invasion. Our study indicated a positive correlation between Endoglin overexpression and GCPD. Up-regulated Endoglin expression induced HPMC senescence via TGF-β1 pathway. The findings suggest that Endoglin-induced HPMC senescence may contribute to peritoneal dissemination of GCCs.
Collapse
|
24
|
Yan Y, Wang LF, Wang RF. Role of cancer-associated fibroblasts in invasion and metastasis of gastric cancer. World J Gastroenterol 2015; 21:9717-9726. [PMID: 26361418 PMCID: PMC4562955 DOI: 10.3748/wjg.v21.i33.9717] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/05/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are important components of various types of tumors, including gastric cancer (GC). During tumorigenesis and progression, CAFs play critical roles in tumor invasion and metastasis via a series of functions including extracellular matrix deposition, angiogenesis, metabolism reprogramming and chemoresistance. However, the mechanism of the interaction between gastric cancer cells and CAFs remains largely unknown. MicroRNAs (miRNAs) are a class of non-coding small RNA molecules, and their expression in CAFs not only regulates the expression of a number of target genes but also plays an essential role in the communication between tumor cells and CAFs. In this review, we provide an overview of recent studies on CAF miRNAs in GC and the relevant signaling pathways in gastrointestinal tumors. Focusing the attention on these signaling pathways may help us better understand their role in tumor invasion and metastasis and identify new molecular targets for therapeutic strategies.
Collapse
|
25
|
Lv ZD, Zhang L, Liu XP, Jin LY, Dong Q, Li FN, Wang HB, Kong B. NKD1 down-regulation is associated with poor prognosis in breast invasive ductal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4015-4021. [PMID: 26097589 PMCID: PMC4466976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
As a negative modulator of the canonical Wnt signaling pathway, Naked1 (NKD1) is widely expressed in many normal tissues. However, the expression and clinicopathological significance of NKD1 in patients with breast cancer is still unclear. The aim of this study was to evaluate NKD1 expression in breast cancer and to investigate the question of whether reduced expression of NKD1 may have any pathological significance in breast cancer development or progression. In this study, we performed western blotting and immunohistochemistry to evaluate the expression of NKD1 and relevance with clinicopathological factors in the breast invasive ductal carcinoma. Reduction of NKD1 was significantly correlated with lymph node metastasis, histological grade and ER expression in breast cancer. Patients with negative NKD1 expression had significantly lower cumulative postoperative 5 year survival rate than those with positive NKD1 expression. This interpretation is in keeping with the results obtained from our in vitro experiments on MDA-MB-231 cells, we demonstrated that upregulation of NKD1 expression by infect with an adenovirus containing a NKD1 vector significantly reduced the migration of breast cancer cells. These data suggest that NKD1 plays an important role in invasion in human breast cancer and it appears to be a potential prognostic marker for patients with breast cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Calcium-Binding Proteins
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Receptors, Estrogen/metabolism
- Risk Factors
- Time Factors
- Transfection
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Lin Zhang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Xiang-Ping Liu
- Department of Central Laboratory of Molecular Biology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Li-Ying Jin
- Department of Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| |
Collapse
|
26
|
Lv ZD, Kong B, Liu XP, Dong Q, Niu HT, Wang YH, Li FN, Wang HB. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:6671-8. [PMID: 25400746 PMCID: PMC4230065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Chemokine receptors are now known to play an important role in cancer growth and metastasis. However, there is little information regarding chemokine expression in breast cancer. The aim of this study was to evaluate CXCL12 expression in breast cancer and to investigate the question of whether reduced expression of CXCL12 may have any pathological significance in breast cancer development or progression. In this study, we performed western blotting and immunohistochemistry to evaluate the expression of CXCL12 and relevance with clinicopathological factors in the invasive ductal carcinoma. Reduction of CXCL12 was significantly correlated with tumor size, lymph node metastasis, TNM stage and Her-2 expression in breast cancer. Patients with negative CXCL12 expression had significantly lower cumulative postoperative 5 year survival rate than those with positive CXCL12 expression. In addition, we demonstrated that upregulation of CXCL12 expression by infection with an adenovirus containing a CXCL12 vector significantly inhibited cell growth and reduced the migration of breast cancer cells. Furthermore, animal studies revealed that nude mice injected with the Ad-CXCL12 cell lines featured a lighter weight than the control cell lines. These data suggest that CXCL12 plays an important role in cell growth and invasion in human breast cancer and it appears to be a potential prognostic marker for patients with breast cancer.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Cell Proliferation
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Female
- Humans
- Kaplan-Meier Estimate
- MCF-7 Cells
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Xiang-Ping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Hai-Tao Niu
- Department of Urology Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Yong-Hua Wang
- Department of Urology Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266003, P. R. China
| |
Collapse
|
27
|
Di HS, Wang LG, Wang GL, Zhou L, Yang YY. The Signaling Mechanism of TGF-β1 Induced Bovine Mammary Epithelial Cell Apoptosis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:304-10. [PMID: 25049567 PMCID: PMC4092962 DOI: 10.5713/ajas.2011.11251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/13/2011] [Accepted: 11/02/2011] [Indexed: 01/19/2023]
Abstract
The present study showed that Transforming growth factor beta 1 (TGF-β1) can induce apoptosis of bovine mammary epithelial cells. This apoptosis was also observed with phosphorylation of Smad2/3 within 0.5–2 h. Afterwards the signal transferred into the nucleus. Moreover, intracellular free Ca2+ concentration was significantly elevated as well as Caspase-3 activated and DNA lysised, thereby inducing the programmed cell death. This signaling pathway of TGF-β1 was blocked by SB-431542 (10−2 μM) via inhibiting ALK-5 kinase activity, which thus reversed the anti-proliferation and apoptosis effect of TGF-β1 in mammary epithelial cells. These results indicated that TGF-β1 induced apoptosis of bovine mammary epithelial cells through the ALK-5-Smad2/3 pathway, which plays an important role in inhibiting survival of mammary epithelial cells. Moreover, intracellular Ca2+ also played a critical role in TGF-β1-induced cell apoptosis.
Collapse
Affiliation(s)
- He-Shuang Di
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China ; Jiangsu Animal Husbandry and Veterinary College, Taizhou 225300, China
| | - Li-Gang Wang
- Jiangsu Animal Husbandry and Veterinary College, Taizhou 225300, China
| | - Gen-Lin Wang
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Yuan Yang
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Na D, Song Y, Jiang CG, Sun Z, Xu YY, Wang ZN, Zhao ZZ, Xu HM. Induction of apoptosis in human peritoneal mesothelial cells by gastric cancer cell supernatant promotes peritoneal carcinomatosis. Tumour Biol 2014; 35:8301-7. [DOI: 10.1007/s13277-014-2093-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 01/28/2023] Open
|
29
|
Tumor-associated mesothelial cells are negative prognostic factors in gastric cancer and promote peritoneal dissemination of adherent gastric cancer cells by chemotaxis. Tumour Biol 2014; 35:6105-11. [PMID: 24615523 DOI: 10.1007/s13277-014-1808-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022] Open
Abstract
Peritoneal dissemination is highly frequent in gastric cancer. Damage to human peritoneal mesothelial cell (HPMC) barriers provokes gastric cancer peritoneal dissemination (GCPD), the key events during GCPD, is characterized by fibroblastic development. In this study, we have studied the association between fibroblast activation protein (FAP) expression in peritoneum and the pathological features of the primary tumor. The clinical prognosis of gastric cancer patients was evaluated according to FAP expression. In a gastric cancer cell-HPMC co-culture system, expression of E-cadherin, α-smooth muscle actin, and FAP were evaluated by Western blotting. Gastric cancer cell migration and adhesion to HPMC were also assayed. Our results showed positive peritoneal staining of FAP in 36/86 cases (41.9 %), which was associated with a higher TNM stage in primary gastric cancer and higher incidence of GCPD (both p<0.05). Survival analysis showed FAP expression was an independent prognostic factor of poor survival (p=0.02). Peritoneum of FAP-positive expression exhibited a distinct fibrotic development and expressed higher level of the mesenchymal marker α-SMA, which was confirmed by the in vitro Western blot assay. In HPMC and gastric cancer cell adherence assay, SGC-7901 cells preferentially adhered to TA-HPMC at different cell densities (both p<0.05). Additionally, SGC-7901 cells were more prone to chemotaxis by FAP-expressed tumor-associated-human peritoneal mesothelial cells (TA-HPMC) compared with HPMC co-cultured with normal gastric glandular epithelial cells in a time-dependent manner (both p<0.05). Our study indicated a positive correlation between peritoneum FAP expression and GCPD. FAP-expressed TA-HPMC might be an important cellular component and instigator of GCPD.
Collapse
|
30
|
Yu M, Niu ZM, Wei YQ. Effective Response of the Peritoneum Microenvironment to Peritoneal and Systemic Metastasis from Colorectal Carcinoma. Asian Pac J Cancer Prev 2013; 14:7289-94. [DOI: 10.7314/apjcp.2013.14.12.7289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Miao ZF, Zhao TT, Wang ZN, Miao F, Xu YY, Mao XY, Gao J, Wu JH, Liu XY, You Y, Xu H, Xu HM. Transforming growth factor-beta1 signaling blockade attenuates gastric cancer cell-induced peritoneal mesothelial cell fibrosis and alleviates peritoneal dissemination both in vitro and in vivo. Tumour Biol 2013; 35:3575-83. [PMID: 24347485 DOI: 10.1007/s13277-013-1472-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of advanced gastric cancer and the main cause of death in gastric cancer patients. Transforming growth factor-beta1 (TGF- ß1), one of the most potent fibrotic stimuli for human peritoneal mesothelial cells, has been shown to play an important role in this process. In this study, we investigated the effect of TGF- ß1 signaling blockade in gastric cancer cell (GCC)-induced human peritoneal mesothelial cell (HPMC) fibrosis. HPMCs were cocultured with the high TGF- ß1 expressing GCC line SGC-7901 and various TGF- ß1 signaling inhibitors or SGC-7901 transfected with TGF-ß1-specific siRNA. HPMC fibrosis was monitored on the basis of morphology. Expression of the epithelial cell marker, E-cadherin, and the mesenchymal marker, α-smooth muscle actin (α-SMA), was evaluated by Western blotting and immunofluorescence confocal imaging. GCC adhesion to HPMC was also assayed. In nude mouse tumor model, the peritoneal fibrotic status was monitored by immunofluorescent confocal imaging and Masson's trichrome staining; formation of metastatic nodular and ascites fluid was also evaluated. Our study demonstrated that GCC expressing high levels of TGF-ß1 induced HMPC fibrosis, which is characterized by both upregulation of E-cadherin and downregulation of α-SMA. Furthermore, HPMC monolayers fibrosis was reversed by TGF- ß1 signaling blockade. In vivo, the TGF- ß1 receptor inhibitor SB-431542 partially attenuated early-stage gastric cancer peritoneal dissemination (GCPD). In conclusion, our study confirms the significance of TGFß1 signaling blockade in attenuating GCPD and may provide a therapeutic target for clinical therapy.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Z, Zhang D, Zhang H, Miao Z, Tang Y, Sun G, Dai D. Prediction of peritoneal recurrence by the mRNA level of CEA and MMP-7 in peritoneal lavage of gastric cancer patients. Tumour Biol 2013; 35:3463-70. [PMID: 24282089 DOI: 10.1007/s13277-013-1458-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/19/2013] [Indexed: 01/16/2023] Open
Abstract
A number of tumor markers had been reported to be useful in detecting free cancer cells in the peritoneal cavity and predict peritoneal recurrence in gastric cancer patients. The objective of this study was to compare the clinical impact of different tumor markers in peritoneal lavage fluid using the real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) technique and to screen the most effective ones from them. The peritoneal lavage fluid of 116 patients with gastric cancer was sampled at laparotomy. After RNA extraction and reverse transcription, real-time quantitative polymerase chain reaction (PCR) was performed using the primers and probes for carcinoembryonic antigen (CEA), cytokeratin-20, matrix metalloproteinase-7 (MMP-7), carbohydrate antigen 125, and transforming growth factor-beta-1. Among the 116 patients, 45 (38.8%) were confirmed to have peritoneal recurrence. Any of the PCR-positive results of the five tumor markers could predict peritoneal recurrence in the univariate analysis (P < 0.001). In the multivariate analysis, the PCR results of CEA (P = 0.003) and MMP-7 (P = 0.028) were found to be independent prognostic factors. A real-time quantitative RT-PCR analysis of the CEA and MMP-7 transcripts in peritoneal lavage fluid could effectively predict peritoneal recurrence in advanced gastric cancer patients who underwent a potentially curative resection.
Collapse
Affiliation(s)
- Zhen Li
- Department of Gastrointestinal Surgery, 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu C, Xiao X, Wu K, Nie Y, Zhang H, Fan D. KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol 2013; 139:1033-42. [PMID: 23504025 DOI: 10.1007/s00432-012-1363-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/10/2012] [Indexed: 12/30/2022]
Abstract
PURPOSE Krüppel-like factor 8 (KLF8), a downstream transcription factor of transforming growth factor-β1 (TGF-β1), has a role in tumorigenesis, tumor progress and epithelial-to-mesenchymal transition (EMT) induction. Recent studies mainly focused on its role in breast cancer and hepatocellular carcinoma; however, little is studied in gastric cancer. Here, we aim to explore whether KLF8 is involved in TGF-β1-induced EMT in gastric cancer cells. METHODS Western blot and real-time PCR assays were used to detect the expression of KLF8, E-cadherin and vimentin in gastric cancer cell line SGC7901 treated with or without TGF-β1. The lentivirus-mediated RNA interference technique was used to knock down the expression of KLF8 in gastric cancer cell line SGC7901. In vitro, the ability of cell migration and invasion were measured by transwell and wound healing assays; the cell motility was detected by high content screening assay. RESULTS TGF-β1 could induce EMT via down-regulating E-cadherin and up-regulating vimentin expression in gastric cancer cells. Further study found that TGF-β1 could induce KLF8 expression at the protein and mRNA levels in gastric cancer cells (P < 0.05). Western blot and real-time PCR assays found that small interference RNA (siRNA)-mediated KLF8 silence blocked TGF-β1-induced EMT-like transformation and subsequently reversed the loss of E-cadherin and gain of vimentin. In vitro, inhibition of KLF8 decreased TGF-β1-prompted cell migration, invasion and motility. CONCLUSIONS KLF8, a transcription factor, is involved in TGF-β1-induced EMT in gastric cancer cells and may be a novel therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lv ZD, Wang HB, Dong Q, Kong B, Li JG, Yang ZC, Qu HL, Cao WH, Xu HM. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol Cell Biochem 2013; 377:177-85. [PMID: 23392771 DOI: 10.1007/s11010-013-1583-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/24/2022]
Abstract
Peritoneal metastases are one reason for the poor prognosis of scirrhous gastric cancer (SGC), and myofibroblast provides a favorable environment for the peritoneal dissemination of gastric cancer. The aim of this study was to determine whether myofibroblast originates from peritoneal mesothelial cells under the influence of the tumor microenvironment. Immunohistochemical studies of peritoneal biopsy specimens from patients with peritoneal lavage cytological (+) status demonstrate the expression of the epithelial markers cytokeratin in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. To confirm this hypothesis in vitro, we co-incubated mesothelial cells with SGC or non-SGC to investigate morphology and function changes. As we expected, mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with loss of epithelial morphology and decrease in the expression of cytokeratin and E-cadherin when exposed to conditioned medium from HSC-39, and the induction of mesothelial cells can be abolished using a neutralizing antibody to transforming growth factor-beta1 (TGF-β1) as well as by pre-treatment with SB431542. Moreover, we found that these mesothelial cells-derived cells exhibit functional properties of myofibroblasts, including the ability to increase adhesion and invasion of SGC. In summary, our current data demonstrated that mesothelial cells are a source of myofibroblasts under the SGC microenvironment which provide a favorable environment for the dissemination of gastric cancer; TGF-β1 produced by autocrine/paracrine in peritoneal cavity may play a central role in this pathogenesis.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Connective tissue growth factor is a positive regulator of epithelial–mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells. Cytokine 2013; 61:173-80. [DOI: 10.1016/j.cyto.2012.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/02/2012] [Accepted: 09/20/2012] [Indexed: 02/01/2023]
|
36
|
Li Z, Miao Z, Jin G, Li X, Li H, Lv Z, Xu HM. βig-h3 supports gastric cancer cell adhesion, migration and proliferation in peritoneal carcinomatosis. Mol Med Rep 2012; 6:558-64. [PMID: 22710407 DOI: 10.3892/mmr.2012.951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/01/2012] [Indexed: 11/06/2022] Open
Abstract
βig-h3 is an extracellular matrix protein and its expression is highly induced by transforming growth factor (TGF-β). It has also been suggested to play an important role in the growth and invasion of colon and pancreatic cancers. In the present study, we demonstrated that βig-h3 is expressed in mesothelial cells, especially in patients with advanced gastric cancer. The positive rate of βig-h3 was significantly higher in cases with a more invasive and advanced serous-type, with visible peritoneal metastasis, and in peritoneal lavage cytological examination (PLC) (+) and peritoneal lavage fluid CEA mRNA(+) subgroups (p<0.05). Our study also showed that the expression of βig-h3 gradually increased with increasing TGF-β1 concentrations in vitro in a time-dependant manner. In addition, βig-h3 also induced human gastric carcinoma cell line (SGC-7901) cell adhesion in a dose-dependent manner and significantly increased cell migration and proliferation. The results suggest that βig-h3 expression in peritoneal mesothelial cells in gastric cancer patients is a marker of the biological behavior of gastric cancer and plays an important role in the process of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Zhen Li
- Department of General Surgery, Fourth Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Z, Miao ZF, Xu YX, Xu M, Xu HM. Correlation of βig-h3 expression in peritoneal mesothelial cells with pathological parameters and peritoneal metastasis in gastric cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:1402-1406. [DOI: 10.11569/wcjd.v20.i16.1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression of βig-h3 in peritoneal mesothelial cells in gastric cancer and to explore its relation to pathological parameters and peritoneal metastasis.
METHODS: Peritoneal tissue and peritoneal washing fluid samples were collected during operation from 75 patients with gastric cancer and 14 patients with benign gastric lesions. The expression of βig-h3 in peritoneal mesothelial cells was measured immunohistochemically. The mRNA levels of CEA in ascites and peritoneal washing fluid were measured by RT-PCR. Peritoneal lavage cytological (PLC) examination and pathological examination were also performed.
RESULTS: βig-h3 was positively expressed in the peritoneal tissue in 29 patients with gastric cancer and 1 with benign gastric lesions, and the positive rate was significantly different between the two groups (P = 0.030). In the gastric cancer group, 13 patients had evident peritoneal metastasis, 20 were positive for PLC, and 32 were positive for CEA mRNA. The positive rate of βig-h3 expression was significantly positively correlated with deep invasion (P = 0.016), serious serous type (P = 0.037), peritoneal metastasis (P = 0.002), PLC (+) (P = 0.005), and CEA mRNA (+) (P = 0.027).
CONCLUSION: βig-h3 expression in peritoneal mesothelial cells in gastric cancer patients is closely related with peritoneal metastasis, representing a marker of biological behavior of gastric cancer.
Collapse
|
38
|
Na D, Lv ZD, Liu FN, Xu Y, Jiang CG, Sun Z, Miao ZF, Li F, Xu HM. Gastric cancer cell supernatant causes apoptosis and fibrosis in the peritoneal tissues and results in an environment favorable to peritoneal metastases, in vitro and in vivo. BMC Gastroenterol 2012; 12:34. [PMID: 22520554 PMCID: PMC3444859 DOI: 10.1186/1471-230x-12-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 04/20/2012] [Indexed: 11/13/2022] Open
Abstract
Background In this study, we examined effects of soluble factors released by gastric cancer cells on peritoneal mesothelial cells in vitro and in vivo. Methods HMrSV5, a human peritoneal mesothelial cell line, was incubated with supernatants from gastric cancer cells. Morphological changes of HMrSV5 cells were observed. Apoptosis of HMrSV5 cells was observed under a transmission electron microscope and quantitatively determined by MTT assay and flow cytometry. Expressions of apoptosis-related proteins (caspase-3, caspase-8, Bax, bcl-2) were immunochemically evaluated. Results Conspicuous morphological changes indicating apoptosis were observed in HMrSV5 cells 24 h after treatment with the supernatants of gastric cancer cells. In vivo, peritoneal tissues treated with gastric cancer cell supernatant were substantially thickened and contained extensive fibrosis. Conclusions These findings demonstrate that supernatants of gastric cancer cells can induce apoptosis and fibrosis in HMrSV5 human peritoneal mesothelial cells through supernatants in the early peritoneal metastasis, in a time-dependent manner, and indicate that soluble factors in the peritoneal cavity affect the morphology and function of mesothelial cells so that the resulting environment can become favorable to peritoneal metastases.
Collapse
Affiliation(s)
- Di Na
- Department of Oncology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|