1
|
Li C, Wang X, Tian M, Zhang M, Zhang X, Fu Q, Liu L, Zhang L, Wang H. The JNK-associated leucine zipper protein exerts a protective effect on renal parenchymal injury by limiting the inflammatory secretome in tubular cells. Cell Signal 2024; 124:111428. [PMID: 39307375 DOI: 10.1016/j.cellsig.2024.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
JNK-associated leucine zipper protein (JLP) is a newly identified renal endogenous anti-fibrotic factor that is selectively enriched in renal tubular epithelial cells (TECs). The loss of JLP by TECs is a landmark event that heralds the progression of kidney fibrosis. JLP deficiency ensues a series of pathogenetic cellular processes that are conducive to fibrotic injury. Inflammatory injury is functionally relevant in fibrotic kidneys, and TECs play an essential role in fueling inflammation through aberrant secretions. It is speculated that the loss of JLP in TECs is associated with the relentless inflammation during the development of kidney fibrosis. This study examined the alteration of a panel of inflammatory signatures in TECs under kidney fibrotic circumstances using a Jlp gene-modified unilateral ureteral obstruction (UUO) mouse model or cultured HK-2 cells. It was found that a deficiency of JLP in TECs led to a significant increase in the secretion of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), overactivation of the nuclear factor (NF)-κB/c-Jun N-terminal kinase (JNK) pathway, as well as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis in response to pro-fibrotic damage. Additionally, the absence of JLP resulted in enhanced macrophage migration and fibroblast activation as paracrine effects elicited by injured TECs. In conclusion, the loss of JLP in TECs catalyses inflammatory injuries in the development of kidney fibrosis.
Collapse
Affiliation(s)
- Chen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maoqing Tian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Fu
- Paediatric Department, Central Hospital of Jingzhou City, Jingzhou, China
| | - Lunzhi Liu
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Minda Hospital of Hubei Minzu University, Enshi, China.
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Afaq F, Agarwal S, Bajpai P, Diffalha SA, Kim HG, Peter S, Khushman M, Chauhan SC, Mukherjee P, Varambally S, Manne U. Targeting of oncogenic AAA-ATPase TRIP13 reduces progression of pancreatic ductal adenocarcinoma. Neoplasia 2024; 47:100951. [PMID: 38039923 PMCID: PMC10716004 DOI: 10.1016/j.neo.2023.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) is involved in cancer progression, but its role in pancreatic ductal adenocarcinoma (PDAC) is unknown. Thus, we assessed the expression, functional role, and mechanism of action of TRIP13 in PDAC. We further examined the efficacy of TRIP13 inhibitor, DCZ0415, alone or in combination with gemcitabine on malignant phenotypes, tumor progression, and immune response. We found that TRIP13 was overexpressed in human PDACs relative to corresponding normal pancreatic tissues. TRIP13 knockdown or treatment of PDAC cells with DCZ0415 reduced proliferation and colony formation, and induced G2/M cell cycle arrest and apoptosis. Additionally, TRIP13 knockdown or targeting with DCZ0415 reduced the migration and invasion of PDAC cells by increasing E-cadherin and decreasing N-cadherin and vimentin. Pharmacologic targeting or silencing of TRIP13 also resulted in reduce expression of FGFR4 and STAT3 phosphorylation, and downregulation of the Wnt/β-catenin pathway. In immunocompromised mouse models of PDAC, knockdown of TRIP13 or treatment with DCZ0415 reduced tumor growth and metastasis. In an immunocompetent syngeneic PDAC model, DCZ0415 treatment enhanced the immune response by lowering expression of PD1/PDL1, increasing granzyme B/perforin expression, and facilitating infiltration of CD3/CD4 T-cells. Further, DCZ0415 potentiated the anti-metastatic and anti-tumorigenic activities of gemcitabine by reducing proliferation and angiogenesis and by inducing apoptosis and the immune response. These preclinical findings show that TRIP13 is involved in PDAC progression and targeting of TRIP13 augments the anticancer effect of gemcitabine.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, USA
| | - Moh'd Khushman
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Priyabrata Mukherjee
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA.
| |
Collapse
|
3
|
Das K, Paul S, Ghosh A, Gupta S, Mukherjee T, Shankar P, Sharma A, Keshava S, Chauhan SC, Kashyap VK, Parashar D. Extracellular Vesicles in Triple-Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4879. [PMID: 37835573 PMCID: PMC10571545 DOI: 10.3390/cancers15194879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype accounting for ~10-20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2-targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in-depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV-based targeted immunotherapies.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA or
| | - Anshul Sharma
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek Kumar Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Bassey-Archibong BI, Rajendra Chokshi C, Aghaei N, Kieliszek AM, Tatari N, McKenna D, Singh M, Kalpana Subapanditha M, Parmar A, Mobilio D, Savage N, Lam F, Tokar T, Provias J, Lu Y, Chafe SC, Swanton C, Hynds RE, Venugopal C, Singh SK. An HLA-G/SPAG9/STAT3 axis promotes brain metastases. Proc Natl Acad Sci U S A 2023; 120:e2205247120. [PMID: 36780531 PMCID: PMC9974476 DOI: 10.1073/pnas.2205247120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 02/15/2023] Open
Abstract
Brain metastases (BM) are the most common brain neoplasm in adults. Current BM therapies still offer limited efficacy and reduced survival outcomes, emphasizing the need for a better understanding of the disease. Herein, we analyzed the transcriptional profile of brain metastasis initiating cells (BMICs) at two distinct stages of the brain metastatic cascade-the "premetastatic" or early stage when they first colonize the brain and the established macrometastatic stage. RNA sequencing was used to obtain the transcriptional profiles of premetastatic and macrometastatic (non-premetastatic) lung, breast, and melanoma BMICs. We identified that lung, breast, and melanoma premetastatic BMICs share a common transcriptomic signature that is distinct from their non-premetastatic counterparts. Importantly, we show that premetastatic BMICs exhibit increased expression of HLA-G, which we further demonstrate functions in an HLA-G/SPAG9/STAT3 axis to promote the establishment of brain metastatic lesions. Our findings suggest that unraveling the molecular landscape of premetastatic BMICs allows for the identification of clinically relevant targets that can possibly inform the development of preventive and/or more efficacious BM therapies.
Collapse
Affiliation(s)
| | - Chirayu Rajendra Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Agata Monika Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Dillon McKenna
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mohini Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Arun Parmar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fred Lam
- Department of Surgery, Division of Neurosurgery, McMaster University Faculty of Health Sciences, Hamilton General Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Tomas Tokar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - John Provias
- Department of Anatomical Pathology (Neuropathology), Hamilton General Hospital, Hamilton, ON, L8L 2X2, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yu Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Charles Swanton
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Robert Edward Hynds
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sheila Kumari Singh
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Lu M, Wei FK, Wu C, Xu ZY, Mao LJ, Yang DR. Oncolytic Adenovirus with SPAG9 shRNA Driven by DD3 Promoter Improved the Efficacy of Docetaxil for Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7918067. [PMID: 35535313 PMCID: PMC9078851 DOI: 10.1155/2022/7918067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Prostate cancer (PCa) is a common malignant tumor of the male urinary system and ranks the second in the causes of tumor-related deaths. Differential display code 3 (DD3) is a noncoding gene that is specifically expressed in PCa. High expression of sperm-associated antigen 9 (SPAG9) is closely related to tumorigenesis of PCa, and SPAG9 is a therapeutic target for PCa. In this study, a new oncolytic adenovirus DD3-ZD55-SPAG9 was constructed by using DD3 promoter to enhance the efficacy and safety of adenovirus. The combined use of DD3-ZD55-SPAG9 and docetaxel showed that DD3-ZD55-SPAG9 significantly improved the anti-tumor efficacy of docetaxel in PCa both in vitro and in vivo. The mechanism was related to the induction of tumor cell apoptosis and the inhibition of tumor cell invasion. In conclusion, DD3-ZD55-SPAG9 combined with docetaxel is an effective strategy for PCa therapy.
Collapse
Affiliation(s)
- Meng Lu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Fu-kun Wei
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Chuang Wu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Zi-yang Xu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Li-jun Mao
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Dong-rong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
6
|
Peng F, Wang L, Xiong L, Tang H, Du J, Peng C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front Pharmacol 2022; 13:806869. [PMID: 35308218 PMCID: PMC8930825 DOI: 10.3389/fphar.2022.806869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer ranks as the leading cause of death in lethal malignancies among women worldwide, with a sharp increase of incidence since 2008. Triple negative breast cancer (TNBC) gives rise to the largest proportion in breast cancer-related deaths because of its aggressive growth and rapid metastasis. Hence, searching for promising targets and innovative approaches is indispensable for the TNBC treatment. Maackiain (MA), a natural compound with multiple biological activities, could be isolated from different Chinese herbs, such as Spatholobus suberectus and Sophora flavescens. It was the first time to report the anti-cancer effect of MA in TNBC. MA could suppress TNBC cell proliferation, foci formation, migration, and invasion. MA also exerted a significant inhibitory effect on tumor growth of TNBC. Furthermore, MA could induce apoptosis with an increase of GADD45α and a decrease of miR-374a. In contrast, overexpressing miR-374a would result in at least partly affecting the proapoptotic effect of MA and suppressing GADD45α stimulated by MA. These results reveal the anti-TNBC effect of MA in vitro and in vivo, providing evidence for its potential as a drug candidate utilized in TNBC therapy.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| |
Collapse
|
7
|
Dhandapani H, Jayakumar H, Seetharaman A, Singh SS, Ganeshrajah S, Jagadish N, Suri A, Thangarajan R, Ramanathan P. Dendritic cells matured with recombinant human sperm associated antigen 9 (rhSPAG9) induce CD4 +, CD8 + T cells and activate NK cells: a potential candidate molecule for immunotherapy in cervical cancer. Cancer Cell Int 2021; 21:473. [PMID: 34493268 PMCID: PMC8424976 DOI: 10.1186/s12935-021-01951-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Dendritic cell (DC)-based immunotherapy is capable of activating the immune system and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. However, major limitations are the availability of autologous tumor cells as antigenic source and the selection of antigen that may have potential to activate both CD4+ and CD8+ T cells in immune-specific manner. Recently, we reported the expression of sperm associated antigen 9 (SPAG9) that is associated with various types of malignancies including cervical cancer. We examined the recombinant human SPAG9 (rhSPAG9) as an antigenic source for generating efficient DCs to stimulate CD4+ and CD8+ T cell responses for future DCs-based vaccine trials in cervical cancer patients. Methods Human monocytes derived DCs were pulsed with different concentrations (250 ng/ml to 1000 ng/ml) of recombinant human SPAG9 (rhSPAG9) and evaluated for their phenotypic and functional ability. The efficacy of DCs primed with 750 ng/ml of rhSPAG9 (SPDCs) was compared with DCs primed with autologous tumor lysates (TLDCs), to induce CD4+, CD8+ T cells and activating NK cells. In addition, we investigated the effect of the chemotherapeutic drug cisplatin on phenotypic and functional potential of SPDCs. Results Phenotypic and functional characterization of DCs pulsed with 750 ng/ml rhSPAG9 was found to be optimal and effective for priming DCs. SPDCs were also capable of stimulating allogeneic T cells similar to TLDCs. SPDCs showed a statistically insignificant increase in the expression of maturation marker CD83 and migration towards CCL19 and CCL21 compared with TLDCs (CD83; P = 0.4; migration; P = 0.2). In contrast, although TLDCs showed better proliferation and secretion of Th1 cytokines (IL12p40, IL12p70 and IFNγ) compared to SPDCs, this difference was not statistically significant (IL12p40, P = 0.06). Further we also observed that clinical dose of cisplatin (200 µM) treated SPDCs were able to stimulate the proliferation of cytotoxic T lymphocytes without increasing the FOXP3+ Tregs in autologous co-cultures. Conclusions In summary, in order to overcome the limitation of the availability of autologous tumor cells as antigenic sources, our present strategy provides an insight to consider rhSPAG9 as a strong immunogen for DC-based immunotherapy for cervical cancer trials and warrants further studies. This is the first report to suggest that rhSPAG9 is an effective antigen for pulsing DCs that are capable of eliciting a potent Th1 response which, in turn, may help in decreasing the tumor burden when used along with a cisplatin based combinatorial regimen for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01951-7.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Shirley Sunder Singh
- Department of Pathology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India.
| |
Collapse
|
8
|
Cancer-Testis Antigens in Triple-Negative Breast Cancer: Role and Potential Utility in Clinical Practice. Cancers (Basel) 2021; 13:cancers13153875. [PMID: 34359776 PMCID: PMC8345750 DOI: 10.3390/cancers13153875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer cells commonly express tumour-associated antigens that can induce immune responses to eradicate the tumour. Triple-negative breast cancer (TNBC) is a form of breast cancer lacking the expression of hormone receptors and cerbB2 (HER2) and tends to be more aggressive and associated with poorer prognoses due to the limited treatment options. Characterisation of biomarkers or treatment targets is thus of great significance in revealing additional therapeutic options. Cancer-testis antigens (CTAs) are tumour-associated antigens that have garnered strong attention as potential clinical biomarkers in targeted immunotherapy due to their cancer-restricted expressions and robust immunogenicity. Previous clinical studies reported that CTAs correlated with negative hormonal status, advanced tumour behaviour and a poor prognosis in a variety of cancers. Various studies also demonstrated the oncogenic potential of CTAs in cell proliferation by inhibiting cell death and inducing metastasis. Multiple clinical trials are in progress to evaluate the role of CTAs as treatment targets in various cancers. CTAs hold great promise as potential treatment targets and biomarkers in cancer, and further research could be conducted on elucidating the mechanism of actions of CTAs in breast cancer or combination therapy with other immune modulators. In the current review, we summarise the current understandings of CTAs in TNBC, addressing the role and utility of CTAs in TNBC, as well as discussing the potential applications and advantage of incorporating CTAs in clinical practise.
Collapse
|
9
|
Zhao M, Yang Y, Li J, Lu M, Wu Y. Silencing of OIP5-AS1 Protects Endothelial Cells From ox-LDL-Triggered Injury by Regulating KLF5 Expression via Sponging miR-135a-5p. Front Cardiovasc Med 2021; 8:596506. [PMID: 33778018 PMCID: PMC7994260 DOI: 10.3389/fcvm.2021.596506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of atherosclerosis. LncRNA OIP5 antisense RNA 1 (OIP5-AS1) has been found to be associated with the development of atherosclerosis. In this study, we further investigated the molecular basis of OIP5-AS1 in atherosclerosis pathogenesis. Methods: Oxidative low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs). The levels of OIP5-AS1, miR-135a-5p, and Krüppel-like factor 5 (KLF5) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, migration, and apoptosis were evaluated using the Cell Counting Kit-8 (CCK-8), Transwell, and flow cytometry, respectively. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) were determined with enzyme-linked immunosorbent assay (ELISA). Targeted interactions among OIP5-AS1, miR-135a-5p, and KLF5 were confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Animal studies were performed to assess the role of OIP5-AS1 in atherosclerosis progression in vivo. Results: Our data showed the significant upregulation of OIP5-AS1 in atherosclerosis serum and ox-LDL-stimulated HUVECs. The silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs and diminished lipids secretion in ApoE−/− mice. Moreover, OIP5-AS1 functioned as a molecular sponge of miR-135a-5p, and miR-135a-5p was a functional mediator of OIP5-AS1 in regulating ox-LDL-induced HUVEC injury. KLF5 was a direct target of miR-135a-5p, and the increased expression of miR-135a-5p alleviated ox-LDL-induced cytotoxicity by downregulating KLF5. Furthermore, OIP5-AS1 influenced KLF5 expression through sponging miR-135a-5p. Conclusion: The current work identified that the silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs at least in part by influencing KLF5 expression via acting as a miR-135a-5p sponge.
Collapse
Affiliation(s)
- Minghu Zhao
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuanyuan Yang
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingchao Li
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Lu
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Wu
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Parashar D, Geethadevi A, McAllister D, Ebben J, Peterson FC, Jensen DR, Bishop E, Pradeep S, Volkman BF, Dwinell MB, Chaluvally-Raghavan P, James MA. Targeted biologic inhibition of both tumor cell-intrinsic and intercellular CLPTM1L/CRR9-mediated chemotherapeutic drug resistance. NPJ Precis Oncol 2021; 5:16. [PMID: 33654182 PMCID: PMC7925570 DOI: 10.1038/s41698-021-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Recurrence of therapy-resistant tumors is a principal problem in solid tumor oncology, particularly in ovarian cancer. Despite common complete responses to first line, platinum-based therapies, most women with ovarian cancer recur, and eventually, nearly all with recurrent disease develop platinum resistance. Likewise, both intrinsic and acquired resistance contribute to the dismal prognosis of pancreatic cancer. Our previous work and that of others has established CLPTM1L (cleft lip and palate transmembrane protein 1-like)/CRR9 (cisplatin resistance related protein 9) as a cytoprotective oncofetal protein that is present on the tumor cell surface. We show that CLPTM1L is broadly overexpressed and accumulated on the plasma membrane of ovarian tumor cells, while weakly or not expressed in normal tissues. High expression of CLPTM1L is associated with poor outcome in ovarian serous adenocarcinoma. Robust re-sensitization of resistant ovarian cancer cells to platinum-based therapy was achieved using human monoclonal biologics inhibiting CLPTM1L in both orthotopic isografts and patient-derived cisplatin resistant xenograft models. Furthermore, we demonstrate that in addition to cell-autonomous cytoprotection by CLPTM1L, extracellular CLPTM1L confers resistance to chemotherapeutic killing in an ectodomain-dependent fashion, and that this intercellular resistance mechanism is inhibited by anti-CLPTM1L biologics. Specifically, exosomal CLPTM1L from cisplatin-resistant ovarian carcinoma cell lines conferred resistance to cisplatin in drug-sensitive parental cell lines. CLPTM1L is present in extracellular vesicle fractions of tumor culture supernatants and in patients' serum with increasing abundance upon chemotherapy treatment. These findings have encouraging implications for the use of anti-CLPTM1L targeted biologics in the treatment of therapy-resistant tumors.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Johnathan Ebben
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Davin R Jensen
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Erin Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
11
|
Agarwal S, Behring M, Kim H, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, Heslin MJ, Varambally S, Manne U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol 2020; 14:3007-3029. [PMID: 33037736 PMCID: PMC7718953 DOI: 10.1002/1878-0261.12821] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Overexpression of TRIP13, a member of the AAA-ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β-catenin and EGFR signaling pathways. Evaluation of formalin-fixed paraffin-embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient's gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid-forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR-AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial-mesenchymal transition. Cell-based assays revealed that miR-192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13-mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | | | - Nirzari Gupta
- Department of ChemistryUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Pran K. Datta
- Division of Hematology and OncologyDepartment of MedicineUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Martin J. Heslin
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
12
|
Agarwal S, Chakravarthi BVSK, Kim HG, Gupta N, Hale K, Balasubramanya SAH, Oliver PG, Thomas DG, Eltoum IEA, Buchsbaum DJ, Manne U, Varambally S. PAICS, a De Novo Purine Biosynthetic Enzyme, Is Overexpressed in Pancreatic Cancer and Is Involved in Its Progression. Transl Oncol 2020; 13:100776. [PMID: 32422575 PMCID: PMC7229293 DOI: 10.1016/j.tranon.2020.100776] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with an extremely poor prognosis. There is an urgent need to identify new therapeutic targets and also understand the mechanism of PDAC progression that leads to aggressiveness of the disease. To find therapeutic targets, we analyzed data related to PDAC transcriptome sequencing and found overexpression of the de novo purine metabolic enzyme phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS). Immunohistochemical analysis of PDAC tissues showed high expression of the PAICS protein. To assess the biological roles of PAICS, we used RNA interference and knock down of its expression in PDAC cell lines that caused a reduction in PDAC cell proliferation and invasion. Furthermore, results of chorioallantoic membrane assays and pancreatic cancer xenografts demonstrated that PAICS regulated pancreatic tumor growth. Our data also showed that, in PDAC cells, microRNA-128 regulates and targets PAICS. PAICS depletion in PDAC cells caused upregulation in E-cadherin, a marker of the epithelial-mesenchymal transition. In PDAC cells, a BET inhibitor, JQ1, reduced PAICS expression. Thus, our investigations show that PAICS is a therapeutic target for PDAC and, as an enzyme, is amenable to targeting by small molecules.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin Hale
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Patsy G Oliver
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Isam-Eldin A Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J Buchsbaum
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
13
|
Yan Q, Zhu K, Zhang L, Fu Q, Chen Z, Liu S, Fu D, Nakazato R, Yoshioka K, Diao B, Ding G, Li X, Wang H. A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis. Commun Biol 2020; 3:288. [PMID: 32504044 PMCID: PMC7275040 DOI: 10.1038/s42003-020-1008-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Renal fibrosis is controlled by profibrotic and antifibrotic forces. Exploring anti-fibrosis factors and mechanisms is an attractive strategy to prevent organ failure. Here we identified the JNK-associated leucine zipper protein (JLP) as a potential endogenous antifibrotic factor. JLP, predominantly expressed in renal tubular epithelial cells (TECs) in normal human or mouse kidneys, was downregulated in fibrotic kidneys. Jlp deficiency resulted in more severe renal fibrosis in unilateral ureteral obstruction (UUO) mice, while renal fibrosis resistance was observed in TECs-specific transgenic Jlp mice. JLP executes its protective role in renal fibrosis via negatively regulating TGF-β1 expression and autophagy, and the profibrotic effects of ECM production, epithelial-to-mesenchymal transition (EMT), apoptosis and cell cycle arrest in TECs. We further found that TGF-β1 and FGF-2 could negatively regulate the expression of JLP. Our study suggests that JLP plays a central role in renal fibrosis via its negative crosstalk with the profibrotic factor, TGF-β1.
Collapse
Affiliation(s)
- Qi Yan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qiang Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ryota Nakazato
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuji Yoshioka
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaogang Li
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
PAICS, a Purine Nucleotide Metabolic Enzyme, is Involved in Tumor Growth and the Metastasis of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12040772. [PMID: 32218208 PMCID: PMC7226071 DOI: 10.3390/cancers12040772] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of colorectal cancer (CRC) molecular targets is needed for the development of drugs that improve patient survival. We investigated the functional role of phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), a de novo purine biosynthetic enzyme involved in DNA synthesis, in CRC progression and metastasis by using cell and animal models. Its clinical utility was assessed in human CRC samples. The expression of PAICS was regulated by miR-128 and transcriptionally activated by Myc in CRC cells. Increased expression of PAICS was involved in proliferation, migration, growth, and invasion of CRC cells irrespective of the p53 and microsatellite status. In mice, the depletion of PAICS in CRC cells led to reduced tumor growth and metastatic cell dissemination to the liver, lungs, and bone. Positron emission tomography imaging showed significantly reduced metastatic lesions in stable PAICS knockdown CRC cells. In cells with PAICS knockdown, there was upregulation of the epithelial mesenchymal transition marker, E-cadherin, and bromodomain inhibitor, JQ1, can target its increased expression by blocking Myc. PAICS was overexpressed in 70% of CRCs, and was associated with poor 5-year survival independent of the pathologic stage, patient’s race, gender, and age. Overall, the findings point to the usefulness of PAICS targeting in the treatment of aggressive colorectal cancer.
Collapse
|
15
|
Agarwal S, Behring M, Kim HG, Bajpai P, Chakravarthi BVSK, Gupta N, Elkholy A, Al Diffalha S, Varambally S, Manne U. Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model. Transl Oncol 2020; 13:100754. [PMID: 32199274 PMCID: PMC7082635 DOI: 10.1016/j.tranon.2020.100754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Deposition, remodeling, and signaling of the extracellular matrix facilitate tumor growth and metastasis. Here, we demonstrated that an enzyme, collagen prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), which is involved in collagen synthesis and deposition, had elevated expression in colorectal cancers (CRCs) as compared to normal colonic tissues. The expression of P4HA1 in CRCs was independent of patient's age, race/ethnicity, gender, pathologic stage and grade, tumor location, and microsatellite instability (MSI) and p53 status. By modulating P4HA1 with shRNA, there was a reduction in malignant phenotypes of CRCs, including cell proliferation, colony formation, invasion, migration, and tumor growth, in mice regardless of their p53 and MSI status. Immunoblot analysis of excised xenograft tumors developed from cells with silenced PH4HA1 showed low levels of proliferating cell nuclear antigen. Further, in CRC mouse models, silencing of P4HA1 in HT29 cells resulted in less metastasis to liver and bone. P4HA1 expression was regulated by miR-124, and inhibition of cell growth was noted for CRC cells treated with miR-124. Furthermore, low levels of the transcriptional repressor EZH2 reduced P4HA1 expression in CRC cells. Inhibition of P4HA1 with the small molecule inhibitor diethyl-pythiDC decreased AGO2 and MMP1, which are P4HA1 target molecules, and reduced the malignant phenotypes of CRC cells. Treatment of CRC patient-derived xenografts that exhibit high expression of P4HA1 with diethyl-pythiDC resulted in tumor regression. Thus, the present study shows that P4HA1 contributes to CRC progression and metastasis and that targeting of P4HA1 with diethyl-pythiDC could be an effective therapeutic strategy for aggressive CRCs.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham
| | - Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Comprehensive Cancer Center, University of Alabama at Birmingham
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Comprehensive Cancer Center, University of Alabama at Birmingham.
| |
Collapse
|
16
|
Xiao C, Li M, Huang Q, Si-Tu J. SPAG9 promotes prostate cancer proliferation and metastasis via MAPK signaling pathway. Am J Transl Res 2019; 11:5249-5260. [PMID: 31497238 PMCID: PMC6731441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer (PCa) is a worldwide malignant tumor which seriously threats the reproductive health of middle-aged and senior male. Sperm-associated antigen 9 (SPAG9), which belongs to the cancer testis (CT) antigen, overexpressed in multiple human malignant tumors and promoted tumor proliferation, invasion and metastasis. However, little attention has been focused on the relationship between SPAG9 and PCa. SPAG9 protein level was measured by immunohistochemical staining in the PCa tissues. SPAG9 mRNA and protein expression were investigated in various PCa cells by qRT-PCR and Western blot. Depletion and overexpression of SPAG9 were proceeded in PCa cells to evaluate their effects by various malignant approaches in vitro and in vivo. SPAG9 was significantly upregulated in the PCa tissues, mainly expressed in the cytoplasm and occasionally in the nucleus of some cells, while SPAG9 was not detected in normal prostate tissue. SPAG9 protein was detected in three PCa cells. Furthermore, these results revealed that upregulation of SPAG9 could promote cell proliferation, migration, motility and cycle of PC-3 cell line, vice versa, downregulation of SPAG9 resulted in the opposite effect. In vivo, knockout of SPAG9 expression induced suppression of tumor growth in athymic nude mice. In summary, the present study indicated that SPAG9 was closely related to the Gleason scores of PCa. SPAG9 could promote cell proliferation, migration, motility and cell cycle via MAPK signaling pathway, suggesting that SPAG9 may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Chutian Xiao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630, China
| | - Mingzhao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630, China
| | - Qunxiong Huang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630, China
| | - Jie Si-Tu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630, China
| |
Collapse
|
17
|
Monteiro LOF, Fernandes RS, Castro L, Reis D, Cassali GD, Evangelista F, Loures C, Sabino AP, Cardoso V, Oliveira MC, Branco de Barros A, Leite EA. Paclitaxel-Loaded Folate-Coated pH-Sensitive Liposomes Enhance Cellular Uptake and Antitumor Activity. Mol Pharm 2019; 16:3477-3488. [DOI: 10.1021/acs.molpharmaceut.9b00329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemothezrapy-resistance by stabilizing β-catenin. J Exp Clin Cancer Res 2019; 38:243. [PMID: 31174562 PMCID: PMC6556028 DOI: 10.1186/s13046-019-1231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background The chemotherapy-resistance of triple-negative breast cancer (TNBC) remains a major challenge. The Nek2B kinase and β-catenin serve as crucial regulators of mitotic processes. The aim of this study was to test the correlation between Nek2B and TNBC chemotherapy sensitivity, and to determine the regulation of Nek2B on β-catenin and wnt/β-catenin signal pathway. Methods Gene Expression Omnibus(GEO) databases were used to gather gene exprsssion data of TNBC patients who undergoing chemotherapy. The co-expression of Nek2B and β-catenin in TNBC surgical sections and cells were analysed by immunohistochemistry, Q-RT-PCR, Western-blot and immunofluorescent staining. The impact of the expression of Nek2B and β-catenin in prognosis was also assessed using the Kaplan-Meier curves. CCK8 assay was used to detect the IC50 value of TNBC cell line. The endogenous binding capacity of Nek2B and β-catenin and phosphorylation of β-catenin by Nek2B were detected using co-immunoprecipitation (CO-IP). Chromatin immune-precipitation (ChIP) analysis and Luciferase Assays were used to evaluate the binding ability of the Nek2B, β-catenin and TCF4 complex with LEF-1 promoter. Nek2B-siRNA and Nek2B plasmid were injected into nude mice, and tumorigenesis was monitored. Results We found that overexpression of Nek2B and β-catenin in TNBC samples, was associated with patients poor prognosis. Patients with positive Nek2B expression were less sensitive to paclitaxel-containing neoadjuvant chemotherapy. Interestingly, in a panel of established TNBC cell line, Nek2B and β-catenin were highly expressed in cells exhibiting paclitaxel resistance. Our data also suggest that β-catenin binded to and was phosphorylated by Nek2B, and was in a complex with TCF4. Nek2B mainly regulates the expression of β-catenin in TNBC nucleus. Nek2B, β-catenin and TCF4 can be binded with the WRE functional area of LEF-1 promoter. Nek2B can activite wnt signaling pathway and wnt downstream target genes. The tumors treated by Nek2B siRNA associated with paclitaxel were the smallest in nude mouse, and Nek2B can regulate the expression of β-catenin and wnt downstream target genes in vivo. Conclusion Our study suggested that Nek2B can bind to β-catenin and the co-expression correlated with TNBC patients poor prognosis. It appears that Nek2B and β-catenin might synergize to promote chemotherapy resistance.
Collapse
|
19
|
Mahmoud AM. Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy 2018; 10:769-778. [PMID: 29926750 PMCID: PMC6462849 DOI: 10.2217/imt-2017-0179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Breast cancer cells frequently express tumor-associated antigens that can elicit immune responses to eradicate cancer. Cancer-testis antigens (CTAs) are a group of tumor-associated antigens that might serve as ideal targets for cancer immunotherapy because of their cancer-restricted expression and robust immunogenicity. Previous clinical studies reported that CTAs are associated with negative hormonal status, aggressive tumor behavior and poor survival. Furthermore, experimental studies have shown the ability of CTAs to induce both cellular and humoral immune responses. They also demonstrated the implication of CTAs in promoting cancer cell growth, inhibiting apoptosis and inducing cancer cell invasion and migration. In the current review, we attempt to address the immunogenic and oncogenic potential of CTAs and their current utilization in therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71111, Egypt
| |
Collapse
|
20
|
Pan J, Yu H, Guo Z, Liu Q, Ding M, Xu K, Mao L. Emerging role of sperm-associated antigen 9 in tumorigenesis. Biomed Pharmacother 2018; 103:1212-1216. [DOI: 10.1016/j.biopha.2018.04.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/15/2022] Open
|
21
|
Tavakoli Koudehi A, Mahjoubi B, Mirzaei R, Shabani S, Mahjoubi F. AKAP4, SPAG9 and NY-ESO-1 in Iranian Colorectal Cancer Patients as Probable Diagnostic and Prognostic Biomarkers. Asian Pac J Cancer Prev 2018; 19:463-469. [PMID: 29480665 PMCID: PMC5980935 DOI: 10.22034/apjcp.2018.19.2.463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background and objectives: Colorectal cancer (CRC) is the most common gastrointestinal cancer and the second leading cause of cancer death in women in the world. Cancer-Testis Antigens (CTAs) are a group of tumor-associated proteins which typically are expressed in normal reproductive cells of men, but their expression in normal somatic cells is silenced. CTAs, due to their limited expression pattern, are considered as promising targets for cancer diagnosis and immuno-therapy. Methods: Expression of AKAP4, SPAG9 and CTAG1B genes from the CTAs family was studied in both tumor and normal tissues of 62 Iranian CRC patients by RT-PCR with the aim of finding biomarkers for early detection and anticipated progression. Statistical analysis was performed SPSS software V22.0 to assess the significance of any associations. Results: Elevated expression of SPAG9 and AKAP4 genes was observed in approximately 66% and 44% of tumours, respectively, as compared to adjacent non-cancerous tissues. While a significant association was found between AKAP4 gene expression and metastasis (P-value: 0.045), expression of the CTAG1B (NY-ESO-1) gene was not observed in our cases. Conclusion: AKAP4 and SPAG9 genes may find use as diagnostic biomarkers for CRC and AKAP4 may play an important role in progression to metastasis.
Collapse
Affiliation(s)
- Ameneh Tavakoli Koudehi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB),Tehran,Iran.
| | | | | | | | | |
Collapse
|
22
|
Ren B, Zou G, He J, Huang Y, Ma G, Xu G, Li Y, Yu P. Sperm-associated antigen 9 is upregulated in hepatocellular carcinoma tissue and enhances QGY cell proliferation and invasion in vitro. Oncol Lett 2018; 15:415-422. [PMID: 29391885 DOI: 10.3892/ol.2017.7270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
The incidence and mortality rates of hepatocellular carcinoma (HCC) are higher in China compared with in other countries. Further research is required in order to improve the diagnosis and treatment of HCC. Sperm-associated antigen 9 (SPAG9) protein has been revealed to serve an important function in cancer progression; however, the underlying mechanisms remain to be elucidated. The present study investigated the expression level of SPAG9 in HCC tissues using quantitative-polymerase chain reaction, immunohistochemistry and western blotting, and the results demonstrated that SPAG9 was overexpressed in HCC tissues compared with the adjacent non-cancerous tissues. To explore the potential mechanisms underlying SPAG9 in HCC, the effect of SPAG9 on cell proliferation, cell cycle, migration and invasion capacities were investigated in the QGY HCC cell line by RNA interference. It was revealed that inhibition of SPAG9 mRNA in QGY cells significantly inhibited the expression level of SPAG9 compared with the control. Depletion of SPAG9 expression decreased cell proliferation (P<0.01) and increased the percentage of cells in the G1/G2 cell cycle phase. The percentage of cells in the S phase was decreased, and cell migration and invasion capabilities in vitro were reduced (P<0.01). In summary, the results of the present study suggested that SPAG9 was upregulated in HCC and may serve an important function in cancer cell proliferation, differentiation and invasion. Whether SPAG9 is a potential diagnostic marker and therapeutic target of human HCC requires additional study.
Collapse
Affiliation(s)
- Biqiong Ren
- Department of Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guoying Zou
- Department of Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Department of Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China.,Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yiran Huang
- Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Guoan Ma
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Department of Hepatobiliary Disease, Tumor Hospital of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Guofeng Xu
- Department of Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Yong Li
- Department of Clinical Laboratory, Hunan Provincial Second People's Hospital, Changsha, Hunan 410007, P.R. China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ping Yu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
23
|
Monteiro LOF, Fernandes RS, Oda CMR, Lopes SC, Townsend DM, Cardoso VN, Oliveira MC, Leite EA, Rubello D, de Barros ALB. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed Pharmacother 2018; 97:489-495. [PMID: 29091899 PMCID: PMC6361139 DOI: 10.1016/j.biopha.2017.10.135] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 02/07/2023] Open
Abstract
A range of antitumor agents for cancer treatment is available; however, they show low specificity, which often limit their use. Recently, we have reported the preparation of folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX) loaded with paclitaxel (PTX), an effective drug for the treatment of solid tumors, including breast cancer. The purpose of this study was to prepare and characterize SpHL-PTX and SpHL-folate-PTX radiolabeled with technetium-99m (99mTc). Biodistribution studies and scintigraphic images were performed after intravenous administration of 99mTc-PTX, 99mTc-SpHL-PTX and 99mTc-SpHL-folate-PTX into healthy and tumor-bearing mice. High radiochemical purity (>98%) and in vitro stability (>90%) were achieved for both liposome formulations. The pharmacokinetic properties of 99mTc-SpHL-DTPA-PTX and 99mTc-SpHL-folate-DTPA-PTX decreased in a monophasic manner showing half-life of 400.1 and 541.8min, respectively. Scintigraphic images and biodistribution studies showed a significant uptake in liver, spleen and kidneys, demonstrating these routes as way for excretion. At 8h post-injection, the liposomal tumor uptake was higher than 99mTc-PTX. Interesting, 4h after administration, the liposome folate coated showed higher tumor-to-muscle ratio than 99mTc-SpHL-DTPA-PTX and 99mTc-PTX. In conclusion, the liposomal systems, showed high tumor uptake by scintigraphic images, especially the 99mTc-SpHL-folate-DTPA-PTX that showed a sustained and higher tumor-to-muscle ratio than non-functionalized liposome, which indicate its feasibility as a PTX delivery system to folate positive tumors.
Collapse
Affiliation(s)
- Liziane O F Monteiro
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata S Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline M R Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sávia C Lopes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Valbert N Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica C Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine A Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André L B de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep 2017. [PMID: 28638122 PMCID: PMC5479850 DOI: 10.1038/s41598-017-04301-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Overexpression of HER2 has been reported in around 25% of human breast cancers. Despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments, the mechanisms for which are poorly understood. Here, we investigated the sensitivity of a panel of breast cancer cell lines to treatment with various types of HER-family inhibitors alone or in combination with other tyrosine kinase inhibitors or chemotherapeutic agents. We found that treatment with the second-generation irreversible HER-family inhibitors, particularly afatinib and neratinib, were more effective than treatment with the first-generation reversible inhibitors in inhibiting growth, migration and downstream cell signalling in breast cancer cells. Of the three HER2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors, while MDA-MB-453 was comparatively resistant. Combinations of HER-family inhibitors with NVP-AEW541, dasatinib or crizotinib (inhibitors of IGF-1R, Src and c-Met/ALK, respectively) led to synergistic effects in some of the cell lines examined. In particular, treatment with a combination of Src and HER-family member inhibitors resulted in synergistic growth inhibition of MDA-MB453 cells, implicating Src as a mediator of resistance to HER2-targeting agents. Our results suggest that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation.
Collapse
|
25
|
Li Y, Li J, Wang Y, Zhang Y, Chu J, Sun C, Fu Z, Huang Y, Zhang H, Yuan H, Yin Y. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett 2017; 399:64-73. [PMID: 28274891 DOI: 10.1016/j.canlet.2017.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer diagnosed and is the second leading cause of cancer death among women in the US. For breast cancer, early diagnosis and efficient therapy remains a significant clinical challenge. Therefore, it is necessary to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens (CTAs) have emerged as a potential clinical biomarker targeting immunotherapy for various malignancies due to the nature of its characteristics. CTAs are a group of tumor associated antigens (TAAs) that display normal expression in immune-privileged organs, but display aberrant expression in several types of cancers, particularly in advanced cancers. Investigation of CTAs for the clinical management of breast malignancies indicates that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic. Moreover, TAAs could be therapeutic targets for cancer immunotherapy. This review is an attempt to address the promising CTAs in breast cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China; Nanjing Maternity and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hansheng Zhang
- School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China.
| |
Collapse
|
26
|
Ren B, Luo S, Xu F, Zou G, Xu G, He J, Huang Y, Zhu H, Li Y. The expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in peripheral blood of patients with HCC and lung cancer. Cell Stress Chaperones 2017; 22:237-244. [PMID: 28028759 PMCID: PMC5352597 DOI: 10.1007/s12192-016-0758-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/20/2023] Open
Abstract
There are different views of how the immune system participates in the reaction to cancer. Here, we evaluated expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in patients with hepatocellular carcinoma (HCC) and lung cancer to explore tumor immunity. Our analysis showed that levels of HSP70 and SPAG9 antibody were significantly higher in the serum of lung cancer and HCC patients than in the serum of healthy subjects (P < 0.001), but there were no differences in levels of HSP70 antibody in patients and controls. Levels of serum SPAG9 antibody in newly diagnosed lung cancer patients were significantly higher than in treated lung cancer patients (P < 0.05), but there were no differences in levels of HSP70 or HSP70 antibody. Levels of serum HSP70 and SPAG9 antibody, but not HSP70 antibody, were also higher in hepatitis/cirrhosis patients than in healthy subjects (P = 0.005, P < 0.001). Levels of serum SPAG9 antibody were significantly higher in HCC patients than in hepatitis/cirrhosis patients, but there were no differences in HSP70 or HSP70 antibody levels. Finally, levels of serum HSP70 and SPAG9 antibody were significantly higher in HCC patients than in lung cancer patients (P < 0.05, P < 0.001). These results indicate that cancer-testis antigen SPAG9 induces a strong humoral immune response in cancer patients but HSP70 does not. These results show that SPAG9 has potential as a tumor-specific biomarker.
Collapse
Affiliation(s)
- Biqiong Ren
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China.
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Shudi Luo
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Fei Xu
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Guoying Zou
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Guofeng Xu
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Junyu He
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Yiran Huang
- Clinical Medical School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Haowen Zhu
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
| | - Yong Li
- Clinical Laboratory, Hunan Provincial Second People's Hospital, 427 Furong Road of Changsha, Changsha, Hunan, 410007, China
| |
Collapse
|
27
|
Kaur S, Elkahloun AG, Singh SP, Chen QR, Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH, Roberts DD. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 2017; 7:10133-52. [PMID: 26840086 PMCID: PMC4891109 DOI: 10.18632/oncotarget.7100] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
CD47 is a signaling receptor for thrombospondin-1 and the counter-receptor for signal-regulatory protein-α (SIRPα). By inducing inhibitory SIRPα signaling, elevated CD47 expression by some cancers prevents macrophage phagocytosis. The anti-human CD47 antibody B6H12 inhibits tumor growth in several xenograft models, presumably by preventing SIRPα engagement. However, CD47 signaling in nontransformed and some malignant cells regulates self-renewal, suggesting that CD47 antibodies may therapeutically target cancer stem cells (CSCs). Treatment of MDA-MB-231 breast CSCs with B6H12 decreased proliferation and asymmetric cell division. Similar effects were observed in T47D CSCs but not in MCF7 breast carcinoma or MCF10A breast epithelial cells. Gene expression analysis in breast CSCs treated with B6H12 showed decreased expression of epidermal growth factor receptor (EGFR) and the stem cell transcription factor KLF4. EGFR and KLF4 mRNAs are known targets of microRNA-7, and B6H12 treatment correspondingly enhanced microRNA-7 expression in breast CSCs. B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation. Expression of B6H12-responsive genes correlated with CD47 mRNA expression in human breast cancers, suggesting that the CD47 signaling pathways identified in breast CSCs are functional in vivo. These data reveal a novel SIRPα-independent mechanism by which therapeutic CD47 antibodies could control tumor growth by autonomously forcing differentiation of CSC.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud M Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Song
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi Manu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poonam Mannan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan H Garfield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumour Biol 2016; 37:13101-13110. [PMID: 27449044 DOI: 10.1007/s13277-016-5240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0-G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.
Collapse
|
29
|
Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, Liu Y, Dong X. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther 2016; 9:1067-75. [PMID: 27042099 PMCID: PMC4780205 DOI: 10.2147/ott.s98727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Sperm-associated antigen 9 (SPAG9) is upregulated in several malignancies and its overexpression is positively correlated with cancer cell malignancies. However, the specific biological roles of SPAG9 in hepatocellular carcinoma (HCC) are less understood. Methods We analyzed SPAG9 and ETS-like gene 1, tyrosine kinase (ELK1) expression in 50 paired HCC specimens and adjacent noncancerous liver specimens using immunohistochemistry. SPAG9 small interfering RNA (siRNA) was used to knockdown SPAG9 expression in HCCLM3 and HuH7 cell lines. We used plasmids to upregulate ELK1 expression and siRNA to downregulate ELK1 expression in HuH7 cells. Quantitative real-time polymerase chain reaction and Western blot were used to evaluate the expression of SPAG9 and ELK1 at the mRNA and protein level, respectively. Wound healing, matrigel migration, and invasion analyses were performed to determine the effect of SPAG9 and ELK1 on HCC metastasis. Results SPAG9 and ELK1 were overexpressed in HCC tissue specimens and their expressions were higher in HCCLM3 and HuH7 cells compared to the low-metastatic HepG2 cells. Overexpression of SPAG9 was positively associated with tumor-node-metastasis staging (P=0.032), metastasis parameters (P=0.018) of HCC patients, and ELK1 expression (r=0.422, P<0.001) in HCC tissue specimens. In addition, knockdown of SPAG9 in HCCLM3 and HuH7 cells using siRNA significantly suppressed cell migration and invasion. Furthermore, we observed inhibition of ELK1 expression and p38 signaling. However, ELK1 overexpression reversed the inhibitory effects of SPAG9 siRNA on HCC cell metastasis and ELK1 depletion inhibited HuH7 cell migration and invasion. Conclusion SPAG9 overexpression was positively correlated with HCC metastasis and SPAG9-induced migration and invasion were partially dependent on ELK1 expression in HCC cell lines. These results suggest that SPAG9 may be a potential anti-metastasis target effective in HCC therapy.
Collapse
Affiliation(s)
- Qiuyue Yan
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Qian
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Bo Qin
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Xiuping Xu
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanan Wang
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejun Dong
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
30
|
Lou G, Dong X, Xia C, Ye B, Yan Q, Wu S, Yu Y, Liu F, Zheng M, Chen Z, Liu Y. Direct targeting sperm-associated antigen 9 by miR-141 influences hepatocellular carcinoma cell growth and metastasis via JNK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:14. [PMID: 26790956 PMCID: PMC4721207 DOI: 10.1186/s13046-016-0289-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aberrant expression of sperm-associated antigen 9 (SPAG9) is associated with numerous cancers, including hepatocellular carcinoma (HCC). The exploration of molecules and mechanisms regulating SPAG9 expression may provide new options for HCC therapy. METHODS MiRNA target prediction programs were used to explore SPAG9-targeted miRNAs. SPAG9 and miR-141 expression were detected in HCC tissues and cell lines by Western blot and real-time PCR. Dual-luciferase reporter assay was utilized to validate SPAG9 as a direct target gene of miR-141. Cell proliferation, invasion, and migration assays were used to determine whether miR-141-mediated regulation of SPAG9 could affect HCC progression. RESULTS An inverse correlation was observed between SPAG9 and miR-141 expression in HCC tissues and cell lines. Dual-luciferase reporter assay further showed that SPAG9 was a direct target gene of miR-141. The ectopic expression of miR-141 could markedly suppress SPAG9 expression in HCC cells. MiR-141 overexpression also resulted in significantly reduced cell proliferation, invasion, and migration, and imitation of the SPAG9 knockdown effects on HCC cells. Furthermore, SPAG9 restoration in miR-141-expressing cells sufficiently attenuated the tumor-suppressive effects of miR-141. Finally, JNK activity was found to be reduced by miR-141 overexpression the same way as by SPAG9 silencing. The overexpression of SPAG9 lacking its 3'-UTR significantly restored JNK activity and its downstream genes in miR-141-transfected HCC cells. CONCLUSION MiR-141 suppression may cause aberrant expression of SPAG9 and promote HCC tumorigenesis via JNK pathway.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Xuejun Dong
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Caixia Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Qiuyue Yan
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Ye Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Feifei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
31
|
Suri A, Jagadish N, Saini S, Gupta N. Targeting cancer testis antigens for biomarkers and immunotherapy in colorectal cancer: Current status and challenges. World J Gastrointest Oncol 2015; 7:492-502. [PMID: 26691579 PMCID: PMC4678396 DOI: 10.4251/wjgo.v7.i12.492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer ranks third among the estimated cancer cases and cancer related mortalities in United States in 2014. Early detection and efficient therapy remains a significant clinical challenge for this disease. Therefore, there is a need to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens have emerged as a potential targets for developing novel clinical biomarkers and immunotherapy for various malignancies. These germ cell specific proteins exhibit aberrant expression in cancer cells and contribute in tumorigenesis. Owing to their unique expression profile and immunogenicity in cancer patients, cancer testis antigens are clinically referred as the most promising tumor associated antigens. Several cancer testis antigens have been studied in colorectal cancer but none of them could be used in clinical practice. This review is an attempt to address the promising cancer testis antigens in colorectal cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
|
32
|
Yang X, Zhou W, Liu S. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells. Exp Ther Med 2015; 11:637-644. [PMID: 26893659 DOI: 10.3892/etm.2015.2932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
Sperm-associated antigen 9 (SPAG9) is an oncoprotein involved in the progression of various human malignancies; however, its role in osteosarcoma (OS) remains poorly evaluated. The present study used Matrigel™ cell migration and invasion assays, tube formation assay, Cell Counting kit-8, quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay to investigate the role of SPAG9 in OS cell motility, invasion and angiogenesis. The results of the present study demonstrated that SPAG9 expression was upregulated in OS tissues, as compared with adjacent normal tissues, and knockdown of SPAG9 in an OS cell line inhibited cell motility and invasion via inactivation of metalloproteinase (MMP)-2 and MMP-9. Furthermore, the present study demonstrated that silencing of SPAG9 in OS cells inhibited tube formation, the proliferation of human umbilical vascular endothelial cells, and suppressed vascular endothelial growth factor (VEGF) expression and secretion, contributing to a reduction in angiogenesis. The results of the present study indicated that SPAG9 may be an important regulator in OS and may be involved in metastasis. Therefore SPAG9 may be a promising target for the treatment of metastatic OS.
Collapse
Affiliation(s)
- Xiaorong Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenlai Zhou
- Department of Joints, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Shiqing Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Yang C, Shen B, Zhang J, Zhang Q. Sperm-associated antigen 9 overexpression correlates with poor prognosis and insensitive to Taxol treatment in breast cancer. Biomarkers 2015; 21:62-7. [PMID: 26631164 DOI: 10.3109/1354750x.2015.1118534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sperm-associated antigen 9 (SPAG9) has been reported to express in several cancers and have clinical significance. Using immunohistochemistry, we found that there was a strong association among SPAG9 expression and tumor size, TNM stage, histological grade, lymph node metastasis, and recurrence. It suggested that SPAG9-elevated expression was an independently prognostic indicator for both OS and DFS. Furthermore, the selected treatment of chemotherapy with Taxol/non-Taxol significantly affects OS and DFS. To sum up, SPAG9-elevated expression contributes to malignant behavior and poor prognosis of breast cancer and may support a potential indicator in treatment selection.
Collapse
Affiliation(s)
- Chuang Yang
- a Department of General Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China and
| | - Bin Shen
- a Department of General Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China and
| | - Jianguo Zhang
- a Department of General Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China and
| | - Qifan Zhang
- b Department of Surgical Oncology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
34
|
Jalali A, Amirian ES, Bainbridge MN, Armstrong GN, Liu Y, Tsavachidis S, Jhangiani SN, Plon SE, Lau CC, Claus EB, Barnholtz-Sloan JS, Il'yasova D, Schildkraut J, Ali-Osman F, Sadetzki S, Johansen C, Houlston RS, Jenkins RB, Lachance D, Olson SH, Bernstein JL, Merrell RT, Wrensch MR, Davis FG, Lai R, Shete S, Aldape K, Amos CI, Muzny DM, Gibbs RA, Melin BS, Bondy ML. Targeted sequencing in chromosome 17q linkage region identifies familial glioma candidates in the Gliogene Consortium. Sci Rep 2015; 5:8278. [PMID: 25652157 PMCID: PMC4317686 DOI: 10.1038/srep08278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/06/2015] [Indexed: 12/30/2022] Open
Abstract
Glioma is a rare, but highly fatal, cancer that accounts for the majority of malignant primary brain tumors. Inherited predisposition to glioma has been consistently observed within non-syndromic families. Our previous studies, which involved non-parametric and parametric linkage analyses, both yielded significant linkage peaks on chromosome 17q. Here, we use data from next generation and Sanger sequencing to identify familial glioma candidate genes and variants on chromosome 17q for further investigation. We applied a filtering schema to narrow the original list of 4830 annotated variants down to 21 very rare (<0.1% frequency), non-synonymous variants. Our findings implicate the MYO19 and KIF18B genes and rare variants in SPAG9 and RUNDC1 as candidates worthy of further investigation. Burden testing and functional studies are planned.
Collapse
Affiliation(s)
- Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - E. Susan Amirian
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew N. Bainbridge
- Codified Genomics, LLC, Houston Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Georgina N. Armstrong
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yanhong Liu
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Spyros Tsavachidis
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Sharon E. Plon
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ching C. Lau
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elizabeth B. Claus
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jill S. Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, Georgia State University School of Public Health, Atlanta, Georgia
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Joellen Schildkraut
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Francis Ali-Osman
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christoffer Johansen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Richard S. Houlston
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Robert B. Jenkins
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Daniel Lachance
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jonine L. Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ryan T. Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois
| | - Margaret R. Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Faith G. Davis
- Department of Public Health Services, University of Alberta, Edmonton, Alberta, Canada
| | - Rose Lai
- Departments of Neurology, Neurosurgery, and Preventive Medicine, The University of Southern California Keck School of Medicine, Los Angeles, California
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher I. Amos
- Department of Community and Family Medicine, Department of Genetics, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth; Hanover, New Hampshire
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Beatrice S. Melin
- Department of Radiation Sciences Oncology, Umeå University, Umeå, Sweden
| | - Melissa L. Bondy
- Department of Pediatrics, Division of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|