1
|
Concerto C, Chiarenza C, Di Francesco A, Natale A, Privitera I, Rodolico A, Trovato A, Aguglia A, Fisicaro F, Pennisi M, Bella R, Petralia A, Signorelli MS, Lanza G. Neurobiology and Applications of Inositol in Psychiatry: A Narrative Review. Curr Issues Mol Biol 2023; 45:1762-1778. [PMID: 36826058 PMCID: PMC9955821 DOI: 10.3390/cimb45020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol is a natural sugar-like compound, commonly present in many plants and foods. It is involved in several biochemical pathways, most of them controlling vital cellular mechanisms, such as cell development, signaling and nuclear processes, metabolic and endocrine modulation, cell growth, signal transduction, etc. In this narrative review, we focused on the role of inositol in human brain physiology and pathology, with the aim of providing an update on both potential applications and current limits in its use in psychiatric disorders. Overall, imaging and biomolecular studies have shown the role of inositol levels in the pathogenesis of mood disorders. However, when administered as monotherapy or in addition to conventional drugs, inositol did not seem to influence clinical outcomes in both mood and psychotic disorders. Conversely, more encouraging results have emerged for the treatment of panic disorders. We concluded that, despite its multifaceted neurobiological activities and some positive findings, to date, data on the efficacy of inositol in the treatment of psychiatric disorders are still controversial, partly due to the heterogeneity of supporting studies. Therefore, systematic use of inositol in routine clinical practice cannot be recommended yet, although further basic and translational research should be encouraged.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Cecilia Chiarenza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Ivan Privitera
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Trovato
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical, Surgical, and Advanced Technology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
- CERNUT–Research Centre for Nutraceuticals and Health Products, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-3782448
| |
Collapse
|
2
|
Pharmacological Approaches to Controlling Cardiometabolic Risk in Women with PCOS. Int J Mol Sci 2020; 21:ijms21249554. [PMID: 33334002 PMCID: PMC7765466 DOI: 10.3390/ijms21249554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by elevated androgen production and subclinical changes in cardiovascular and metabolic risk markers. Total cholesterol, high-density lipoprotein (HDL) cholesterol, fasting glucose, and fasting insulin appear to increase specifically in PCOS compared with fertile women. PCOS also confers an increased risk of cardiometabolic disease in later life. Novel biomarkers such as serum’s cholesterol efflux capacity and blood-derived macrophage activation profile may assist in more accurately defining the cardiometabolic risk profile in these women. Aldosterone antagonists, androgen receptor antagonists, 5α-reductase inhibitors, and synthetic progestogens are used to reduce hyperandrogenism. Because increased insulin secretion enhances ovarian androgen production, short-term treatment with metformin and other hypoglycemic agents results in significant weight loss, favorable metabolic changes, and testosterone reduction. The naturally occurring inositols display insulin-sensitizing effects and may be also used in this context because of their safety profile. Combined oral contraceptives represent the drug of choice for correction of androgen-related symptoms. Overall, PCOS management remains focused on specific targets including assessment and treatment of cardiometabolic risk, according to disease phenotypes. While new options are adding to established therapeutic approaches, a sometimes difficult balance between efficacy and safety of available medications has to be found in individual women.
Collapse
|
3
|
Restoration of Cyclo-Gly-Pro-induced salivary hyposecretion and submandibular composition by naloxone in mice. PLoS One 2020; 15:e0229761. [PMID: 32155179 PMCID: PMC7064257 DOI: 10.1371/journal.pone.0229761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclo-Gly-Pro (CGP) attenuates nociception, however its effects on salivary glands remain unclear. In this study, we investigated the acute effects of CGP on salivary flow and composition, and on the submandibular gland composition, compared with morphine. Besides, we characterized the effects of naloxone (a non-selective opioid receptor antagonist) on CGP- and morphine-induced salivary and glandular alterations in mice. After that, in silico analyses were performed to predict the interaction between CGP and opioid receptors. Morphine and CGP significantly reduced salivary flow and total protein concentration of saliva and naloxone restored them to the physiological levels. Morphine and CGP also reduced several infrared vibrational modes (Amide I, 1687-1594cm-1; Amide II, 1594-1494cm-1; CH2/CH3, 1488-1433cm-1; C = O, 1432-1365cm-1; PO2 asymmetric, 1290-1185cm-1; PO2 symmetric, 1135-999cm-1) and naloxone reverted these alterations. The in silico docking analysis demonstrated the interaction of polar contacts between the CGP and opioid receptor Cys219 residue. Altogether, we showed that salivary hypofunction and glandular changes elicited by CGP may occur through opioid receptor suggesting that the blockage of opioid receptors in superior cervical and submandibular ganglions may be a possible strategy to restore salivary secretion while maintaining antinociceptive action due its effects on the central nervous system.
Collapse
|
4
|
Inositols' Importance in the Improvement of the Endocrine-Metabolic Profile in PCOS. Int J Mol Sci 2019; 20:ijms20225787. [PMID: 31752081 PMCID: PMC6888190 DOI: 10.3390/ijms20225787] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility and metabolic problems among women of reproductive age. The mechanism of PCOS is associated with concurrent alterations at the hormonal level. The diagnosis assumes the occurrence of three interrelated symptoms of varying severity, namely ovulation disorders, androgen excess, or polycystic ovarian morphology (PCOM), which all require a proper therapeutic approach. The main symptom seems to be an increased androgen concentration, which in turn may contribute to different metabolic disorders. A number of papers have demonstrated the significant role of inositol therapy in PCOS. However, there is a lack of detailed discussion about the importance of myo-inositol (MI) and d-chiro-inositol (DCI) in reference to particular symptoms. Thus, the aim of this review is to present the effectiveness of MI and DCI treatment for PCOS symptoms. Moreover, the review is focused on analyzing the use of inositols, taking into account their physiological properties, together with the mechanism of individual PCOS symptom formation.
Collapse
|
5
|
Chhetri DR. Myo-Inositol and Its Derivatives: Their Emerging Role in the Treatment of Human Diseases. Front Pharmacol 2019; 10:1172. [PMID: 31680956 PMCID: PMC6798087 DOI: 10.3389/fphar.2019.01172] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Myo-inositol has been established as an important growth-promoting factor of mammalian cells and animals. The role of myo-inositol as a lipotropic factor has been proven, in addition to its involvement as co-factors of enzymes and as messenger molecules in signal transduction. Myo-inositol deficiency leads to intestinal lipodystrophy in animals and "inositol-less death" in some fungi. Of late, diverse uses of myo-inositol and its derivatives have been discovered in medicinal research. These compounds are used in the treatment of a variety of ailments from diabetes to cancer, and continued research in this direction promises a new future in therapeutics. In different diseases, inositols implement different strategies for therapeutic actions such as tissue specific increase or decrease in inositol products, production of inositol phosphoglycans (IPGs), conversion of myo-inositol (MI) to D-chiro-inositol (DCI), modulation of signal transduction, regulation of reactive oxygen species (ROS) production, etc. Though inositol pharmacology is a relatively lesser-known field, recent years of research has generated a critical mass of information on the subject. This review aims to summarize our current understanding on the role of inositol derivatives in ameliorating the symptoms of different diseases.
Collapse
Affiliation(s)
- Dhani Raj Chhetri
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
6
|
Mendoza N, Diaz-Ropero MP, Aragon M, Maldonado V, Llaneza P, Lorente J, Mendoza-Tesarik R, Maldonado-Lobon J, Olivares M, Fonolla J. Comparison of the effect of two combinations of myo-inositol and D-chiro-inositol in women with polycystic ovary syndrome undergoing ICSI: a randomized controlled trial. Gynecol Endocrinol 2019; 35:695-700. [PMID: 30880505 DOI: 10.1080/09513590.2019.1576620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to evaluate the effect of two doses of D-chiro-inositol (DCI) in combination with Myo-inositol (MYO) in women with PCOS undergoing ICSI. This was a multicenter controlled, randomized, double-blind parallel group study with two MYO-DCI formulations for 12 weeks. The study group (SG) was administered 550 mg of MYO + 150 mg of DCI twice daily; the control group (CG) was administered 550 mg of MYO + 13.8 mg of DCI twice daily. The participants comprised 60 women with PCOS undergoing ICSI. At baseline, no differences were found between the two groups regarding age, BMI, HOMA-IR or testosterone levels. The pregnancy and live birth rates were significantly higher in the SG than in the CG (65.5 vs. 25.9 and 55.2 vs. 14.8, respectively) [risk ratio (RR) = 0.4; 95%CI (0.2, 0.79); p = .003 and RR = 0.27; 95%CI (0.10, 0.70); p = .002 respectively]. The risk of ovarian hyperstimulation syndrome (OHSS) was lower in the SG (3.44 vs. 18.5%, p = .07). The combination of MYO-DCI at high doses of DCI improves the pregnancy rates and reduces the risk of OHSS in women with PCOS undergoing ICSI.
Collapse
Affiliation(s)
- Nicolas Mendoza
- a Obstetricia y Ginecologia , University of Granada , Granada , Spain
- b Clinica MARGEN, Calle Abu Said, n2 19 , Granada , Spain
| | | | - Miguel Aragon
- d Complejo Hospitalario Torrecardenas , Almeria , Spain
| | | | - Placido Llaneza
- f Hospital Universitario Central de Asturias , Oviedo , Spain
| | - Juan Lorente
- g Department of Obstetrics and Gynecology , "Reina Sofía" University Hospital , Córdoba , Spain
| | | | | | | | | |
Collapse
|
7
|
Bevilacqua A, Dragotto J, Giuliani A, Bizzarri M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol 2019; 234:9387-9398. [PMID: 30317628 DOI: 10.1002/jcp.27623] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Mice exposed to continuous light undergo functional and histological changes that mimic those of human Polycystic Ovary Syndrome (PCOS). We herein induced the syndrome by exposing 30-day-old females to 10 weeks of permanent light. Ovarian morphology and histology, as well as reproductive parameters (time of observed pregnancy/delivery) were investigated. Ovaries of PCOS-modeled mice showed lack of tertiary follicles and corpora lutea, altered ovarian architecture, and increased thickness of the theca layer. When mice were returned to a normal light-dark regimen for 10 days, a slight, spontaneous improvement occurred, whereas a quick and almost complete recovery from PCOS signs and symptoms was obtained by treating animals with a daily supplementation of 420 mg/kg myo-inositol and D-chiro-inositol (MyoIns/DCIns) in a 40:1 molar ratio. Namely, ovaries from mice treated by this protocol recovered normal histological features and a proper ratio of theca/granulosa cell layer thickness (TGR), suggesting that the androgenic phenotype was efficiently reversed. Indeed, we identified TGR as a useful index of PCOS, as its increase in PCOS-modeled mice correlated linearly with reduced reproductive capability ( r = 0.75, p < 0.0001). Mice treated with a 40:1 formula regained low TGR values and faster recovery of their fertility, with a physiological delivery time after mating. On the other hand, a higher D-chiro-inositol treatment formula, such as MyoIns versus DCIns 5:1, was ineffective or even had a negative effect on clinical-pathological outcomes.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome and Research Center in Neurobiology Daniel Bovet" (CRiN), Rome, Italy
| | - Jessica Dragotto
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, Rome, Italy
| |
Collapse
|
8
|
Bhide P, Pundir J, Gudi A, Shah A, Homburg R, Acharya G. The effect of myo-inositol/di-chiro-inositol on markers of ovarian reserve in women with PCOS undergoing IVF/ICSI: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2019; 98:1235-1244. [PMID: 30993683 DOI: 10.1111/aogs.13625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION High levels of anti-Mullerian hormone and a high antral follicle count in women with polycystic ovary syndrome, reflecting increased ovarian antral follicles, predisposes them to have a high number of retrieved oocytes with in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and an increased risk of ovarian hyperstimulation syndrome. Inositols, which act as insulin sensitizers, have the potential to alter folliculogenesis and the functional ovarian reserve, with subsequent benefits to reproductive outcomes following IVF/ICSI treatment. Published literature is, however, unable to provide definitive evidence of its efficacy. The objective of our review was to evaluate the effect of inositols on anti-Mullerian hormone, antral follicle count and reproductive outcomes in women with polycystic ovary syndrome undergoing IVF/ICSI. MATERIAL AND METHODS We performed a literature search using standard methodology recommended by Cochrane. Randomized controlled trials and non-randomized studies comparing inositols with no treatment, placebo or other treatment were included in the review. Using standard methodology recommended by Cochrane we pooled results using the random effects model; our findings were reported as relative risk or mean differences. PROSPERO registration: CRD42017082275. RESULTS We included 18 trials. The primary outcome was a change in anti-Mullerian hormone and antral follicle count before and after treatment, for which data were unsuitable for meta-analysis. A narrative review showed no consistent direction or size of effect. A meta-analysis for the secondary outcomes showed no evidence of a significant difference between inositol and control groups for any outcome: number of oocytes (mean difference -0.39, 95% confidence interval [CI] -1.11 to 0.33), number of metaphase II oocytes (mean difference 0.29, 95% CI -0.83 to 1.40), number of top grade embryos (risk ratio [RR] 1.02, 95% CI 0.93-1.12), clinical pregnancy rate (RR 1.16, 95% CI 0.87-1.53), and risk of ovarian hyperstimulation syndrome (RR 0.73, 95% CI 0.39-1.37). The quality of evidence was assessed as very low. CONCLUSIONS There is insufficient evidence for an effect of inositols on ovarian reserve markers and to support their use as pretreatment before IVF/ICSI in women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Priya Bhide
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Homerton Fertility Center, Homerton University Hospital, London, UK
| | - Jyotsna Pundir
- Center for Reproductive Medicine, St Bartholomew's Hospital, London, UK
| | - Anil Gudi
- Homerton Fertility Center, Homerton University Hospital, London, UK
| | - Amit Shah
- Homerton Fertility Center, Homerton University Hospital, London, UK
| | - Roy Homburg
- Homerton Fertility Center, Homerton University Hospital, London, UK
| | - Ganesh Acharya
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Showell MG, Mackenzie‐Proctor R, Jordan V, Hodgson R, Farquhar C. Inositol for subfertile women with polycystic ovary syndrome. Cochrane Database Syst Rev 2018; 12:CD012378. [PMID: 30570133 PMCID: PMC6516980 DOI: 10.1002/14651858.cd012378.pub2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Subfertile women are highly motivated to try different adjunctive therapies to have a baby, and the widespread perception is that dietary supplements such as myo-inositol (MI) and D-chiro-insoitol (DCI) are associated with only benefit, and not with harm. Many fertility clinicians currently prescribe MI for subfertile women with polycystic ovary syndrome (PCOS) as pre-treatment to in vitro fertilisation (IVF) or for ovulation induction; however no high-quality evidence is available to support this practice. This review assessed the evidence for the effectiveness of inositol in subfertile women with a diagnosis of PCOS. OBJECTIVES To evaluate the effectiveness and safety of oral supplementation of inositol for reproductive outcomes among subfertile women with PCOS who are trying to conceive. SEARCH METHODS We searched the following databases (to July 2018): Cochrane Gynaecology and Fertility Group (CGFG) Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and AMED. We also checked reference lists and searched the clinical trials registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose, or combination of oral inositol versus placebo, no treatment/standard treatment, or treatment with another antioxidant, or with a fertility agent, or with another type of inositol, among subfertile women with PCOS. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible studies, extracted data, and assessed risk of bias. The primary outcomes were live birth and adverse effects; secondary outcomes included clinical pregnancy rates and ovulation rates. We pooled studies using a fixed-effect model, and we calculated odds ratios (ORs) with 95% confidence intervals (CIs). We assessed the overall quality of the evidence by applying GRADE criteria. MAIN RESULTS We included 13 trials involving 1472 subfertile women with PCOS who were receiving myo-inositol as pre-treatment to IVF (11 trials), or during ovulation induction (two trials). These studies compared MI versus placebo, no treatment/standard, melatonin, metformin, clomiphene citrate, or DCI. The evidence was of 'low' to 'very low' quality. The main limitations were serious risk of bias due to poor reporting of methods, inconsistency, and lack of reporting of clinically relevant outcomes such as live birth and adverse events.We are uncertain whether MI improves live birth rates when compared to standard treatment among women undergoing IVF (OR 2.42, 95% CI 0.75 to 7.83; P = 0.14; 2 RCTs; 84 women; I² = 0%). Very low-quality evidence suggests that for subfertile women with PCOS undergoing pre-treatment to IVF who have an expected live birth rate of 12%, the rate among women using MI would be between 9% and 51%.We are uncertain whether MI may be associated with a decrease in miscarriage rate when compared to standard treatment (OR 0.40, 95% CI 0.19 to 0.86; P = 0.02; 4 RCTs; 535 women; I² = 66%; very low-quality evidence). This suggests that among subfertile women with PCOS with an expected miscarriage rate of 9% who are undergoing pre-treatment to IVF, the rate among women using MI would be between 2% and 8%; however this meta-analysis is based primarily on one study, which reported an unusually high miscarriage rate in the control group, and this has resulted in very high heterogeneity. When we removed this trial from the sensitivity analysis, we no longer saw the effect, and we noted no conclusive differences between MI and standard treatment.Low-quality evidence suggests that MI may be associated with little or no difference in multiple pregnancy rates when compared with standard treatment (OR 1.04, 95% CI 0.63 to 1.71; P = 0.89; 2 RCTs; 425 women). This suggests that among subfertile women with PCOS who are undergoing pre-treatment to IVF, with an expected multiple pregnancy rate of 18%, the rate among women using inositol would be between 12% and 27%.We are uncertain whether MI may be associated with an increased clinical pregnancy rate when compared to standard treatment (OR 1.27, 95% CI 0.87 to 1.85; P = 0.22; 4 RCTs; 535 women; I² = 0%; very low-quality evidence). This suggests that among subfertile women with PCOS who are undergoing pre-treatment to IVF, with an expected clinical pregnancy rate of 26%, the rate among women using MI would be between 24% and 40%. Ovulation rates were not reported for this comparison.Other comparisons included only one trial in each, so for the comparisons MI versus antioxidant, MI versus an insulin-sensitising agent, MI versus an ovulation induction agent, and MI versus another DCI, meta-analysis was not possible.No pooled evidence was available for women with PCOS undergoing ovulation induction, as only single trials performed comparison of the insulin-sensitising agent and the ovulation induction agent. AUTHORS' CONCLUSIONS In light of available evidence of very low quality, we are uncertain whether MI improves live birth rate or clinical pregnancy rate in subfertile women with PCOS undergoing IVF pre-treatment taking MI compared to standard treatment. We are also uncertain whether MI decreases miscarriage rates or multiple pregnancy rates for these same women taking MI compared to standard treatment. No pooled evidence is available for use of MI versus placebo, another antioxidant, insulin-sensitising agents, ovulation induction agents, or another type of inositol for women with PCOS undergoing pre-treatment to IVF. No pooled evidence is available for use of MI in women undergoing ovulation induction.
Collapse
Affiliation(s)
- Marian G Showell
- University of AucklandDepartment of Obstetrics and GynaecologyPark Road GraftonAucklandNew Zealand1142
| | | | - Vanessa Jordan
- University of AucklandDepartment of Obstetrics and GynaecologyPark Road GraftonAucklandNew Zealand1142
| | - Ruth Hodgson
- Auckland City HospitalDepartment of Obstetrics and GynaecologyAucklandNew Zealand1142
| | - Cindy Farquhar
- University of AucklandDepartment of Obstetrics and GynaecologyPark Road GraftonAucklandNew Zealand1142
| | | |
Collapse
|
10
|
Bevilacqua A, Bizzarri M. Inositols in Insulin Signaling and Glucose Metabolism. Int J Endocrinol 2018; 2018:1968450. [PMID: 30595691 PMCID: PMC6286734 DOI: 10.1155/2018/1968450] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
In the past decades, both the importance of inositol for human health and the complex interaction between glucose and inositol have been the subject of increasing consideration. Glucose has been shown to interfere with cellular transmembrane transport of inositol, inhibiting, among others, its intestinal absorption. Moreover, intracellular glucose is required for de novo biosynthesis of inositol through the inositol-3-phosphate synthase 1 pathway, while a few glucose-related metabolites, like sorbitol, reduce intracellular levels of inositol. Furthermore, inositol, via its major isomers myo-inositol and D-chiro-inositol, and probably some of its phosphate intermediate metabolites and correlated enzymes (like inositol hexakisphosphate kinase) participate in both insulin signaling and glucose metabolism by influencing distinct pathways. Indeed, clinical data support the beneficial effects exerted by inositol by reducing glycaemia levels and hyperinsulinemia and buffering negative effects of sustained insulin stimulation upon the adipose tissue and the endocrine system. Due to these multiple effects, myoIns has become a reliable treatment option, as opposed to hormonal stimulation, for insulin-resistant PCOS patients.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
- Center for Research in Neurobiology “Daniel Bovet” (CRiN), Sapienza University of Rome, 00185 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, via A. Scarpa 16, 00161 Rome, Italy
| |
Collapse
|
11
|
Affiliation(s)
| | - Emanuela Raffone
- Obstetrics and Gynecology Department, G. Martino Hospital, Messina, Italy
| |
Collapse
|
12
|
Laganà AS, Garzon S, Casarin J, Franchi M, Ghezzi F. Inositol in Polycystic Ovary Syndrome: Restoring Fertility through a Pathophysiology-Based Approach. Trends Endocrinol Metab 2018; 29:768-780. [PMID: 30270194 DOI: 10.1016/j.tem.2018.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Abstract
Myo-inositol (MI) and D-chiro-inositol (DCI) are insulin second messengers, and MI is involved in follicular gonadotropin pathways which orchestrate ovulation. The tissue-specific MI/DCI ratio is modulated by insulin through aromatase and is altered in insulin resistance (IR), with reduced epimerization of MI to DCI in insulin-sensitive tissues. In ovaries, the MI/DCI ratio is 100:1, but is dramatically reduced by insulin-stimulated epimerase in hyperinsulinemic women with polycystic ovary syndrome (PCOS). Inositols have proved to be effective in PCOS, improving metabolic and hormonal state, and restoring spontaneous ovulation. In assisted reproductive technology, inositol improved ovarian stimulation parameters, although data concerning fertility outcomes are conflicting. Given their functions, inositols are an attractive treatment option for PCOS, although well-designed studies on spontaneous and non-spontaneous fertility are needed.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy; Equal contributions.
| | - Simone Garzon
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Universitaria Integrata di Verona (AOUI Verona), University of Verona, Verona, Italy; Equal contributions
| | - Jvan Casarin
- Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy
| | - Massimo Franchi
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Universitaria Integrata di Verona (AOUI Verona), University of Verona, Verona, Italy
| | - Fabio Ghezzi
- Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Isabella R, Raffone E. Expression of Concern to: Does ovary need D-chiro-inositol? J Ovarian Res 2018; 11:57. [PMID: 29976256 PMCID: PMC6032599 DOI: 10.1186/s13048-018-0431-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Emanuela Raffone
- Obstetrics and Gynecology Department, G. Martino Hospital, Messina, Italy
| |
Collapse
|
14
|
Gateva A, Unfer V, Kamenov Z. The use of inositol(s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol 2018; 34:545-550. [PMID: 29309199 DOI: 10.1080/09513590.2017.1421632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this review is to present the current data about the role of inositols in the management of polycystic ovary syndrome (PCOS) women and in the prevention and treatment of gestational diabetes mellitus (GDM). We analyzed the available literature with key words PCOS, Myo-inositol, D-chiro-inositol, assisted reproductive technologies and GDM. The most recent literature would suggest that Myo-inositol, D-chiro-inositol and their combination in physiological ratio 40:1 could represent an important therapeutic strategy for the improvement of metabolic, hormonal and reproductive aspects of PCOS. In assisted reproductive technologies, however, myo-inositol and the combined treatment, despite D-chiro-inositol monotherapy, are able to improve clinical outcomes. Myo-inositol monotherapy results more effective in preventing and treating GDM even if a larger cohort of studies is needed to better clarify these results.
Collapse
Affiliation(s)
- Antoaneta Gateva
- a Clinic of Endocrinology , Alexandrovska University Hospital, Medical University , Sofia , Bulgaria
| | - Vittorio Unfer
- b Health Department , UniPoliSi - Institut des Etudes Universitaires , Disentis , Switzerland
| | - Zdravko Kamenov
- a Clinic of Endocrinology , Alexandrovska University Hospital, Medical University , Sofia , Bulgaria
| |
Collapse
|
15
|
Montanino Oliva M, Buonomo G, Calcagno M, Unfer V. Effects of myo-inositol plus alpha-lactalbumin in myo-inositol-resistant PCOS women. J Ovarian Res 2018; 11:38. [PMID: 29747700 PMCID: PMC5944130 DOI: 10.1186/s13048-018-0411-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Myo-inositol (MI), successfully used in polycystic ovary syndrome (PCOS), was administered with α-LA to exploit its action of favouring the passage of other molecules through biological barriers, and also considering its anti-inflammatory effect. Methods PCOS patients, according to the Rotterdam ESHRE–ASRM criteria, with anovulation and infertility > 1 year, were included in this open and prospective study. The preliminary phase was aimed at determining a set of MI-resistant PCOS patients. This treatment involved 2 g MI, taken twice per day by oral route, for three months. The Homeostasis Model Assessment (HOMA) index and MI plasma levels were measured. In the main phase, previously selected MI-resistant patients received the same daily amount of MI plus 50 mg α-LA twice a day, for a further three months. Ovulation was assessed using ultrasound examination on days 12, 14 and 20 of the cycle. The HOMA index, lipid, hormone and MI plasma levels were detected at baseline and at the end of this phase. Results Thirty-seven anovulatory PCOS subjects were included in the study. Following MI treatment, 23 of the 37 women (62%) ovulated, while 14 (38%) were resistant and did not ovulate. In the latter group, MI plasma levels did not increase. These MI-resistant patients underwent treatment in the main phase of the study, receiving MI and α-LA. After this combined treatment, 12 (86%) of them ovulated. Their MI plasma levels were found to be significantly higher than at baseline; also, a hormone and lipid profile improvement was recorded. Conclusion The combination of MI with α-LA allowed us to obtain significant progress in the treatment of PCOS MI-resistant patients. Therefore, this new formulation was able to re-establish ovulation, greatly increasing the chances of desired pregnancy. Trial Registration Clinical trial registration number: NCT03422289 (ClinicalTrials.gov registry).
Collapse
Affiliation(s)
- Mario Montanino Oliva
- Department of Woman Health and Reproductive Medicine, Santo Spirito Hospital, 00193, Rome, Italy.
| | - Giovanna Buonomo
- Department of Woman Health and Reproductive Medicine, Santo Spirito Hospital, 00193, Rome, Italy
| | - Marco Calcagno
- Department of Woman Health and Reproductive Medicine, Santo Spirito Hospital, 00193, Rome, Italy
| | - Vittorio Unfer
- Faculty of Medicine and Psychology, Department of Developmental and Social Psychology, Sapienza University, 00185, Rome, Italy
| |
Collapse
|
16
|
Unfer V, Facchinetti F, Orrù B, Giordani B, Nestler J. Myo-inositol effects in women with PCOS: a meta-analysis of randomized controlled trials. Endocr Connect 2017; 6:647-658. [PMID: 29042448 PMCID: PMC5655679 DOI: 10.1530/ec-17-0243] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Myo-inositol (MI) supplementation in women with polycystic ovary syndrome (PCOS) has been evaluated over the last years. Many hormonal and reproductive impairments associated with this disorder seem relieved by the supplement. The objective of the meta-analysis was to assess the effects of MI alone or combined with d-chiro-inositol (DCI) on the endocrine and metabolic abnormalities of women with PCOS. Literature was retrieved from selected databases, MEDLINE, EMBASE, PubMed and Research Gate (up to November 2016). Only randomized controlled trials (RCTs) investigating the effects of MI alone or combined with DCI were reviewed. Nine RCTs involving 247 cases and 249 controls were included. Significant decreases in fasting insulin (SMD = -1.021 µU/mL, 95% CI: -1.791 to -0.251, P = 0.009) and homeostasis model assessment (HOMA) index (SMD = -0.585, 95% CI: -1.145 to -0.025, P = 0.041) were identified after MI supplementation. The trial sequential analysis of insulin meta-analysis illustrates that the cumulative z-curve crossed the monitoring boundary, providing firm evidence of the intervention effect. A slight trend toward a reduction of testosterone concentration by MI with respect to controls was found (SMD = -0.49, 95% CI: -1.072 to 0.092, P = 0.099), whereas androstenedione levels remained unaffected. Throughout a subgroup's meta-analysis, a significant increase in serum SHBG was observed only in those studies where MI was administered for at least 24 weeks (SMD = 0.425 nmol/L, 95% CI: 0.050-0.801, P = 0.026). These results highlight the beneficial effect of MI in improving the metabolic profile of women with PCOS, concomitantly reducing their hyperandrogenism.
Collapse
Affiliation(s)
- Vittorio Unfer
- Health DepartmentUniPoliSi - Institut des Etudes Universitaires, Disentis, Switzerland
| | - Fabio Facchinetti
- Mother-Infant DepartmentUniversity of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Orrù
- Medical Affairs DepartmentLo.Li. Pharma, Rome, Italy
| | | | - John Nestler
- Departments of Medicine and Obstetrics and GynecologyVirginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
17
|
Abstract
BACKGROUND A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. OBJECTIVES To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. SEARCH METHODS We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous outcomes of live birth, clinical pregnancy and adverse events. We assessed the overall quality of the evidence by applying GRADE criteria. MAIN RESULTS We included 50 trials involving 6510 women. Investigators compared oral antioxidants, including combinations of antioxidants, N-acetyl-cysteine, melatonin, L-arginine, myo-inositol, D-chiro-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, pentoxifylline and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant.Very low-quality evidence suggests that antioxidants may be associated with an increased live birth rate compared with placebo or no treatment/standard treatment (OR 2.13, 95% CI 1.45 to 3.12, P > 0.001, 8 RCTs, 651 women, I2 = 47%). This suggests that among subfertile women with an expected live birth rate of 20%, the rate among women using antioxidants would be between 26% and 43%.Very low-quality evidence suggests that antioxidants may be associated with an increased clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.52, 95% CI 1.31 to 1.76, P < 0.001, 26 RCTs, 4271 women, I2 = 66%). This suggests that among subfertile women with an expected clinical pregnancy rate of 22%, the rate among women using antioxidants would be between 27% and 33%. Heterogeneity was moderately high.There was insufficient evidence to determine whether there was a difference between the groups in rates of miscarriage (OR 0.79, 95% CI 0.58 to 1.08, P = 0.14, 18 RCTs, 2834 women, I2 = 23%, very low quality evidence). This suggests that, among subfertile women with an expected miscarriage rate of 7%, use of antioxidants would be expected to result in a miscarriage rate of between 4% and 7%. There was also insufficient evidence to determine whether there was a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.73 to 1.38, P = 0.98, 8 RCTs, 2163 women, I2 = 4%, very low quality evidence). This suggests that among subfertile women with an expected multiple pregnancy rate of 8%, use of antioxidants would be expected to result in a multiple pregnancy rate between 6% and 11%. Likewise, there was insufficient evidence to determine whether there was a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10, P = 0.47, 3 RCTs, 343 women, I2 = 0%, very low quality evidence). This suggests that among subfertile women with an expected gastrointestinal disturbance rate of 2%, use of antioxidants would be expected to result in a rate between 1% and 11%. Overall adverse events were reported by 35 trials in the meta-analysis, but there was insufficient evidence to draw any conclusions.Only one trial reported on live birth, clinical pregnancy or adverse effects in the antioxidant versus antioxidant comparison, and no conclusions could be drawn.Very low-quality evidence suggests that pentoxifylline may be associated with an increased clinical pregnancy rate compared with placebo or no treatment (OR 2.07, 95% CI 1.20 to 3.56, P = 0.009, 3 RCTs, 276 women, I2 = 0%). This suggests that among subfertile women with an expected clinical pregnancy rate of 25%, the rate among women using pentoxifylline would be between 28% and 53%.There was insufficient evidence to determine whether there was a difference between the groups in rates of miscarriage (OR 1.34, 95% CI 0.46 to 3.90, P = 0.58, 3 RCTs, 276 women, I2 = 0%) or multiple pregnancy (OR 0.78, 95% CI 0.20 to 3.09, one RCT, 112 women, very low quality evidence). This suggests that among subfertile women with an expected miscarriage rate of 4%, the rate among women using pentoxifylline would be between 2% and 15%. For multiple pregnancy, the data suggest that among subfertile women with an expected multiple pregnancy rate of 9%, the rate among women using pentoxifylline would be between 2% and 23%.The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency. AUTHORS' CONCLUSIONS In this review, there was very low-quality evidence to show that taking an antioxidant may provide benefit for subfertile women, but insufficient evidence to draw any conclusions about adverse events. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
Collapse
Affiliation(s)
- Marian G Showell
- University of AucklandDepartment of Obstetrics and GynaecologyPark Road GraftonAucklandNew Zealand1142
| | | | - Vanessa Jordan
- University of AucklandDepartment of Obstetrics and GynaecologyPark Road GraftonAucklandNew Zealand1142
| | - Roger J Hart
- The University of Western Australia, King Edward Memorial Hospital and Fertility Specialists of Western AustraliaSchool of Women's and Infants' Health374 Bagot RoadSubiaco, PerthAustralia6008
| |
Collapse
|
18
|
Mendoza N, Pérez L, Simoncini T, Genazzani A. Inositol supplementation in women with polycystic ovary syndrome undergoing intracytoplasmic sperm injection: a systematic review and meta-analysis of randomized controlled trials. Reprod Biomed Online 2017; 35:529-535. [PMID: 28756130 DOI: 10.1016/j.rbmo.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 11/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex and heterogeneous disease that involves menstrual dysfunction and reproductive difficulty, as well as metabolic problems. The aim of this study was to assess the effectiveness of myo-inositol (MYO) and d-chiro-inositol (DCI) on improving oocyte or embryo quality and pregnancy rates for women with PCOS undergoing intracytoplasmic sperm injection (ICSI). We searched the Web of Knowledge, MEDLINE, EMBASE, Pubmed, Scopus and Cochrane databases for all articles published in any language up to March 2017. The selection criteria were as follows: (population) patients with PCOS; (intervention) treatment with inositol (MYO, DCI, or both, with any dose and any duration) in conjunction with an ovulation-inducing agent versus the ovulation-inducing agent alone; (outcome) oocyte and embryo quality; (study design) randomized controlled trials. Of 76 identified studies, eight RCTs were included for analysis comprising 1019 women with PCOS. MYO supplementation was insufficient to improve oocyte quality (OR 2.2051; 95% CI 0.8260 to 5.8868), embryo quality (OR 1.6231, 95% CI 0.3926 to 6.7097), or pregnancy rate (OR 1.2832, 95% CI 0.8692 to 1.8944). Future studies of appropriate dose, size and duration of DCI are vital to clarify its the role in the management of PCOS.
Collapse
Affiliation(s)
- Nicolás Mendoza
- Department of Obstetrics and Gynecology, University of Granada, Avda Investigacion 11, 18016 Granada, Spain.
| | - Laura Pérez
- Department of Obstetrics and Gynecology, University of Granada, Avda Investigacion 11, 18016 Granada, Spain
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 6126 Pisa, Italy
| | - Alessandro Genazzani
- Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
| |
Collapse
|
19
|
Simi G, Genazzani AR, Obino MER, Papini F, Pinelli S, Cela V, Artini PG. Inositol and In Vitro Fertilization with Embryo Transfer. Int J Endocrinol 2017; 2017:5469409. [PMID: 28348586 PMCID: PMC5350329 DOI: 10.1155/2017/5469409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
Recently, studies on inositol supplementation during in vitro fertilization program (IVF) have gained particular importance due to the effect of this molecule on reducing insulin resistance improving ovarian function, oocyte quality, and embryo and pregnancy rates and reducing gonadotropin amount during stimulation. Inositol and its isoforms, especially myoinositol (MYO), are often used as prestimulation therapy in infertile patients undergoing IVF cycle. Inositol supplementation started three months before ovarian stimulation, resulting in significant improvements in hormonal responses, reducing the amount of FSH necessary for optimal follicle development and serum levels of 17beta-estradiol measured the day of hCG injection. As shown by growing number of trials, MYO supplementation improves oocyte quality by reducing the number of degenerated and immature oocytes, in this way increasing the quality of embryos produced. Inositol can also improve the quality of sperm parameters in those patients affected by oligoasthenoteratozoospermia.
Collapse
Affiliation(s)
- G. Simi
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A. R. Genazzani
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M. E. R. Obino
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F. Papini
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S. Pinelli
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - V. Cela
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - P. G. Artini
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *P. G. Artini:
| |
Collapse
|
20
|
Monastra G, Unfer V, Harrath AH, Bizzarri M. Combining treatment with myo-inositol and D-chiro-inositol (40:1) is effective in restoring ovary function and metabolic balance in PCOS patients. Gynecol Endocrinol 2017; 33:1-9. [PMID: 27898267 DOI: 10.1080/09513590.2016.1247797] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a relevant cause of infertility, is a heterogeneous, endocrine disorder affecting up to 10-15% of women in reproductive age. Besides hyperandrogenism, insulin resistance (IR) plays a key role in such syndrome. Insulin-sensitizing drugs, such as Metformin, are effective in treating hyper-insulinemic PCOS patients. Recently, inositols - myo-inositol (MI) and D-chiro-inositol (DCI) - have shown to be an efficient and safe alternative in PCOS management, as both inositol isoforms are able to counteract downstream consequences of insulin resistance. Yet, whereas DCI contributes in mediating insulin activity mainly on non-ovarian tissues, MI displays specific effects on ovary, chiefly by modulating glucose metabolism and FSH-signaling. Moreover, MI may also improve ovarian functions by modulating steroid metabolism through non-insulin-dependent pathways. As DCI and MI activity likely involves different biological mechanisms, both inositol isoforms can be synergistically integrated according to a multitargeted design, by combining MI and DCI in a ratio corresponding to their physiological plasma relative amount (40:1). New experimental and clinical evidence with MI plus DCI evidenced the suitability of such integrated approach, and provided promising results. Further studies need to investigate thoroughly the molecular mechanism and confirm such preliminary data.
Collapse
Affiliation(s)
- Giovanni Monastra
- a Visiting scientist at the Systems Biology Group, Department of Experimental Medicine, University la Sapienza , Rome , Italy
| | - Vittorio Unfer
- b Department of Medical Sciences , IPUS - Institute of Higher Education , Chiasso , Switzerland
| | - Abdel Halim Harrath
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and
| | - Mariano Bizzarri
- d Department of Experimental Medicine , Systems Biology Group, University la Sapienza , Rome , Italy
| |
Collapse
|
21
|
Goyal M, Dawood AS. Debates Regarding Lean Patients with Polycystic Ovary Syndrome: A Narrative Review. J Hum Reprod Sci 2017; 10:154-161. [PMID: 29142442 PMCID: PMC5672719 DOI: 10.4103/jhrs.jhrs_77_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex syndrome showing the clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Two phenotypes are present, either lean or obese, with different biochemical, hormonal, and metabolic profiles. Evidence suggests many treatment modalities that can be applied. However, many of these modalities were found to be not suitable for the lean phenotype of PCOS. Much contradictory research was found regarding lean patients with PCOS. The aim of this narrative review is to shed light on the debate prevailing regarding characteristics, as well as metabolic, hematological, and potential management modalities. Literature review was performed from January 1, 2000 to March 31, 2017 with specific word search such as lean PCOS, hormonal abnormalities in lean PCOS, and the management of lean PCOS. All retrieved articles were carefully assessed, and data were obtained. We could conclude that the debate is still prevailing regarding this specific lean population with PCOS, especially with regard to their characteristics and management modalities. Further studies are still required to resolve this debate on the presence of PCOS in lean women.
Collapse
Affiliation(s)
- Manu Goyal
- Department of Obstetrics and Gynecology, AIIMS, New Delhi, India
| | - Ayman S Dawood
- Department of Obstetrics and Gynecology, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Genazzani AD. Inositol as putative integrative treatment for PCOS. Reprod Biomed Online 2016; 33:770-780. [DOI: 10.1016/j.rbmo.2016.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
|
23
|
Milewska EM, Czyzyk A, Meczekalski B, Genazzani AD. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol 2016; 32:690-695. [PMID: 27595157 DOI: 10.1080/09513590.2016.1188282] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Inositol is an organic compound of high biological importance that is widely distributed in nature. It belongs to the sugar family and is mainly represented by its two dominant stereoisomers: myo-inositol and D-chiro-inositol that are found in the organism in the physiological serum ratio 40:1. Inositol and its derivatives are important components of the structural phospholipids of the cell membranes and are precursors of the second messengers of many metabolic pathways. A high concentration of myoinositol is found in the follicular fluid and in semen. Inositol deficiency and the impairment of the inositol-dependent pathways may play an important role in the pathogenesis of insulin resistance and hypothyroidism. The results of the research also point out the potential beneficial role of inositol supplementation in polycystic ovarian syndrome and in the context of assisted reproduction technologies and in vitro fertilization. The main aim of the article is to overview the major inositol-dependent metabolic pathways and to discuss its importance for reproduction.
Collapse
Affiliation(s)
- Ewa M Milewska
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Adam Czyzyk
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Blazej Meczekalski
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Alessandro D Genazzani
- b Department of Obstetrics and Gynecology , Gynecological Endocrinology Center, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
24
|
Vitale SG, Rossetti P, Corrado F, Rapisarda AMC, La Vignera S, Condorelli RA, Valenti G, Sapia F, Laganà AS, Buscema M. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin. Int J Endocrinol 2016; 2016:4987436. [PMID: 27651794 PMCID: PMC5019888 DOI: 10.1155/2016/4987436] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Paola Rossetti
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| | - Francesco Corrado
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Massimo Buscema
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| |
Collapse
|
25
|
Unfer V, Orrù B, Monastra G. Inositols: from physiology to rational therapy in gynecological clinical practice. Expert Opin Drug Metab Toxicol 2016; 12:1129-31. [DOI: 10.1080/17425255.2016.1225039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vittorio Unfer
- Department of Medical Sciences, IPUS – Institute of Higher Education, Chiasso, Switzerland
| | | | - Giovanni Monastra
- Systems Biology Group, Department of Experimental Medicine, University la Sapienza, Rome, Italy
| |
Collapse
|
26
|
Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 2016; 12:1181-96. [PMID: 27351907 DOI: 10.1080/17425255.2016.1206887] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inositol and its derivatives comprise a huge field of biology. Myo-inositol is not only a prominent component of membrane-incorporated phosphatidylinositol, but participates in its free form, with its isomers or its phosphate derivatives, to a multitude of cellular processes, including ion channel permeability, metabolic homeostasis, mRNA export and translation, cytoskeleton remodeling, stress response. AREAS COVERED Bioavailability, safety, uptake and metabolism of inositol is discussed emphasizing the complexity of interconnected pathways leading to phosphoinositides, inositol phosphates and more complex molecules, like glycosyl-phosphatidylinositols. EXPERT OPINION Besides being a structural element, myo-inositol exerts unexpected functions, mostly unknown. However, several reports indicate that inositol plays a key role during phenotypic transitions and developmental phases. Furthermore, dysfunctions in the regulation of inositol metabolism have been implicated in several chronic diseases. Clinical trials using inositol in pharmacological doses provide amazing results in the management of gynecological diseases, respiratory stress syndrome, Alzheimer's disease, metabolic syndrome, and cancer, for which conventional treatments are disappointing. However, despite the widespread studies carried out to identify inositol-based effects, no comprehensive understanding of inositol-based mechanisms has been achieved. An integrated metabolomics-genomic study to identify the cellular fate of therapeutically administered myo-inositol and its genomic/enzymatic targets is urgently warranted.
Collapse
Affiliation(s)
- Mariano Bizzarri
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy.,b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy
| | - Andrea Fuso
- b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy.,c European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Simona Dinicola
- d Department of Clinical and Molecular Medicine , Sapienza Universityof Rome , Rome , Italy.,e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy
| | - Alessandra Cucina
- e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy.,f Azienda Policlinico Umberto I , Rome , Italy
| | - Arturo Bevilacqua
- g Department of Psychology, Section of Neuroscience , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
27
|
Paul C, Laganà AS, Maniglio P, Triolo O, Brady DM. Inositol's and other nutraceuticals' synergistic actions counteract insulin resistance in polycystic ovarian syndrome and metabolic syndrome: state-of-the-art and future perspectives. Gynecol Endocrinol 2016; 32:431-8. [PMID: 26927948 DOI: 10.3109/09513590.2016.1144741] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic syndrome (MetS), type II diabetes (T2D) and polycystic ovarian syndrome (PCOS) has been progressively increasing. Insulin resistance (InsR) seems to play a key role in a majority of phenotypes of these conditions, altering metabolic homeostasis, within muscle, liver, adipose and other tissues. Hyperinsulinemia is often associated with InsR and causes hormonal imbalances especially within ovaries and adrenals. Inositol is a polyalcohol, naturally occurring as nine stereoisomers, including D-chiro-inositol (DCI) and myo-inositol (MI), which have prominent roles in the metabolism of glucose and free fatty acids. MI and DCI have been classified as insulin-sensitizers and seem to adequately counteract several InsR-related metabolic alterations with a safe nutraceutical profile. Based on our analysis of selected studies that investigated MI and/or DCI, we conclude that supplementation with MI and/or DCI complement each other in their metabolic actions and act in synergy with other insulin sensitizing drugs and/or nutraceuticals. Nevertheless, considering the possible severe bias due to different methodologies across published studies, we conclude that there is a need for further studies on larger cohorts and with greater statistical power. These should further clarify outcomes and suitable therapeutic dosages of MI and DCI, possibly based on each patient's clinical status.
Collapse
Affiliation(s)
- Cristiana Paul
- a Independent Nutrition Research Consultant , Los Angeles, CA , USA
| | - Antonio Simone Laganà
- b Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina , Messina , Italy
| | - Paolo Maniglio
- c Department of Obstetrics, Gynecology and Urology, Sant'Andrea Hospital , Sapienza University of Rome , Rome , Italy , and
| | - Onofrio Triolo
- b Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina , Messina , Italy
| | - David M Brady
- d Human Nutrition Institute, University of Bridgeport , Bridgeport, CT , USA
| |
Collapse
|
28
|
Does myo-inositol effect on PCOS follicles involve cytoskeleton regulation? Med Hypotheses 2016; 91:1-5. [PMID: 27142131 DOI: 10.1016/j.mehy.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/25/2016] [Indexed: 11/24/2022]
Abstract
Inositol metabolism is severely impaired in follicles obtained from cystic ovaries, leading to deregulated insulin transduction and steroid synthesis. On the contrary, inositol administration to women suffering from polycystic ovary syndrome (PCOS) has been proven to efficiently counteract most of the clinical hallmarks displayed by PCOS patients, including insulin resistance, hyperandrogenism and oligo-amenorrhea. We have recently observed that myo-inositol induces significant changes in cytoskeletal architecture of breast cancer cells, by modulating different biochemical pathways, eventually modulating the epithelial-mesenchymal transition. We hypothesize that inositol and its monophosphate derivatives, besides their effects on insulin transduction, may efficiently revert histological and functional features of cystic ovary by inducing cytoskeleton rearrangements. We propose an experimental model that could address not only whether inositol modulates cytoskeleton dynamics in both normal and cystic ovary cells, but also whether this effect may interfere with ovarian steroidogenesis. A more compelling understanding of the mechanisms of action of inositol (and its derivatives) would greatly improve its therapeutic utilization, by conferring to current treatments a well-grounded scientific rationale.
Collapse
|
29
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
30
|
Lauretta R, Lanzolla G, Vici P, Mariani L, Moretti C, Appetecchia M. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk. Int J Endocrinol 2016; 2016:8671762. [PMID: 27725832 PMCID: PMC5048026 DOI: 10.1155/2016/8671762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis.
Collapse
Affiliation(s)
- Rosa Lauretta
- Unit of Endocrinology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Lanzolla
- Unit of Endocrinology, Department of Systems' Medicine, University of Rome Tor Vergata, Section of Reproductive Endocrinology, Fatebenefratelli Hospital “San Giovanni Calibita” Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology B, Regina Elena National Cancer Institute, Rome, Italy
| | - Luciano Mariani
- Department of Gynaecologic Oncology, HPV-Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Costanzo Moretti
- Unit of Endocrinology, Department of Systems' Medicine, University of Rome Tor Vergata, Section of Reproductive Endocrinology, Fatebenefratelli Hospital “San Giovanni Calibita” Rome, Italy
| | - Marialuisa Appetecchia
- Unit of Endocrinology, Regina Elena National Cancer Institute, Rome, Italy
- *Marialuisa Appetecchia:
| |
Collapse
|
31
|
Garg D, Tal R. Inositol Treatment and ART Outcomes in Women with PCOS. Int J Endocrinol 2016; 2016:1979654. [PMID: 27795706 PMCID: PMC5067314 DOI: 10.1155/2016/1979654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 5-10% of women in reproductive age and is characterized by oligo/amenorrhea, androgen excess, insulin resistance, and typical polycystic ovarian morphology. It is the most common cause of infertility secondary to ovulatory dysfunction. The underlying etiology is still unknown but is believed to be multifactorial. Insulin-sensitizing compounds such as inositol, a B-complex vitamin, and its stereoisomers (myo-inositol and D-chiro-inositol) have been studied as an effective treatment of PCOS. Administration of inositol in PCOS has been shown to improve not only the metabolic and hormonal parameters but also ovarian function and the response to assisted-reproductive technology (ART). Accumulating evidence suggests that it is also capable of improving folliculogenesis and embryo quality and increasing the mature oocyte yield following ovarian stimulation for ART in women with PCOS. In the current review, we collate the evidence and summarize our current knowledge on ovarian stimulation and ART outcomes following inositol treatment in women with PCOS undergoing in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI).
Collapse
Affiliation(s)
- Deepika Garg
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Reshef Tal
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- *Reshef Tal:
| |
Collapse
|
32
|
Laganà AS, Rossetti P, Buscema M, La Vignera S, Condorelli RA, Gullo G, Granese R, Triolo O. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols. Int J Endocrinol 2016; 2016:6306410. [PMID: 27579037 PMCID: PMC4989075 DOI: 10.1155/2016/6306410] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, 98125 Messina, Italy
- *Antonio Simone Laganà:
| | - Paola Rossetti
- Unit of Diabetology and Endocrino-Metabolic Diseases, Cannizzaro Hospital, 95126 Catania, Italy
| | - Massimo Buscema
- Unit of Diabetology and Endocrino-Metabolic Diseases, Cannizzaro Hospital, 95126 Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, 95124 Catania, Italy
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, 95124 Catania, Italy
| | - Giuseppe Gullo
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Granese
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Onofrio Triolo
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
33
|
Unfer V, Nestler JE, Kamenov ZA, Prapas N, Facchinetti F. Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials. Int J Endocrinol 2016; 2016:1849162. [PMID: 27843451 PMCID: PMC5097808 DOI: 10.1155/2016/1849162] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, with complex etiology and pathophysiology, which remains poorly understood. It affects about 5-10% of women of reproductive age who typically suffer from obesity, hyperandrogenism, ovarian dysfunction, and menstrual irregularity. Indeed, PCOS is the most common cause of anovulatory infertility in industrialized nations, and it is associated with insulin resistance, type 2 diabetes mellitus, and increased cardiovascular risk. Although insulin resistance is not included as a criterion for diagnosis, it is a critical pathological condition of PCOS. The purpose of this systematic review is the analysis of recent randomized clinical trials of inositol(s) in PCOS, in particular myo- and D-chiro-inositol, in order to better elucidate their physiological involvement in PCOS and potential therapeutic use, alone and in conjunction with assisted reproductive technologies, in the clinical treatment of women with PCOS.
Collapse
Affiliation(s)
- Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, Chiasso, Switzerland
- *Vittorio Unfer:
| | - John E. Nestler
- Department of Medicine and Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zdravko A. Kamenov
- Clinic of Endocrinology, Alexandrovska University Hospital, Medical University, Sofia, Bulgaria
| | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, Thessaloniki, Greece
| | - Fabio Facchinetti
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
34
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
35
|
Bevilacqua A, Carlomagno G, Gerli S, Montanino Oliva M, Devroey P, Lanzone A, Soulange C, Facchinetti F, Carlo Di Renzo G, Bizzarri M, Hod M, Cavalli P, D'Anna R, Benvenga S, Chiu TT, Kamenov ZA. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology--assisted reproduction technology. Gynecol Endocrinol 2015; 31:441-6. [PMID: 26036719 DOI: 10.3109/09513590.2015.1006616] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A substantial body of research on mammalian gametogenesis and human reproduction has recently investigated the effect of myo-inositol (MyoIns) on oocyte and sperm cell quality, due to its possible application to medically assisted reproduction. With a growing number of both clinical and basic research papers, the meaning of several observations now needs to be interpreted under a solid and rigorous physiological framework. The 2013 Florence International Consensus Conference on Myo- and D-chiro-inositol in obstetrics and gynecology has answered a number of research questions concerning the use of the two stereoisomers in assisted reproductive technologies. Available clinical trials and studies on the physiological and pharmacological effects of these molecules have been surveyed. Specifically, the physiological involvement of MyoIns in oocyte maturation and sperm cell functions has been discussed, providing an answer to the following questions: (1) Are inositols physiologically involved in oocyte maturation? (2) Are inositols involved in the physiology of spermatozoa function? (3) Is treatment with inositols helpful within assisted reproduction technology cycles? (4) Are there any differences in clinical efficacy between MyoIns and D-chiro-inositol? The conclusions of this Conference, drawn depending on expert panel opinions and shared with all the participants, are summarized in this review paper.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Psychology, Sapienza University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Authors’ reply to: “Empiric” inositol supplementation in normal-weight non-insulin resistant women with polycystic ovarian disease: from the absence of benefit to the potential adverse effects. Arch Gynecol Obstet 2015; 291:959-60. [DOI: 10.1007/s00404-015-3663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Vitagliano A, Quaranta M, Noventa M, Gizzo S. "Empiric" inositol supplementation in normal-weight non insulin resistant women with polycystic ovarian disease: from the absence of benefit to the potential adverse effects. Arch Gynecol Obstet 2015; 291:955-7. [PMID: 25687659 DOI: 10.1007/s00404-015-3662-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/10/2015] [Indexed: 01/21/2023]
|
38
|
Laganà AS, Barbaro L, Pizzo A. Evaluation of ovarian function and metabolic factors in women affected by polycystic ovary syndrome after treatment with D-Chiro-Inositol. Arch Gynecol Obstet 2014; 291:1181-6. [PMID: 25416201 DOI: 10.1007/s00404-014-3552-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate the effects of D-Chiro-Inositol in women affected by polycystic ovary syndrome (PCOS). METHODS We enrolled 48 patients, with homogeneous bio-physical characteristics, affected by PCOS and menstrual irregularities. These patients underwent treatment with 1 gr of D-Chiro-Inositol/die plus 400 mcg of Folic Acid/die orally for 6 months. We analyzed pre-treatment and post-treatment BMI, Systolic and Diastolic blood pressure, Ferriman-Gallwey score, Cremoncini score, serum LH, LH/FSH ratio, total and free testosterone, DHEA-S, Δ-4-androstenedione, SHBG, prolactin, glucose/IRI ratio, HOMA index, and resumption of regular menstrual cycles. RESULTS We evidenced a statistically significant reduction of systolic blood pressure, Ferriman-Gallwey score, LH, LH/FSH ratio, total Testosterone, free Testosterone, ∆-4-Androstenedione, Prolactin, and HOMA Index; in the same patients, we noticed a statistically significant increase of SHBG and Glycemia/IRI ratio. Moreover, we observed statistically significant (62.5%; p < 0.05) post-treatment menstrual cycle regularization. CONCLUSIONS D-Chiro-Inositol is effective in improving ovarian function and metabolism of patients affected by PCOS.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Pediatric Gynecological, Microbiological and Biomedical Sciences, University of Messina, Via C. Valeria 1, 98125, Messina, Italy,
| | | | | |
Collapse
|
39
|
Dinicola S, Chiu TTY, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol 2014; 54:1079-92. [PMID: 25042908 DOI: 10.1002/jcph.362] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
PCOS is one of the most common endocrine disorders affecting women and it is characterized by a combination of hyper-androgenism, chronic anovulation, and insulin resistance. While a significant progress has recently been made in the diagnosis for PCOS, the optimal infertility treatment remains to be determined. Two inositol isomers, myo-inositol (MI) and D-chiro-inositol (DCI) have been proven to be effective in PCOS treatment, by improving insulin resistance, serum androgen levels and many features of the metabolic syndrome. However, DCI alone, mostly when it is administered at high dosage, negatively affects oocyte quality, whereas the association MI/DCI, in a combination reproducing the plasma physiological ratio (40:1), represents a promising alternative in achieving better clinical results, by counteracting PCOS at both systemic and ovary level.
Collapse
Affiliation(s)
- Simona Dinicola
- Dept of Experimental Medicine, Systems Biology Group, University La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
40
|
Unfer V, Porcaro G. Updates on the myo-inositol plus D-chiro-inositol combined therapy in polycystic ovary syndrome. Expert Rev Clin Pharmacol 2014; 7:623-31. [DOI: 10.1586/17512433.2014.925795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Unfer V, Carlomagno G, Papaleo E, Vailati S, Candiani M, Baillargeon JP. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod Sci 2014; 21:854-858. [DOI: 10.1177/1933719113518985] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vittorio Unfer
- A.G.Un.Co. Obstetrics and Gynaecology Center, Gennaro Cassiani 15, Rome, Italy
| | | | - Enrico Papaleo
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Simona Vailati
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
42
|
The combined therapy myo-inositol plus d-chiro-inositol, rather than d-chiro-inositol, is able to improve IVF outcomes: results from a randomized controlled trial. Arch Gynecol Obstet 2013; 288:1405-11. [DOI: 10.1007/s00404-013-2855-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/13/2013] [Indexed: 12/29/2022]
|