1
|
Silvestri I, Manigrasso J, Andreani A, Brindani N, Mas C, Reiser JB, Vidossich P, Martino G, McCarthy AA, De Vivo M, Marcia M. Targeting the conserved active site of splicing machines with specific and selective small molecule modulators. Nat Commun 2024; 15:4980. [PMID: 38898052 PMCID: PMC11187226 DOI: 10.1038/s41467-024-48697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100, Caserta, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Andreani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | | | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
2
|
Smaruj P, Kieliszek M. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. EXCLI JOURNAL 2023; 22:70-83. [PMID: 36814855 PMCID: PMC9939771 DOI: 10.17179/excli2022-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Many archaeal and bacterial organisms possess an adaptive immunity system known as CRISPR-Cas. Its role is to recognize and degrade foreign DNA showing high similarity to repeats within the CRISPR array. In recent years computational techniques have been used to identify cas1 genes that are not associated with CRISPR systems, named cas1-solo. Often, cas1-solo genes are present in a conserved neighborhood of PolB-like polymerase genes, which is a characteristic feature of self-synthesizing, eukaryotic transposons of the Polinton class. Nearly all cas1-polB genomic islands are flanked by terminal inverted repeats and direct repeats which correspond to target site duplications. Considering the patchy taxonomic distribution of the identified islands in archaeal and bacterial genomes, they were characterized as a new superfamily of mobile genetic elements and called casposons. Here, we review recent experiments on casposons' mobility and discuss their discovery, classification, and evolutionary relationship with the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paulina Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland,*To whom correspondence should be addressed: Paulina Smaruj, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America, E-mail:
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Borišek J, Aupič J, Magistrato A. Establishing the catalytic and regulatory mechanism of
RNA
‐based machineries. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jure Borišek
- Theory Department National Institute of Chemistry Ljubljana Slovenia
| | | | | |
Collapse
|
4
|
Marcia M, Manigrasso J, De Vivo M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J Chem Inf Model 2021; 61:2511-2515. [PMID: 34133879 PMCID: PMC8278382 DOI: 10.1021/acs.jcim.1c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This viewpoint discusses the predictive power and impact of computational analyses and simulations to gain prospective, experimentally supported mechanistic insights into complex biological systems. Remarkably, two newly resolved cryoEM structures have confirmed the previous, and independent, prediction of the precise localization and dynamics of key catalytic ions in megadalton-large spliceosomal complexes. This outstanding outcome endorses a prominent synergy of computational and experimental methods in the prospective exploration of such large multicomponent biosystems.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
5
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
7
|
Xu C, Song S, Yang YZ, Lu F, Zhang MD, Sun F, Jia R, Song R, Tan BC. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1767-1782. [PMID: 32559332 DOI: 10.1111/tpj.14862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.
Collapse
Affiliation(s)
- Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shu Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fan Lu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Meng-Di Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruxue Jia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Manigrasso J, Chillón I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun 2020; 11:2837. [PMID: 32503992 PMCID: PMC7275048 DOI: 10.1038/s41467-020-16741-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5’-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy. Group II introns are self-splicing ribozymes. Here, the authors employ enzymatic assay, X-ray crystallography and molecular dynamics simulations to show that protonation of the group II intron catalytic triad plays an important role for the transition from the first to the second step of splicing.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Vito Genna
- Department of Structural and Computational Biology, Institute for Research in Biomedicine (IRB), Parc Científic de Barcelona, C/ Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Srinivas Somarowthu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT, 06511, USA.,Department of Chemistry, Yale University, New Haven, CT, 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
9
|
Uroda T, Chillón I, Annibale P, Teulon JM, Pessey O, Karuppasamy M, Pellequer JL, Marcia M. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat Protoc 2020; 15:2107-2139. [PMID: 32451442 DOI: 10.1038/s41596-020-0323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.
Collapse
Affiliation(s)
- Tina Uroda
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Marie Teulon
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Ombeline Pessey
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Luc Pellequer
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.
| |
Collapse
|
10
|
Zubaer A, Wai A, Hausner G. The fungal mitochondrial Nad5 pan-genic intron landscape. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:835-842. [PMID: 31698975 DOI: 10.1080/24701394.2019.1687691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Palermo G, Casalino L, Magistrato A, Andrew McCammon J. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. J Struct Biol 2019; 206:267-279. [PMID: 30880083 PMCID: PMC6637970 DOI: 10.1016/j.jsb.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Noncoding RNA (ncRNA) has a key role in regulating gene expression, mediating fundamental processes and diseases via a variety of yet unknown mechanisms. Here, we review recent applications of conventional and enhanced Molecular Dynamics (MD) simulations methods to address the mechanistic function of large biomolecular systems that are tightly involved in the ncRNA function and that are of key importance in life sciences. This compendium focuses of three biomolecular systems, namely the CRISPR-Cas9 genome editing machinery, group II intron ribozyme and the ribonucleoprotein complex of the spliceosome, which edit and process ncRNA. We show how the application of a novel accelerated MD simulations method has been key in disclosing the conformational transitions underlying RNA binding in the CRISPR-Cas9 complex, suggesting a mechanism for RNA recruitment and clarifying the conformational changes required for attaining genome editing. As well, we discuss the use of mixed quantum-classical MD simulations in deciphering the catalytic mechanism of RNA splicing as operated by group II intron ribozyme, one of the largest ncRNA structures crystallized so far. Finally, we debate the future challenges and opportunities in the field, discussing the recent application of MD simulations for unraveling the functional biophysics of the spliceosome, a multi-mega Dalton complex of proteins and small nuclear RNAs that performs RNA splicing in humans. This showcase of applications highlights the current talent of MD simulations to dissect atomic-level details of complex biomolecular systems instrumental for the design of finely engineered genome editing machines. As well, this review aims at inspiring future investigations of several other ncRNA regulatory systems, such as micro and small interfering RNAs, which achieve their function and specificity using RNA-based recognition and targeting strategies.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, Bourns College of Engineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, Democritos National Simulation Center c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States; National Biomedical Computation Resource, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
12
|
Molina-Sánchez MD, Toro N. DNA cleavage and reverse splicing of ribonucleoprotein particles reconstituted in vitro with linear RmInt1 RNA. RNA Biol 2019; 16:930-939. [PMID: 30943851 DOI: 10.1080/15476286.2019.1601379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The RmInt1 group II intron is an efficient self-splicing mobile retroelement that catalyzes its own excision as lariat, linear and circular molecules. In vivo, the RmInt1 lariat and the reverse transcriptase (IEP) it encodes form a ribonucleoprotein particle (RNP) that recognizes the DNA target for site-specific full intron insertion via a two-step reverse splicing reaction. RNPs containing linear group II intron RNA are generally thought to be unable to complete the reverse splicing reaction. Here, we show that reconstituted in vitro RNPs containing linear RmInt1 ΔORF RNA can mediate the cleavage of single-stranded DNA substrates in a very precise manner with the attachment of the intron RNA to the 3´exon as the first step of a reverse splicing reaction. Notably, we also observe molecules in which the 5´exon is linked to the RmInt1 RNA, suggesting the completion of the reverse splicing reaction, albeit rather low and inefficiently. That process depends on DNA target recognition and can be successful completed by RmInt1 RNPs with linear RNA displaying 5´ modifications.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Nicolás Toro
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| |
Collapse
|
13
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
14
|
Toro N, Martínez-Abarca F, Molina-Sánchez MD, García-Rodríguez FM, Nisa-Martínez R. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution. Front Microbiol 2018; 9:627. [PMID: 29670598 PMCID: PMC5894124 DOI: 10.3389/fmicb.2018.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.
Collapse
Affiliation(s)
- Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Francisco Martínez-Abarca
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - María D Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Fernando M García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Rafael Nisa-Martínez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
15
|
Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Structure 2017; 26:40-50.e2. [PMID: 29225080 PMCID: PMC5758106 DOI: 10.1016/j.str.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/12/2017] [Accepted: 11/12/2017] [Indexed: 02/01/2023]
Abstract
Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing. Basic residues in the active site of two-metal-ion enzymes are structurally conserved These residues are also conserved in evolution Mutagenesis suggests these residues may exert an effect on DNA- and RNA processing Our work offers insights into CRISPR/Cas9, spliceosome, and DNA/RNA polymerases
Collapse
|
16
|
Bhandari YR, Fan L, Fang X, Zaki GF, Stahlberg EA, Jiang W, Schwieters CD, Stagno JR, Wang YX. Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering. J Mol Biol 2017; 429:3635-3649. [PMID: 28918093 DOI: 10.1016/j.jmb.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Knowledge of RNA three-dimensional topological structures provides important insight into the relationship between RNA structural components and function. It is often likely that near-complete sets of biochemical and biophysical data containing structural restraints are not available, but one still wants to obtain knowledge about approximate topological folding of RNA. In this regard, general methods for determining such topological structures with minimum readily available restraints are lacking. Naked RNAs are difficult to crystallize and NMR spectroscopy is generally limited to small RNA fragments. By nature, sequence determines structure and all interactions that drive folding are self-contained within sequence. Nevertheless, there is little apparent correlation between primary sequences and three-dimensional folding unless supplemented with experimental or phylogenetic data. Thus, there is an acute need for a robust high-throughput method that can rapidly determine topological structures of RNAs guided by some experimental data. We present here a novel method (RS3D) that can assimilate the RNA secondary structure information, small-angle X-ray scattering data, and any readily available tertiary contact information to determine the topological fold of RNA. Conformations are firstly sampled at glob level where each glob represents a nucleotide. Best-ranked glob models can be further refined against solvent accessibility data, if available, and then converted to explicit all-atom coordinates for refinement against SAXS data using the Xplor-NIH program. RS3D is widely applicable to a variety of RNA folding architectures currently present in the structure database. Furthermore, we demonstrate applicability and feasibility of the program to derive low-resolution topological structures of relatively large multi-domain RNAs.
Collapse
Affiliation(s)
- Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| | - Lixin Fan
- Leidos Biomedical Research Inc., Frederick, MD 21702, United States
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - George F Zaki
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Eric A Stahlberg
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Wei Jiang
- Argonne National Laboratory, Argonne, IL 60439, United States
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States; NCI Small Angle X-ray Scattering Core Facility, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| |
Collapse
|
17
|
Abstract
Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520.,Department of Chemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520;
| |
Collapse
|
18
|
Zhao C, Pyle AM. Structural Insights into the Mechanism of Group II Intron Splicing. Trends Biochem Sci 2017; 42:470-482. [PMID: 28438387 PMCID: PMC5492998 DOI: 10.1016/j.tibs.2017.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
While the major architectural features and active-site components of group II introns have been known for almost a decade, information on the individual stages of splicing has been lacking. Recent advances in crystallography and cryo-electron microscopy (cryo-EM) have provided major new insights into the structure of intact lariat introns. Conformational changes that mediate the steps of splicing and retrotransposition are being elucidated, revealing the dynamic, highly coordinated motions that are required for group II intron activity. Finally, these ribozymes can now be viewed in their larger, more natural context as components of holoenzymes that include encoded maturase proteins. These studies expand our understanding of group II intron structural diversity and evolution, while setting the stage for rigorous mechanistic analysis of RNA splicing machines.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
19
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Casalino L, Palermo G, Rothlisberger U, Magistrato A. Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns. J Am Chem Soc 2016; 138:10374-7. [DOI: 10.1021/jacs.6b01363] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Giulia Palermo
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
21
|
Abstract
Reverse transcriptases (RTs) are usually thought of as eukaryotic enzymes, but they are also present in bacteria and likely originated in bacteria and migrated to eukaryotes. Only three types of bacterial retroelements have been substantially characterized: group II introns, diversity-generating retroelements, and retrons. Recent work, however, has identified a myriad of uncharacterized RTs and RT-related sequences in bacterial genomes, which exhibit great sequence diversity and a range of domain structures. Apart from group II introns, none of these putative RTs show evidence of active retromobility. Instead, available information suggests that they are involved in useful processes, sometimes related to phages or phage resistance. This article reviews our knowledge of both characterized and uncharacterized RTs in bacteria. The range of their sequences and genomic contexts promises the discovery of new biochemical reactions and biological phenomena.
Collapse
|
22
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
23
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
24
|
Somarowthu S. Progress and Current Challenges in Modeling Large RNAs. J Mol Biol 2015; 428:736-747. [PMID: 26585404 DOI: 10.1016/j.jmb.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/21/2022]
Abstract
Recent breakthroughs in next-generation sequencing technologies have led to the discovery of several classes of non-coding RNAs (ncRNAs). It is now apparent that RNA molecules are not only just carriers of genetic information but also key players in many cellular processes. While there has been a rapid increase in the number of ncRNA sequences deposited in various databases over the past decade, the biological functions of these ncRNAs are largely not well understood. Similar to proteins, RNA molecules carry out a function by forming specific three-dimensional structures. Understanding the function of a particular RNA therefore requires a detailed knowledge of its structure. However, determining experimental structures of RNA is extremely challenging. In fact, RNA-only structures represent just 1% of the total structures deposited in the PDB. Thus, computational methods that predict three-dimensional RNA structures are in high demand. Computational models can provide valuable insights into structure-function relationships in ncRNAs and can aid in the development of functional hypotheses and experimental designs. In recent years, a set of diverse RNA structure prediction tools have become available, which differ in computational time, input data and accuracy. This review discusses the recent progress and challenges in RNA structure prediction methods.
Collapse
Affiliation(s)
- Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, Kline Biology Tower, New Haven, CT 06511, USA.
| |
Collapse
|
25
|
Liu YC, Cheng SC. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J Biomed Sci 2015; 22:54. [PMID: 26173448 PMCID: PMC4503299 DOI: 10.1186/s12929-015-0161-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.
Collapse
Affiliation(s)
- Yen-Chi Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| |
Collapse
|
26
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015; 54:9687-90. [PMID: 26119804 DOI: 10.1002/anie.201504014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Indexed: 11/05/2022]
Abstract
NMR spectroscopy has revealed pH-dependent structural changes in the highly conserved catalytic domain 5 of a bacterial group II intron. Two adenines with pK(a) values close to neutral pH were identified in the catalytic triad and the bulge. Protonation of the adenine opposite to the catalytic triad is stabilized within a G(syn)-AH(+) (anti) base pair. The pH-dependent anti-to-syn flipping of this G in the catalytic triad modulates the known interaction with the linker region between domains 2 and 3 (J23) and simultaneously the binding of the catalytic Mg(2+) ion to its backbone. Hence, this here identified shifted pK(a) value controls the conformational change between the two steps of splicing.
Collapse
Affiliation(s)
- Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Veronika Zelenay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna.
| |
Collapse
|
28
|
Abstract
Present in the genomes of bacteria and eukaryotic organelles, group II introns are an ancient class of ribozymes and retroelements that are believed to have been the ancestors of nuclear pre-mRNA introns. Despite long-standing speculation, there is limited understanding about the actual pathway by which group II introns evolved into eukaryotic introns. In this review, we focus on the evolution of group II introns themselves. We describe the different forms of group II introns known to exist in nature and then address how these forms may have evolved to give rise to spliceosomal introns and other genetic elements. Finally, we summarize the structural and biochemical parallels between group II introns and the spliceosome, including recent data that strongly support their hypothesized evolutionary relationship.
Collapse
Affiliation(s)
- Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
29
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
30
|
Chillón I, Molina-Sánchez MD, Fedorova O, García-Rodríguez FM, Martínez-Abarca F, Toro N. In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element. RNA (NEW YORK, N.Y.) 2014; 20:2000-2010. [PMID: 25336586 PMCID: PMC4238363 DOI: 10.1261/rna.047407.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3' exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3' splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3-IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.
Collapse
Affiliation(s)
- Isabel Chillón
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - María Dolores Molina-Sánchez
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Olga Fedorova
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Fernando Manuel García-Rodríguez
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
31
|
Abstract
CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.
Collapse
Affiliation(s)
- Wade W. Grabow
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Bio-Molecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
32
|
Marcia M, Pyle AM. Principles of ion recognition in RNA: insights from the group II intron structures. RNA (NEW YORK, N.Y.) 2014; 20:516-27. [PMID: 24570483 PMCID: PMC3964913 DOI: 10.1261/rna.043414.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/29/2014] [Indexed: 05/20/2023]
Abstract
Metal ions promote both RNA folding and catalysis, thus being essential in stabilizing the structure and determining the function of large RNA molecules, including group II introns. The latter are self-splicing metalloribozymes, containing a heteronuclear four-metal-ion center within the active site. In addition to these catalytic ions, group II introns bind many other structural ions, including delocalized ions that bind the RNA diffusively and well-ordered ions that bind the RNA tightly with high occupancy. The latter ions, which can be studied by biophysical methods, have not yet been analyzed systematically. Here, we compare crystal structures of the group IIC intron from Oceanobacillus iheyensis and classify numerous site-bound ions, which are primarily localized in the intron core and near long-range tertiary contacts. Certain ion-binding sites resemble motifs observed in known RNA structures, while others are idiosyncratic to the group II intron. Particularly interesting are (1) ions proximal to the active site, which may participate in splicing together with the catalytic four-metal-ion center, (2) organic ions that bind regions predicted to interact with intron-encoded proteins, and (3) unusual monovalent ions bound to GU wobble pairs, GA mismatches, the S-turn, the tetraloop-receptor, and the T-loop. Our analysis extends the general principles by which ions participate in RNA structural organization and it will aid in the determination and interpretation of future RNA structures.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Corresponding authorE-mail
| |
Collapse
|
33
|
Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 2014; 5:2. [PMID: 24410776 PMCID: PMC3898094 DOI: 10.1186/1759-8753-5-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into ‘targetrons.’ Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and ‘cut-and-pastes’ (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.
Collapse
Affiliation(s)
| | | | | | - Alan M Lambowitz
- Departments of Molecular Biosciences and Chemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Popović M, Greenbaum NL. Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5' splice site. RNA (NEW YORK, N.Y.) 2014; 20:24-35. [PMID: 24243113 PMCID: PMC3866642 DOI: 10.1261/rna.039701.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Recognition of the 5' splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem-loop of domain 1 and a complementary sequence at the 3' end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem-loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5' splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1-IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.
Collapse
Affiliation(s)
- Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
35
|
Somarowthu S, Legiewicz M, Keating KS, Pyle AM. Visualizing the ai5γ group IIB intron. Nucleic Acids Res 2013; 42:1947-58. [PMID: 24203709 PMCID: PMC3919574 DOI: 10.1093/nar/gkt1051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has become apparent that much of cellular metabolism is controlled by large well-folded noncoding RNA molecules. In addition to crystallographic approaches, computational methods are needed for visualizing the 3D structure of large RNAs. Here, we modeled the molecular structure of the ai5γ group IIB intron from yeast using the crystal structure of a bacterial group IIC homolog. This was accomplished by adapting strategies for homology and de novo modeling, and creating a new computational tool for RNA refinement. The resulting model was validated experimentally using a combination of structure-guided mutagenesis and RNA structure probing. The model provides major insights into the mechanism and regulation of splicing, such as the position of the branch-site before and after the second step of splicing, and the location of subdomains that control target specificity, underscoring the feasibility of modeling large functional RNA molecules.
Collapse
Affiliation(s)
- Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA, Department of Chemistry, Yale University, New Haven, CT 06511, USA and Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | | | | |
Collapse
|
36
|
|