1
|
Wang J, Zhu F, Jiao D, Yang C, Wang J, Wang F, Zhao H, Wei HJ, Zhao HY. Generation of RAG2 Knockout Immune-Deficient Miniature Pigs. Animals (Basel) 2024; 14:2597. [PMID: 39272382 PMCID: PMC11393836 DOI: 10.3390/ani14172597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Recombination-activating genes (RAGs) play a crucial role in the V(D)J recombination process and the development of immune cells. The development of the immune system and its mechanisms in pigs exhibit greater similarity to those of humans compared to other animals, thus rendering pigs a valuable tool for biomedical research. In this study, we utilized CRISPR/Cas9 gene editing and somatic cell nuclear transfer technology to generate RAG2 knockout (KO) pigs. Furthermore, we evaluated the impact of RAG2 KO on the immune organs and immune cell development through morphological observations, blood analysis and flow cytometry technology. RAG2 KO cell lines were used as donors for cloning. The reconstructed embryos were transplanted into 4 surrogate sows, and after 116 days of gestation, 2 sows gave birth to 12 live piglets, all of which were confirmed to be RAG2 KO. The thymus and spleen sizes of RAG2 KO pigs were significantly smaller than those of wild-type (WT) pigs. Hematoxylin-eosin staining results revealed that the thymus and spleen tissue structures of RAG2 KO pigs were disorganized and lacked the characteristic structures, indicating that RAG2 KO leads to dysplasia of the thymus and spleen. Hematological analysis demonstrated that the total number of white blood cells and lymphocytes in the circulation of RAG2 KO pigs was significantly lower, while the number of eosinophils was higher. Flow cytometry results indicated that the proportions of mature T and B lymphocytes were significantly reduced compared to WT pigs. These findings successfully verified the immunodeficiency phenotype of RAG2 KO pigs. This study may provide experimental animals for the development of tumor models and humanized animals.
Collapse
Affiliation(s)
- Jing Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Feiyan Zhu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junqi Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fengchong Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Bzdok J, Czibere L, Burggraf S, Landt O, Maier EM, Röschinger W, Albert MH, Hegert S, Janzen N, Becker M, Durner J. Quality considerations and major pitfalls for high throughput DNA-based newborn screening for severe combined immunodeficiency and spinal muscular atrophy. PLoS One 2024; 19:e0306329. [PMID: 38941330 PMCID: PMC11213327 DOI: 10.1371/journal.pone.0306329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Many newborn screening programs worldwide have introduced screening for diseases using DNA extracted from dried blood spots (DBS). In Germany, DNA-based assays are currently used to screen for severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD). METHODS This study analysed the impact of pre-analytic DNA carry-over in sample preparation on the outcome of DNA-based newborn screening for SCID and SMA and compared the efficacy of rapid extraction versus automated protocols. Additionally, the distribution of T cell receptor excision circles (TREC) on DBS cards, commonly used for routine newborn screening, was determined. RESULTS Contaminations from the punching procedure were detected in the SCID and SMA assays in all experimental setups tested. However, a careful evaluation of a cut-off allowed for a clear separation of true positive polymerase chain reaction (PCR) amplifications. Our rapid in-house extraction protocol produced similar amounts compared to automated commercial systems. Therefore, it can be used for reliable DNA-based screening. Additionally, the amount of extracted DNA significantly differs depending on the location of punching within a DBS. CONCLUSIONS Newborn screening for SMA and SCID can be performed reliably. It is crucial to ensure that affected newborns are not overlooked. Therefore a carefully consideration of potential contaminating factors and the definition of appropriate cut-offs to minimise the risk of false results are of special concern. It is also important to note that the location of punching plays a pivotal role, and therefore an exact quantification of TREC numbers per μl may not be reliable and should therefore be avoided.
Collapse
Affiliation(s)
- Jessica Bzdok
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| | | | | | | | | | | | - Michael H. Albert
- Department of Paediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Nils Janzen
- Screening-Labor Hannover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | - Marc Becker
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| | - Jürgen Durner
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| |
Collapse
|
3
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
4
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
5
|
Justiz-Vaillant AA, Gopaul D, Akpaka PE, Soodeen S, Arozarena Fundora R. Severe Combined Immunodeficiency-Classification, Microbiology Association and Treatment. Microorganisms 2023; 11:1589. [PMID: 37375091 DOI: 10.3390/microorganisms11061589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is a primary inherited immunodeficiency disease that presents before the age of three months and can be fatal. It is usually due to opportunistic infections caused by bacteria, viruses, fungi, and protozoa resulting in a decrease in number and impairment in the function of T and B cells. Autosomal, X-linked, and sporadic forms exist. Evidence of recurrent opportunistic infections and lymphopenia very early in life should prompt immunological investigation and suspicion of this rare disorder. Adequate stem cell transplantation is the treatment of choice. This review aimed to provide a comprehensive approach to the microorganisms associated with severe combined immunodeficiency (SCID) and its management. We describe SCID as a syndrome and summarize the different microorganisms that affect children and how they can be investigated and treated.
Collapse
Affiliation(s)
- Angel A Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rodolfo Arozarena Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
6
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Sharma D, Ben Yakov G, Kapuria D, Viana Rodriguez G, Gewirtz M, Haddad J, Kleiner DE, Koh C, Bergerson JRE, Freeman AF, Heller T. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022; 76:1845-1861. [PMID: 35466407 DOI: 10.1002/hep.32539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/08/2022]
Abstract
Inborn errors of immunity (IEIs) consist of numerous rare, inherited defects of the immune system that affect about 500,000 people in the United States. As advancements in diagnosis through genetic testing and treatment with targeted immunotherapy and bone marrow transplant emerge, increasing numbers of patients survive into adulthood posing fresh clinical challenges. A large spectrum of hepatobiliary diseases now present in those with immunodeficiency diseases, leading to morbidity and mortality in this population. Awareness of these hepatobiliary diseases has lagged the improved management of the underlying disorders, leading to missed opportunities to improve clinical outcomes. This review article provides a detailed description of specific liver diseases occurring in various inborn errors of immunity. A generalized approach to diagnosis and management of hepatic complications is provided, and collaboration with hepatologists, immunologists, and pathologists is emphasized as a requirement for optimizing management and outcomes.
Collapse
Affiliation(s)
- Disha Sharma
- Department of Internal MedicineMedStar Washington Hospital Center & Georgetown UniversityWashingtonDCUSA.,Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Gil Ben Yakov
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,26744Center for Liver DiseaseSheba Medical CenterTel HaShomerIsrael
| | - Devika Kapuria
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,Department of GastroenterologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Gracia Viana Rodriguez
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Meital Gewirtz
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - James Haddad
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - David E Kleiner
- 3421Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| | - Christopher Koh
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Theo Heller
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
9
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|
10
|
Ren J, Peng C, Zhou F, Li Y, Keqie Y, Chen H, Zhu H, Chen X, Liu S. Case Report: Preimplantation Genetic Testing for X-Linked Severe Combined Immune Deficiency Caused by IL2RG Gene Variant. Front Genet 2022; 13:926060. [PMID: 35719382 PMCID: PMC9198258 DOI: 10.3389/fgene.2022.926060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Preimplantation genetic testing (PGT) has been increasingly used to prevent rare inherited diseases. In this study, we report a case where PGT was used to prevent the transmission of disease-caused variant in a SCID-X1 (OMIM:300400) family. SCID-X1 is an X-linked recessive inherited disease whose major clinical manifestation of immune deficiency is the significant reduction in the number of T-cells and natural killer cells. This family gave birth to a boy who was a hemizygous proband whose IL2RG gene was mutated (c.315T > A, p(Tyr105*), NM_000206.3, CM962677). In this case, Sanger sequencing for mutated allele and linkage analysis based on single-nucleotide polymorphism (SNP) haplotype via next-generation sequencing were performed simultaneously. After PGT for monogenic disorder, we detected the aneuploidy and copy number variation (CNV) for normal and female carrier embryos. Four embryos (E02, E09, E10, and E11) were confirmed without CNVs and inherited variants at the IL2RG gene. Embryo E02 (ranking 4BB) has been transferred after considering the embryo growth rate, morphology, and PGT results. Prenatal genetic diagnosis was used to detect amniotic fluid cells, showing that this fetus did not carry the variant of the IL2RG gene (c.315T > A). Ultimately, a healthy girl who had not carried disease-causing variants of SCID-X1 confirmed by prenatal diagnosis was born, further verifying our successful application of PGT in preventing mutated allele transmission for this SCID family.
Collapse
Affiliation(s)
- Jun Ren
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hongmei Zhu
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, Center of Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
11
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
12
|
Cheng L, Liu K, Luo X, Mao X, Chen Y, Cao K. Co-infection of Pneumocystis jirovecii pneumonia and pulmonary CMV in a infant with X-linked severe combined immunodeficiency. Diagn Cytopathol 2021; 49:E340-E343. [PMID: 33929775 DOI: 10.1002/dc.24763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/11/2022]
Abstract
We herein report a rare case of co-infection of Pneumocystis jirovecii pneumonia and pulmonary CMV in a 3-month-old infant with X-linked severe combined immunodeficiency, in which diagnostic clues were obtained from the bronchoalveolar lavage fluid. We focus on the value of cytological diagnosis of P. jirovecii pneumonia and pulmonary CMV in the bronchoalveolar lavage fluid. Recognizing morphological characteristics of these pathogenic microorganisms is important to get timely diagnosis and treatment for the patients. Furthermore, repeated severe infections in infants should remind us to screen for immunosuppressed states.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Clinical Laboratory, Special Care Hospital of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Keyu Liu
- Department of Clinical Laboratory, Affiliated Hospital of Engineering University of Hebei, Handan, Hebei Province, China
| | - Xiaojuan Luo
- Department of Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Xiaoning Mao
- Department of Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Yunsheng Chen
- Department of Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Ke Cao
- Department of Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
13
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
14
|
Kouchaki R, Abd-Nikfarjam B, Maali AH, Abroun S, Foroughi F, Ghaffari S, Azad M. Induced Pluripotent Stem Cell Meets Severe Combined Immunodeficiency. CELL JOURNAL 2020; 22:1-10. [PMID: 32779449 PMCID: PMC7481889 DOI: 10.22074/cellj.2020.6849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Severe combined immunodeficiency (SCID) is classified as a primary immunodeficiency, which is characterized by impaired
T-lymphocytes differentiation. IL2RG, IL7Ralpha, JAK3, ADA, RAG1/RAG2, and DCLE1C (Artemis) are the most defective
genes in SCID. The most recent SCID therapies are based on gene therapy (GT) of hematopoietic stem cells (HSC), which
are faced with many challenges. The new studies in the field of stem cells have made great progress in overcoming the
challenges ahead. In 2006, Yamanaka et al. achieved "reprogramming" technology by introducing four transcription factors
known as Yamanaka factors, which generate induced pluripotent stem cells (iPSC) from somatic cells. It is possible to apply
iPSC-derived HSC for transplantation in patients with abnormality or loss of function in specific cells or damaged tissue, such
as T-cells and NK-cells in the context of SCID. The iPSC-based HSC transplantation in SCID and other hereditary disorders
needs gene correction before transplantation. Furthermore, iPSC technology has been introduced as a promising tool in
cellular-molecular disease modeling and drug discovery. In this article, we review iPSC-based GT and modeling for SCID
disease and novel approaches of iPSC application in SCID.
Collapse
Affiliation(s)
- Reza Kouchaki
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sasan Ghaffari
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic Address:
| |
Collapse
|
15
|
Fayez EA, Qazvini FF, Mahmoudi SM, Khoei S, Vesaltalab M, Teimourian S. Diagnosis of radiosensitive severe combined immunodeficiency disease (RS-SCID) by Comet Assay, management of bone marrow transplantation. Immunobiology 2020; 225:151961. [PMID: 32517885 DOI: 10.1016/j.imbio.2020.151961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Severe combined immunodeficiency disease (SCID) is a rare inherited severe immunodeficiency, in which functions of T cells and B cells are impaired. SCID is inherited either in X-linked recessive, or autosomal recessive forms, and is either radiosensitive or radioresistant. Artemis (DCLRE1C gene), DNA ligase IV, DNA-PKC, and Cernunnos/XLF proteins are regarded as NHEJ (Non-Homologous End-Joining) proteins that are involved in the repair process of double-strand DNA breaks and their mutations would lead to cellular radiosensitivity. Diagnostic radiosensitivity assays are important for the management of clinical BMT (Bone Marrow Transplantation) conditions, such as what conditioning agents and doses should be used. MATERIALS AND METHODS In this study, five SCID patients and healthy controls were examined. Skin fibroblasts were cultured. After X-irradiation, cells either underwent clonogenic assay or incubated to allow DNA repair and examined by the alkaline comet assay. Finally, DCLRE1C, RAG-1, and RAG-2 genes sequenced. RESULTS By clonogenic assay, three patients were detected as radiosensitive with possible mutations in NHEJ genes such as DCLRE1C gene. The percentage of DNA in the tail measured by comet assay, in all three patients, was significantly different from the two other patients and the control group (p-value < 0.05). By using Sanger sequencing, a mutation in DCLRE1C gene was detected in one of the radiosensitive patients and two mutations in RAG-1, and RAG-2 genes were detected in the two radioresistant patients. CONCLUSION Our findings suggest that comet assay is a fast technique for the diagnosis of the radiosensitive form of SCID and is very suitable for the timely diagnosis of RS-SCID before BMT.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farajihaye Qazvini
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Marzeyeh Mahmoudi
- Department of Cell and Molecular Biology, Islamic Azad University, Science and Research Branch. Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Vesaltalab
- School of Medicine, Bandar Abbas University of Medical Science, Bandar Abbas, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Computational Analysis of nsSNPs of ADA Gene in Severe Combined Immunodeficiency Using Molecular Modeling and Dynamics Simulation. J Immunol Res 2020; 2019:5902391. [PMID: 31781678 PMCID: PMC6875294 DOI: 10.1155/2019/5902391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is the most severe form of primary immunodeficiency (PID), characterized by fatal opportunistic infections. The ADA gene encodes adenosine deaminase, an enzyme that catalyzes the irreversible deamination of adenosine and deoxyadenosine in the catabolic pathway of purine. Mutations of the ADA gene have been identified in patients with severe combined immunodeficiency. In this study, we performed a bioinformatics analysis of the human ADA gene to identify potentially harmful nonsynonymous SNPs and their effect on protein structure and stability. Using eleven prediction tools, we identified 15 nsSNPs (H15D, H15P, H17Q, H17Y, D19N, T26I, G140E, C153F, A183D, G216R, H258Y, C262Y, S291L, S291W, and K34OE) as harmful. The results of ConSurf's analysis revealed that all these nsSNPs are localised in the highly conserved positions and affect the structure of the native proteins. In addition, our computational analysis showed that the H15D, G140E, G216R, and S291L mutations identified as being associated with severe combined immunodeficiency affect protein structure. Similarly, the results of the analyses of Rmsd, Rmsf, and Rg showed that all these factors influence protein stability, flexibility, and compaction with different levels of impact. This study is the first comprehensive computational analysis of nsSNPs of the ADA gene. However, functional analyses are needed to elucidate the biological mechanisms of these polymorphisms in severe combined immunodeficiency.
Collapse
|
17
|
Iqbal MA, Hong K, Kim JH, Choi Y. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines. BMB Rep 2020. [PMID: 31722780 PMCID: PMC6889892 DOI: 10.5483/bmbrep.2019.52.11.267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell−/B cell−/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T−B+NK− cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Liao CY, Yu HW, Cheng CN, Chen JS, Lin CW, Chen PC, Shieh CC. A novel pathogenic mutation on Interleukin-7 receptor leading to severe combined immunodeficiency identified with newborn screening and whole exome sequencing. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:99-105. [DOI: 10.1016/j.jmii.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/25/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|
19
|
Eczematous dermatitis in primary immunodeficiencies: A review of cutaneous clues to diagnosis. Clin Immunol 2020; 211:108330. [DOI: 10.1016/j.clim.2019.108330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/23/2022]
|
20
|
Mitchell S. What Will B Will B: Identifying Molecular Determinants of Diverse B-Cell Fate Decisions Through Systems Biology. Front Cell Dev Biol 2020; 8:616592. [PMID: 33511125 PMCID: PMC7835399 DOI: 10.3389/fcell.2020.616592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
B-cells are the poster child for cellular diversity and heterogeneity. The diverse repertoire of B lymphocytes, each expressing unique antigen receptors, provides broad protection against pathogens. However, B-cell diversity goes beyond unique antigen receptors. Side-stepping B-cell receptor (BCR) diversity through BCR-independent stimuli or engineered organisms with monoclonal BCRs still results in seemingly identical B-cells reaching a wide variety of fates in response to the same challenge. Identifying to what extent the molecular state of a B-cell determines its fate is key to gaining a predictive understanding of B-cells and consequently the ability to control them with targeted therapies. Signals received by B-cells through transmembrane receptors converge on intracellular molecular signaling networks, which control whether each B-cell divides, dies, or differentiates into a number of antibody-secreting distinct B-cell subtypes. The signaling networks that interpret these signals are well known to be susceptible to molecular variability and noise, providing a potential source of diversity in cell fate decisions. Iterative mathematical modeling and experimental studies have provided quantitative insight into how B-cells achieve distinct fates in response to pathogenic stimuli. Here, we review how systems biology modeling of B-cells, and the molecular signaling networks controlling their fates, is revealing the key determinants of cell-to-cell variability in B-cell destiny.
Collapse
|
21
|
Genetic mutations and immunological features of severe combined immunodeficiency patients in Iran. Immunol Lett 2019; 216:70-78. [PMID: 31589898 DOI: 10.1016/j.imlet.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is the most severe form of primary immunodeficiency disorders that is characterized by impaired early T lymphocyte differentiation and is variably associated with abnormal development of other lymphocyte lineages. SCID can be caused by mutations in more than 20 different genes. Molecular diagnosis in SCID patients contributes to genetic counseling, prenatal diagnosis, treatment modalities, and overall prognosis. In this cohort, the clinical, laboratory and genetic data related to Iranian SCID patients were comprehensively evaluated and efficiency of stepwise sequencing methods approach based on immunophenotype grouping was investigated METHODS: Clinical and laboratory data from 242 patients with SCID phenotype were evaluated. Molecular genetic analysis methods including Sanger sequencing, targeted gene panel and whole exome sequencing were performed on 62 patients. RESULTS Mortality rate was 78.9% in the cohort with a median follow-up of four months. The majority of the patients had a phenotype of T-NK-B+ (34.3%) and the most severe clinical manifestation and highest mortality rate were observed in T-NK-B- SCID cases. Genetic mutations were confirmed in 50 patients (80.6%), of which defects in recombination-activating genes (RAG1 and RAG2) were found in 16 patients (32.0%). The lowest level of CD4+ and CD8+ cells were observed in patients with ADA deficiency (p = 0.026) and IL2RG deficiency (p = 0.019), respectively. CONCLUSION Current findings suggest that candidate gene approach based on patient's immunophenotype might accelerate molecular diagnosis of SCID patients. Candidate gene selection should be done according to the frequency of disease-causing genes in different populations. Targeted gene panel, WES and WGS methods can be used for the cases which are not diagnosed using this method.
Collapse
|
22
|
Bandari AK, Muthusamy B, Bhat S, Govindaraj P, Rajagopalan P, Dalvi A, Shankar S, Raja R, Reddy KS, Madkaikar M, Pandey A. A Novel Splice Site Mutation in IFNGR2 in Patients With Primary Immunodeficiency Exhibiting Susceptibility to Mycobacterial Diseases. Front Immunol 2019; 10:1964. [PMID: 31497017 PMCID: PMC6712061 DOI: 10.3389/fimmu.2019.01964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Primary immunodeficiency (PID) refers to a group of heterogeneous genetic disorders with a weakened immune system. Mendelian susceptibility to mycobacterial disease (MSMD) is a subset of PID in which patients exhibit defects in intrinsic and innate immunity. It is a rare congenital disorder characterized by severe and recurrent infections caused by weakly virulent mycobacteria or other environmental mycobacteria. Any delay in definitive diagnosis poses a major concern due to the confounding nature of infections and immune deficiencies. Here, we report the clinical, immunological, and genetic characteristics of two siblings (infants) with recurrent infections. There was a history of death of two other siblings in the family after BCG vaccination. Whole exome sequencing of the two affected surviving infants along with their consanguineous parents identified a novel, homozygous single nucleotide splice acceptor site variant in intron 2 of the interferon gamma receptor 2 (IFNGR2) gene. Sanger sequencing of DNA obtained from blood and fibroblasts confirmed the variant. The patients underwent bone marrow transplantation from their father as a donor. RT-PCR and Sanger sequencing of the cDNA of patients from blood samples after transplantation showed the expression of both wild type and mutant transcript expression of IFNGR2. To assess partial or complete expression of IFNGR2 mutant transcripts, fibroblasts were cultured from skin biopsies. RT-PCR and Sanger sequencing of cDNA obtained from patient fibroblasts revealed complete expression of mutant allele and acquisition of a cryptic splice acceptor site in exon 3 that resulted in deletion of 9 nucleotides in exon 3. This led to an in-frame deletion of three amino acids p.(Thr70-Ser72) located in a fibronectin type III (FN3) domain in the extracellular region of IFNGR2. This illustrates individualized medicine enabled by next generation sequencing as identification of this mutation helped in the clinical diagnosis of MSMD in the infants as well as in choosing the most appropriate therapeutic option.
Collapse
Affiliation(s)
- Aravind K Bandari
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil Bhat
- Pediatric Haematology, Oncology and Blood & Bone Marrow Transplantation, Mazumdar-Shaw Cancer Center, Narayana Health City, Bangalore, India
| | - Periyasamy Govindaraj
- Neuromuscular Laboratory, Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Aparna Dalvi
- National Institute of Immunohaematology, KEM Hospital Campus, Mumbai, India
| | - Siddharth Shankar
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Kavita S Reddy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Manisha Madkaikar
- National Institute of Immunohaematology, KEM Hospital Campus, Mumbai, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
Madkaikar MR, Shabrish S, Kulkarni M, Aluri J, Dalvi A, Kelkar M, Gupta M. Application of Flow Cytometry in Primary Immunodeficiencies: Experience From India. Front Immunol 2019; 10:1248. [PMID: 31244832 PMCID: PMC6581000 DOI: 10.3389/fimmu.2019.01248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/16/2019] [Indexed: 11/21/2022] Open
Abstract
Primary immunodeficiency diseases (PID) are a clinically and immunologically heterogeneous group of disorders of immune system. Diagnosis of these disorders is often challenging and requires identification of underlying genetic defects, complemented by a comprehensive evaluation of immune system. Flow cytometry, with its advances in the last few decades, has emerged as an indispensable tool for enumeration as well as characterization of immune cells. Flow cytometric evaluation of the immune system not only provides clues to underlying genetic defects in certain PIDs and helps in functional validation of novel genetic defects, but is also useful in monitoring immune responses following specific therapies. India has witnessed significant progress in the field of flow cytometry as well as PID over last one decade. Currently, there are seven Federation of Primary Immunodeficiency Diseases (FPID) recognized centers across India, including two Indian Council of Medical research (ICMR) funded centers of excellence for diagnosis, and management of PIDs. These centers offer comprehensive care for PIDs including flow cytometry based evaluation. The key question which always remains is how one selects from the wide array of flow cytometry based tests available, and whether all these tests should be performed before or after the identification of genetic defects. This becomes crucial, especially when resources are limited and patients have to pay for the investigations. In this review, we will share some of our experiences based on evaluation of a large cohort of hemophagocytic lymphohistiocytosis, severe combined immunodeficiency, and chronic granulomatous disease, and the lessons learned for optimum use of this powerful technology for diagnosis of these disorders.
Collapse
Affiliation(s)
- Manisha Rajan Madkaikar
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Snehal Shabrish
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Jahnavi Aluri
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Madhura Kelkar
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| | - Maya Gupta
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Iummunohematology (ICMR), Mumbai, India
| |
Collapse
|
24
|
Machado MC, Vimbela GV, Nilsson M, Dallaire S, Wu R, Tripathi A. Rapid electrophoretic recovery of DNA from dried blood spots. Electrophoresis 2019; 40:1812-1819. [PMID: 31095765 DOI: 10.1002/elps.201800363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022]
Abstract
Large-scale genetic screening of neonatal dried blood spots for episomal DNA has a great potential to lower patient mortality and morbidity through early diagnosis of primary immunodeficiencies. However, DNA extraction from the surface of dried blood spots remains one of the most time consuming, costly, and labor-intensive parts of DNA analysis. In the present study, we developed and optimized a rapid methodology using only 50 V and heat to extract episomal DNA from dried blood spots prepared from diagnostic cord blood samples. This electric field DNA extraction is the first methodology to use an electric field to extract episomal DNA from a dried blood spot. This 25-minute procedure has one of the lowest times for the extraction of episomal DNA found within the literature and this novel procedure not only negates the need for costly treatment and wash steps, but reduces the time of manual procedures by more than 30 min while retaining the 75-80% of the yield. Combined with real-time PCR, this novel method of electric field extraction not only provides an effective tool for the large scale genetic analysis of neonates, but a key step forward in the simplification and standardization of diagnostic testing.
Collapse
Affiliation(s)
- Mary C Machado
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | - Gina V Vimbela
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | | | | | - Rongcong Wu
- PerkinElmer, 940 Winter Street, Waltham, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| |
Collapse
|
25
|
Singer AJ, Tuggle C, Ahrens A, Sauer M, McClain SA, Tredget E, Rosenberg L. Survival of human cadaver skin on severe combined immune deficiency pigs: Proof of concept. Wound Repair Regen 2019; 27:426-430. [PMID: 30843296 DOI: 10.1111/wrr.12715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 12/01/2022]
Abstract
Transplantation of human xenografts onto immunocompromised mice is a powerful research tool for studying wound healing. However, differences in healing between humans and mice and their small size limit this model. We determined whether human cadaver skin xenografts transplanted onto pigs with severe combined immune deficiency (SCID) would survive and not be rejected. Meshed (1:1.5), cryopreserved human cadaver skin was transplanted onto 10 partial thickness dermatome wounds in each of two normal domestic pigs and two SCID pigs. Autografts (n = 2/animal) from the four animals were used as controls. In normal pigs, all autografts were engrafted and healed with a minimal, if any, inflammation and scarring. All human xenografts were rejected by the normal pigs within 5-11 days and associated with an intense T-cell inflammatory response. In contrast, both autografts and xenografts were engrafted and survived the 28-day study in the SCID pigs with a minimal inflammation and no gross scarring.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Stony Brook University, Stony Brook, New York
| | | | - Amanda Ahrens
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Mary Sauer
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Steve A McClain
- Department of Emergency Medicine, Stony Brook University, Stony Brook, New York
| | - Edward Tredget
- Department of Plastic Surgery, Alberta University, Alberta, Canada
| | - Lior Rosenberg
- Department of Plastic Surgery, Ben Gurion University, Beer-Sheba, Israel
| |
Collapse
|
26
|
Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, Stoddard JL, Niemela JE, Tamankar V, Mhatre S, Bargir U, Kulkarni M, Shah N, Aggarwal A, Lashkari HP, Krishna V, Govindaraj G, Kalra M, Madkaikar M. Clinical, Immunological, and Molecular Findings in 57 Patients With Severe Combined Immunodeficiency (SCID) From India. Front Immunol 2019; 10:23. [PMID: 30778343 PMCID: PMC6369708 DOI: 10.3389/fimmu.2019.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Severe combined immunodeficiency (SCID) represents one of the most severe forms of primary immunodeficiency (PID) disorders characterized by impaired cellular and humoral immune responses. Here, we report the clinical, immunological, and molecular findings in 57 patients diagnosed with SCID from India. Majority of our patients (89%) presented within 6 months of age. The most common clinical manifestations observed were recurrent pneumonia (66%), failure to thrive (60%), chronic diarrhea (35%), gastrointestinal infection (21%), and oral candidiasis (21%). Hematopoietic Stem Cell Transplantation (HSCT) is the only curative therapy available for treating these patients. Four patients underwent HSCT in our cohort but had a poor survival outcome. Lymphopenia (absolute lymphocyte counts/μL <2,500) was noted in 63% of the patients. Based on immunophenotypic pattern, majority of the cases were T−B− SCID (39%) followed by T−B+ SCID (28%). MHC class II deficiency accounted for 10.5% of our patient group. A total of 49 patients were molecularly characterized in this study and 32 novel variants were identified in our cohort. The spectrum of genetic defects in our cohort revealed a wide genetic heterogeneity with the major genetic cause being RAG1/2 gene defect (n = 12) followed by IL2RG (n = 9) and JAK3 defects (n = 9). Rare forms of SCID like Purine nucleoside phosphorylase (PNP) deficiency, reticular dysgenesis, DNA-Protein Kinase (DNA-PKcs) deficiency, six cases of MHC class II deficiency and two ZAP70 deficiency were also identified in our cohort. Fourteen percent of the defects still remained uncharacterized despite the application of next generation sequencing. With the exception of MHC class II deficiency and ZAP70 deficiency, all SCID patients had extremely low T cell receptor excision (TRECs) (<18 copies/μL).
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Mukesh Desai
- Division of Immunology, Bai Jerbai Wadia Children's Hospital, Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Antony Terance
- Department of Pediatric Pulmonology, G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Jennifer L Stoddard
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Julie E Niemela
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | | | - Snehal Mhatre
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Umair Bargir
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Nitin Shah
- Pediatric Hematology-Oncology, P. D. Hinduja National Hospital & Research Center, Mumbai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Vidya Krishna
- Department of Pediatrics, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Geeta Govindaraj
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | - Manas Kalra
- Department of Pediatrics Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| |
Collapse
|
27
|
Krantz MS, Stone CA, Connelly JA, Norton AE, Khan YW. The effect of delayed and early diagnosis in siblings, and importance of newborn screening for SCID. Ann Allergy Asthma Immunol 2018; 122:211-213. [PMID: 30439467 DOI: 10.1016/j.anai.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew S Krantz
- Departments of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James A Connelly
- Division of Hematology-Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison E Norton
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yasmin W Khan
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Powell EJ, Charley S, Boettcher A, Varley L, Brown J, Schroyen M, Adur MK, Dekkers S, Isaacson D, Sauer M, Cunnick J, Ellinwood NM, Ross JW, Dekkers J, Tuggle C. Creating effective biocontainment facilities and maintenance protocols for raising specific pathogen-free, severe combined immunodeficient (SCID) pigs. Lab Anim 2018; 52:402-412. [PMID: 29325489 PMCID: PMC7737622 DOI: 10.1177/0023677217750691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Severe combined immunodeficiency (SCID) is defined by the lack of an adaptive immune system. Mutations causing SCID are found naturally in humans, mice, horses, dogs, and recently in pigs, with the serendipitous discovery of the Iowa State University SCID pigs. As research models, SCID animals are naturally tolerant of xenotransplantation and offer valuable insight into research areas such as regenerative medicine, cancer therapy, as well as immune cell signaling mechanisms. Large-animal biomedical models, particularly pigs, are increasingly essential to advance the efficacy and safety of novel regenerative therapies on human disease. Thus, there is a need to create practical approaches to maintain hygienic severe immunocompromised porcine models for exploratory medical research. Such research often requires stable genetic lines for replication and survival of healthy SCID animals for months post-treatment. A further hurdle in the development of the ISU SCID pig as a biomedical model involved the establishment of facilities and protocols necessary to obtain clean SPF piglets from the conventional pig farm on which they were discovered. A colony of homozygous SCID boars and SPF carrier sows has been created and maintained through selective breeding, bone marrow transplants, innovative husbandry techniques, and the development of biocontainment facilities.
Collapse
Affiliation(s)
| | - Sara Charley
- Department of Animal Science, Iowa State University
| | | | - Lisa Varley
- Department of Animal Science, Iowa State University
| | | | | | | | | | | | - Mary Sauer
- Laboratory Animal Resources, Iowa State University
| | - Joan Cunnick
- Department of Animal Science, Iowa State University
| | | | | | - Jack Dekkers
- Department of Animal Science, Iowa State University
| | | |
Collapse
|
29
|
Song J, Wang G, Hoenerhoff MJ, Ruan J, Yang D, Zhang J, Yang J, Lester PA, Sigler R, Bradley M, Eckley S, Cornelius K, Chen K, Kolls JK, Peng L, Ma L, Chen YE, Sun F, Xu J. Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency. Front Immunol 2018; 9:429. [PMID: 29593714 PMCID: PMC5854650 DOI: 10.3389/fimmu.2018.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023] Open
Abstract
Using the CRISPR/Cas9 gene-editing technology, we recently produced a number of rabbits with mutations in immune function genes, including FOXN1, PRKDC, RAG1, RAG2, and IL2RG. Seven founder knockout rabbits (F0) and three male IL2RG null (-/y) F1 animals demonstrated severe combined immunodeficiency (SCID), characterized by absence or pronounced hypoplasia of the thymus and splenic white pulp, and absence of immature and mature T and B-lymphocytes in peripheral blood. Complete blood count analysis showed severe leukopenia and lymphocytopenia accompanied by severe neutrophilia. Without prophylactic antibiotics, the SCID rabbits universally succumbed to lung infections following weaning. Pathology examination revealed severe heterophilic bronchopneumonia caused by Bordetella bronchiseptica in several animals, but a consistent feature of lung lesions in all animals was a severe interstitial pneumonia caused by Pneumocystis oryctolagi, as confirmed by histological examination and PCR analysis of Pneumocystis genes. The results of this study suggest that these SCID rabbits could serve as a useful model for human SCID to investigate the disease pathogenesis and the development of gene and drug therapies.
Collapse
Affiliation(s)
- Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Guoshun Wang
- Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jibing Yang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Patrick A. Lester
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Robert Sigler
- In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Bradley
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samantha Eckley
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kelsey Cornelius
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K. Kolls
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Peng
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD, United States
| | - Liang Ma
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD, United States
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Fei Sun
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Okano T, Nishikawa T, Watanabe E, Watanabe T, Takashima T, Yeh TW, Yamashita M, Tanaka-Kubota M, Miyamoto S, Mitsuiki N, Takagi M, Kawano Y, Mochizuki Y, Imai K, Kanegane H, Morio T. Maternal T and B cell engraftment in two cases of X-linked severe combined immunodeficiency with IgG1 gammopathy. Clin Immunol 2017; 183:112-120. [PMID: 28780374 DOI: 10.1016/j.clim.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
Abstract
X-linked severe combined immunodeficiency (X-SCID), caused by defects in the common gamma chain, is typically characterized by T and NK cell defects with the presence of B cells. T cell dysfunction and impaired class-switch recombination of B cells mean that patients typically have defects in class-switched immunoglobulins (IgG, IgA, and IgE) with detectable IgM. Here, we describe two patients with X-SCID with IgG1 gammopathy, in whom we identified maternal T and B cell engraftment. Exclusively, maternal B cells were found among the IgD-CD27+ class-switched memory B cells, whereas the patients' B cells remained naïve. In vitro stimulation with CD40L+IL-21 revealed that peripheral blood cells from both patients produced only IgG1. Class-switched maternal B cells had restricted receptor repertoires with various constant regions and few somatic hypermutations. In conclusion, engrafted maternal B cells underwent class-switch recombination and produced immunoglobulin, causing hypergammaglobulinemia in patients with X-SCID.
Collapse
Affiliation(s)
- Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eri Watanabe
- Laboratory of Diagnostic Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tanaka-Kubota
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshifumi Kawano
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiki Mochizuki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
31
|
Powell EJ, Graham J, Ellinwood NM, Hostetter J, Yaeger M, Ho CS, Gault L, Norlin V, Snella EN, Jens J, Waide EH, Boettcher AN, Kerrigan M, Rowland RRR, Ross JW, Dekkers JCM, Tuggle CK. T Cell Lymphoma and Leukemia in Severe Combined Immunodeficiency Pigs following Bone Marrow Transplantation: A Case Report. Front Immunol 2017; 8:813. [PMID: 28747915 PMCID: PMC5506080 DOI: 10.3389/fimmu.2017.00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
After the discovery of naturally occurring severe combined immunodeficiency (SCID) within a selection line of pigs at Iowa State University, we found two causative mutations in the Artemis gene: haplotype 12 (ART12) and haplotype 16 (ART16). Bone marrow transplants (BMTs) were performed to create genetically SCID and phenotypically immunocompetent breeding animals to establish a SCID colony for further characterization and research utilization. Of nine original BMT transfer recipients, only four achieved successful engraftment. At approximately 11 months of age, both animals homozygous for the ART16 mutation were diagnosed with T cell lymphoma. One of these ART16/ART16 recipients was a male who received a transplant from a female sibling; the tumors in this recipient consist primarily of Y chromosome-positive cells. The other ART16/ART16 animal also presented with leukemia in addition to T cell lymphoma, while one of the ART12/ART16 compound heterozygote recipients presented with a nephroblastoma at a similar age. Human Artemis SCID patients have reported cases of lymphoma associated with a "leaky" Artemis phenotype. The naturally occurring Artemis SCID pig offers a large animal model more similar to human SCID patients and may offer a naturally occurring cancer model and provides a valuable platform for therapy development.
Collapse
Affiliation(s)
- Ellis J Powell
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jared Graham
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - N M Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jesse Hostetter
- Department of Veterinary Pathology Science, Iowa State University, Ames, IA, United States
| | - Michael Yaeger
- Department of Veterinary Pathology Science, Iowa State University, Ames, IA, United States
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, MI, United States
| | - Lynden Gault
- Gift of Life Michigan, Ann Arbor, MI, United States
| | | | - Elizabeth N Snella
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jackie Jens
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Emily H Waide
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Adeline N Boettcher
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
32
|
Powell EJ, Cunnick JE, Tuggle CK. SCID pigs: An emerging large animal NK model. JOURNAL OF RARE DISEASES RESEARCH & TREATMENT 2017; 2:1-6. [PMID: 29152615 PMCID: PMC5690567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Severe Combined ImmunoDeficiency (SCID) is defined as the lack or impairment of an adaptive immune system. Although SCID phenotypes are characteristically absent of T and B cells, many such SCID cellular profiles include the presence of NK cells. In human SCID patients, functional NK cells may impact the engraftment success of life saving procedures such as bone marrow transplantation. However, in animal models, a T cell-, B cell-, NK cell+ environment provides a valuable tool for asking specific questions about the extent of the innate immune system function as well as emerging NK targeted therapies against cancer. Physiologically and immunologically the pig is more similar to the human than common rodent research animals. This review discusses why the T- B- NK+ SCID pig may offer a more relevant model for development of human SCID patient therapies as well as provide an opportunity for systematic exploration of the role of NK cells in artiodactyl immunity.
Collapse
Affiliation(s)
- Ellis J Powell
- Genetics and Genomics Graduate Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Joan E Cunnick
- Interdepartmental Microbiology Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Christopher K Tuggle
- Genetics and Genomics Graduate Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Castañeda-Lopez ME, Garza-Veloz I, Lopez-Hernandez Y, Barbosa-Cisneros OY, Martinez-Fierro ML. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested. Immunol Invest 2016; 45:450-70. [PMID: 27245510 DOI: 10.3109/08820139.2016.1168831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- M E Castañeda-Lopez
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - I Garza-Veloz
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - Y Lopez-Hernandez
- c CONACyT Research Fellow, Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud , Universidad Autonoma de Zacatecas , Mexico
| | - O Y Barbosa-Cisneros
- d Laboratory of Cell and Molecular Biology, Unidad Academica de Ciencias Quimicas de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - M L Martinez-Fierro
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| |
Collapse
|
34
|
Powell EJ, Cunnick JE, Knetter SM, Loving CL, Waide EH, Dekkers JCM, Tuggle CK. NK cells are intrinsically functional in pigs with Severe Combined Immunodeficiency (SCID) caused by spontaneous mutations in the Artemis gene. Vet Immunol Immunopathol 2016; 175:1-6. [PMID: 27269786 DOI: 10.1016/j.vetimm.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
We have identified Severe Combined Immunodeficiency (SCID) in a line of Yorkshire pigs at Iowa State University. These SCID pigs lack B-cells and T-cells, but possess Natural Killer (NK) cells. This SCID phenotype is caused by recessive mutations in the Artemis gene. Interestingly, two human tumor cell lines, PANC-1 and A375-SM, survived after injection into these SCID pigs, but, as we demonstrate here, these cells, as well as K562 tumor cells, can be lysed in vitro by NK cells from SCID and non-SCID pigs. NK cells from both SCID and non-SCID pigs required activation in vitro with either recombinant human IL-2 or the combination of recombinant porcine IL-12 and IL-18 to kill tumor targets. We also showed that SCID NK cells could be activated to produce perforin, and perforin production was greatly enhanced in NK cells from both SCID and non-SCID pigs after IL-2 cytokine treatment. While CD16+, CD172- NK cells constituted an average of only 4% in non-SCID pigs, NK cells averaged 27% of the peripheral blood mononuclear cell population in SCID pigs. We found no significant differences in killing activity per NK cell between SCID and non-SCID pigs. We conclude that survival of human cancer cells in these SCID pigs is not due to an intrinsic defect in NK cell killing ability.
Collapse
Affiliation(s)
- Ellis J Powell
- Iowa State University, Department of Animal Science, Ames, IA, USA
| | - Joan E Cunnick
- Iowa State University, Department of Animal Science, Ames, IA, USA
| | - Susan M Knetter
- Iowa State University, Department of Animal Science, Ames, IA, USA
| | - Crystal L Loving
- USDA-ARS-National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USA
| | - Emily H Waide
- Iowa State University, Department of Animal Science, Ames, IA, USA
| | - Jack C M Dekkers
- Iowa State University, Department of Animal Science, Ames, IA, USA
| | | |
Collapse
|
35
|
|
36
|
Waide EH, Dekkers JCM, Ross JW, Rowland RRR, Wyatt CR, Ewen CL, Evans AB, Thekkoot DM, Boddicker NJ, Serão NVL, Ellinwood NM, Tuggle CK. Not All SCID Pigs Are Created Equally: Two Independent Mutations in the Artemis Gene Cause SCID in Pigs. THE JOURNAL OF IMMUNOLOGY 2015; 195:3171-9. [PMID: 26320255 DOI: 10.4049/jimmunol.1501132] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023]
Abstract
Mutations in >30 genes are known to result in impairment of the adaptive immune system, causing a group of disorders collectively known as SCID. SCID disorders are split into groups based on their presence and/or functionality of B, T, and NK cells. Piglets from a line of Yorkshire pigs at Iowa State University were shown to be affected by T(-)B(-)NK(+) SCID, representing, to our knowledge, the first example of naturally occurring SCID in pigs. In this study, we present evidence for two spontaneous mutations as the molecular basis for this SCID phenotype. Flow cytometry analysis of thymocytes showed an increased frequency of immature T cells in SCID pigs. Fibroblasts from these pigs were more sensitive to ionizing radiation than non-SCID piglets, eliminating the RAG1 and RAG2 genes. Genetic and molecular analyses showed that two mutations were present in the Artemis gene, which in the homozygous or compound heterozygous state cause the immunodeficient phenotype. Rescue of SCID fibroblast radiosensitivity by human Artemis protein demonstrated that the identified Artemis mutations are the direct cause of this cellular phenotype. The work presented in the present study reveals two mutations in the Artemis gene that cause T(-)B(-)NK(+) SCID in pigs. The SCID pig can be an important biomedical model, but these mutations would be undesirable in commercial pig populations. The identified mutations and associated genetic tests can be used to address both of these issues.
Collapse
Affiliation(s)
- Emily H Waide
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Jack C M Dekkers
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Carol R Wyatt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Catherine L Ewen
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Alyssa B Evans
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Dinesh M Thekkoot
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | | | - Nick V L Serão
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | | | | |
Collapse
|
37
|
Abstract
The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.
Collapse
|
38
|
Cytomegalovirus pneumonia as the first manifestation of severe combined immunodeficiency. Cent Eur J Immunol 2014; 39:392-5. [PMID: 26155153 PMCID: PMC4440000 DOI: 10.5114/ceji.2014.45953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/30/2014] [Indexed: 12/23/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is characterized by the absence of functional T lymphocytes and impairment of adaptive immunity. While heterogeneity of the genetic background in SCID leads to the variability of immune phenotypes, most of affected newborns appear healthy but within the first few months they develop life-threatening opportunistic respiratory or gastrointestinal tract infections. The objective of the study was to define the presenting features and etiology of infections in children with SCID. We retrospectively reviewed five children in whom the diagnosis of SCID had been established in our pediatric immunology clinic over the last 10-year period. A viral respiratory tract infection was the first manifestation of SCID in all the children studied. Cytomegalovirus (CMV) pneumonia was recognized in as many as 4 cases and coronavirus pulmonary infection was diagnosed in one case, whereas Pneumocystis jiroveci was identified as a co-pathogen in one CMV-infected patient. Severe combined immunodeficiency is a pediatric emergency condition and given the significant impact of pulmonary CMV infection in SCID children, establishing an accurate etiological diagnosis is of essential importance in instituting the specific treatment and improving the outcome.
Collapse
|
39
|
Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, Notarangelo LD, Pan-Hammarström Q, Hammarström L. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 2014; 134:1375-1380. [PMID: 24996264 DOI: 10.1016/j.jaci.2014.04.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recombination-activating gene 1 (RAG1) deficiency presents with a varied spectrum of combined immunodeficiency, ranging from a T(-)B(-)NK(+) type of disease to a T(+)B(+)NK(+) phenotype. OBJECTIVE We sought to assess the genetic background of patients with common variable immunodeficiency (CVID). METHODS A patient given a diagnosis of CVID, who was born to a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunologic assays, homozygosity gene mapping, exome sequencing, Sanger sequencing, and functional analysis. RESULTS The 14-year-old patient, who had liver granuloma, extranodal marginal zone B-cell lymphoma, and autoimmune neutropenia, presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. CONCLUSION Our finding broadens the range of disorders associated with RAG1 mutations and might have important therapeutic implications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yu Nee Lee
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
40
|
Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption. Clin Immunol 2014; 153:17-22. [DOI: 10.1016/j.clim.2014.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 01/19/2023]
|
41
|
Lingman Framme J, Borte S, von Döbeln U, Hammarström L, Oskarsdóttir S. Retrospective analysis of TREC based newborn screening results and clinical phenotypes in infants with the 22q11 deletion syndrome. J Clin Immunol 2014; 34:514-9. [PMID: 24610337 DOI: 10.1007/s10875-014-0002-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Population-based newborn screening using T-cell receptor excision circles (TREC) identifies infants with severe T-lymphopenia, seen in severe combined immunodeficiencies (SCID), but also infants with the 22q11 deletion syndrome (22q11DS). Methods for analysis of kappa-deleting recombination excision circles (KREC) help identifying infants with B-lymphopenia. We aimed to evaluate the occurrence of abnormal TREC or KREC newborn screening results in 22q11DS patients and assessed the clinical relevance of abnormal screening reports. METHODS Simultaneous TREC and KREC analysis was performed on stored original Guthrie cards. Patients with abnormal screening reports were compared to patients with normal reports, regarding lymphocyte counts and clinical severity, obtained by retrospective analysis of medical charts. RESULTS Of 48 included patients, nine (19 %) had abnormal TREC copy numbers. All 22q11DS patients with abnormal TRECs had CD3+ T-lymphopenia at the time of diagnosis, but only one patient had the complete DiGeorge syndrome. Identified 22q11DS patients with abnormal TREC copy numbers showed significantly lower CD8+ T-lymphocytes at time-of-diagnosis and were significantly more prone to viral infections, compared to 22q11DS patients with normal TREC copy numbers. All 22q11DS patients showed KREC copies within the normal range. CONCLUSIONS In this retrospective study a high proportion of 22q11DS patients were identified by TREC-based newborn screening. Although only one of them had the complete DiGeorge syndrome with no T-lymphocytes, all of them had T-lymphopenia and most of them had recurrent viral infections, as well as other medical problems, warranting early recognition of the syndrome.
Collapse
Affiliation(s)
- Jenny Lingman Framme
- Department of Pediatrics, Halland Hospital Halmstad, S-301 85, Halmstad, Sweden,
| | | | | | | | | |
Collapse
|
42
|
Tillipman Ladinsky H, Gillispie M, Sriaroon P, Leiding JW. Thoracic Duct Injury Resulting in Abnormal Newborn Screen. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:583-8. [DOI: 10.1016/j.jaip.2013.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
|
43
|
Barthels C, Puchałka J, Racek T, Klein C, Brocker T. Novel spontaneous deletion of artemis exons 10 and 11 in mice leads to T- and B-cell deficiency. PLoS One 2013; 8:e74838. [PMID: 24069355 PMCID: PMC3775751 DOI: 10.1371/journal.pone.0074838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
Here we describe a novel, spontaneous, 4035 basepairs long deletion in the DNA cross-link repair 1C (Dclre1c)-locus in C57BL/6-mice, which leads to loss of exons 10 and 11 of the gene encoding for Artemis, a protein involved into V(D) J-recombination of antigen receptors of T and B cells. While several spontaneous mutations of Artemis have been described to cause SCID in humans, in mice, only targeted deletions by knockout technology are known to cause the same phenotype so far. The deletion we observed causes a loss of Artemis function in the C57BL/6 strain and, consequently, the absence of T and B cells, in presence of normal numbers of NK cells and cells of the myeloid lineage. Thus, for the first time we present T-B-NK+ severe combined immunodeficiency (SCID) phenotype after spontaneously occurring modification of Artemis gene in mice. Our mouse model may serve as a valuable tool to study mechanisms as well as potential therapies of SCID in humans.
Collapse
Affiliation(s)
- Christian Barthels
- Institute for Immunology, Ludwig-Maximilians-Universität, München, Germany
| | - Jacek Puchałka
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, Ludwig-Maximilians-Universität, München, Germany
| | - Tomas Racek
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, Ludwig-Maximilians-Universität, München, Germany
| | - Christoph Klein
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, Ludwig-Maximilians-Universität, München, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilians-Universität, München, Germany
- * E-mail:
| |
Collapse
|
44
|
Hara T. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Symposium: 2. Diseases originated from stem cell abnormalities; 1) Abnormalities in hematopoietic stem cells: congenital immunodeficiencies]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2255-2261. [PMID: 24228408 DOI: 10.2169/naika.102.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Japan
| |
Collapse
|
45
|
Roxo-Junior P, Silva J, Andrea M, Oliveira L, Ramalho F, Bezerra T, Nunes AA. A family history of serious complications due to BCG vaccination is a tool for the early diagnosis of severe primary immunodeficiency. Ital J Pediatr 2013; 39:54. [PMID: 24016734 PMCID: PMC3846874 DOI: 10.1186/1824-7288-39-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/04/2013] [Indexed: 01/02/2023] Open
Abstract
Severe Combined Immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency (PID). Complications of BCG vaccination, especially disseminated infection and its most severe forms, are known to occur in immunodeficient patients, particularly in SCID. A carefully taken family history before BCG injection as well as delaying vaccination if PID is suspected could be a simple and effective method to avoid inappropriate vaccination of an immunodeficient child in some cases until the prospect of newborn screening for SCID has been fully developed. We describe a patient with a very early diagnosis of SCID, which was suspected on the basis of the previous death of two siblings younger than one year due to severe complications secondary to the BCG vaccine. We suggest that a family history of severe or fatal reactions to BCG should be included as a warning sign for an early diagnosis of SCID.
Collapse
Affiliation(s)
- Pérsio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chiarini M, Zanotti C, Serana F, Sottini A, Bertoli D, Caimi L, Imberti L. T-cell Receptor and K-deleting Recombination Excision Circles in Newborn Screening of T- and B-cell Defects: Review of the Literature and Future Challenges. J Public Health Res 2013; 2:9-16. [PMID: 25170474 PMCID: PMC4140322 DOI: 10.4081/jphr.2013.e3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/06/2013] [Indexed: 11/23/2022] Open
Abstract
Since its introduction as a public health programme in the United States in the early 1960s, newborn blood screening (NBS) has evolved from the detection of phenylalanine levels on filter paper to the application of DNA-based technologies to identify T-cell lymphopenia in infants with severe combined immunodeficiency. This latter use of NBS has required the development of an assay for T-cell lymphopenia based on the quantification of T-cell receptor excision circles (TRECs) that could be performed on dried blood spots routinely collected from newborn infants. The TREC-based NBS was developed six years ago, and there have already been 7 successful pilot studies since then. Similarly, efforts are now being made to establish a screen for B-cell defects, in particular agammaglobulinaemia, taking advantage of the introduction of the method for the quantification of K-deleting recombination excision circles (KRECs). A further achievement of NBS could be the simultaneous recognition of T- and B-cell defects using the combined quantification of TRECs and KRECs from Guthrie card blood spots. This approach may help the early identification of infants with T- and B-cell deficiencies so that they can then be referred to specialised paediatric centres, where a precise diagnosis of severe combined immunodeficiency and agammaglobulinaemia can be performed, and where then they can immediately receive specific therapy. Simultaneous TREC and KREC quantification should also allow classification of patients into subgroups and help identify children with less serious primary immunodeficiencies. This would help avoid the opportunistic infections and frequent hospitalisations that result from a late or lack of diagnosis.
Collapse
Affiliation(s)
- Marco Chiarini
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| | - Cinzia Zanotti
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| | - Federico Serana
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| | - Alessandra Sottini
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| | - Diego Bertoli
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| | - Luigi Caimi
- Clinical Biochemistry, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Luisa Imberti
- Laboratorio Interdipartimentale di Biologia Cellulare e Radiobiologia, Diagnostics Department, Spedali Civili of Brescia Brescia , Italy
| |
Collapse
|
47
|
Chien YH, Chiang SC, Chang KL, Yu HH, Lee WI, Tsai LP, Hsu LW, Hu MH, Hwu WL. Incidence of severe combined immunodeficiency through newborn screening in a Chinese population. J Formos Med Assoc 2013; 114:12-6. [PMID: 25618583 DOI: 10.1016/j.jfma.2012.10.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 09/10/2012] [Accepted: 10/30/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/PURPOSE In order to know the true incidence of severe combined immunodeficiency (SCID) in a Chinese population, we conducted and implemented SCID newborn screening in Taiwan. METHODS Between May 1, 2010 and December 31, 2011, the National Taiwan University Hospital Newborn Screening Center screened all newborns for T-cell lymphopenia by measuring the copy number of T-cell receptor excision circles (TRECs) and RNase P. Newborns with low TREC values were subjected to complete blood cell counts and flow cytometry. RESULTS A total of 106,391 newborns were screened using the TREC assay over a period of 19 months. Five newborns were immediately referred for confirmatory tests, including two SCID patients and two patients with persistent T-cell lymphopenia; a third SCID patient was found 2 months after the study period. All three SCID cases received stem cell transplantation at the age of 2-5 months. We also identified five cases of 22q11.2 microdeletion syndrome. During this period, two SCID patients from among the unscreened newborns were reported, and they died at ages 3 months and 4 months, respectively. CONCLUSION Newborn screening to measure the number of TREC copies successfully identifies newborns with T-cell lymphopenia, 22q11.2 microdeletion syndrome, and other high-risk conditions. Taken together, the incidence of T-cell lymphopenia in apparently healthy newborns is more than 1 in 11,821, and further attention to their immune functions is warranted.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chuan Chiang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Ling Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-I Lee
- Department of Pediatrics, Chang Gung Memorial Hospital and Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City, Taiwan
| | - Li-Wen Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Huei Hu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
|
49
|
Yao CM, Han XH, Zhang YD, Zhang H, Jin YY, Cao RM, Wang X, Liu QH, Zhao W, Chen TX. Clinical characteristics and genetic profiles of 44 patients with severe combined immunodeficiency (SCID): report from Shanghai, China (2004-2011). J Clin Immunol 2012; 33:526-39. [PMID: 23250629 DOI: 10.1007/s10875-012-9854-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/09/2012] [Indexed: 01/18/2023]
Abstract
Severe combined immunodeficiency (SCID), a rare type of genetic associated immune disorder, is poorly characterized in mainland China. We retrospectively reviewed 44 patients with SCID who received treatment from 2004 to 2011 in Shanghai, China, and herein summarize their clinical manifestations and immunological and preliminary genetic features. The male-to-female ratio was 10:1. Twenty five patients presented with X-SCID symptoms. Only one patient was diagnosed before the onset of symptoms due to positive family history. The mean time of delay in the diagnosis of X-SCID was 2.69 months (range, 0.5-8.67). Thirty-seven of the 44 patients died by the end of 2011 with the mean age of death being 7.87 months (range, 1.33-31). Six patients received hematopoietic stem cell transplantation (HSCT); only one of them survived, who was transplanted twice. The time between onset and death was shorter in the HSCT-treated group compared with the untreated group (2.87 ± 1.28 and 3.34 ± 0.59 months, respectively), probably due to active infections during transplantation. Bacillus Calmette-Guérin (BCG) complications occurred in 14 of the 34 patients who received BCG vaccination. Transfusion-induced graft-versus-host disease occurred in 5 patients. Total 20 mutations in interleukin-2 receptor subunit gamma (IL2RG) were identified in 22 patients, including 11 novel mutations. Most patients were misdiagnosed before referred to our SCID Center. Therefore, establishing more diagnostic centers dedicated to the care of PID and accessible by primary immunodeficiency patients will facilitate early, correct diagnosis and better care of SCID in China.
Collapse
Affiliation(s)
- Chun-Mei Yao
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20092, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male. Hum Immunol 2012; 74:18-22. [PMID: 23085344 DOI: 10.1016/j.humimm.2012.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
We report a male with atypical severe combined immunodeficiency caused by heterozygous compound mutations c.256-257del and c.C1331T in RAG1 gene. The patient presents with recurrent bronchopneumonias with obstruction, chronic fibrosing alveolitis, complicated by respiratory failure, pulmonary hypertension and hepatosplenomegaly. He was diagnosed with agammaglobulinemia at the age of 9. His condition was complicated by granulomatous skin disease at the age of 12 despite regular IVIg substitution. Immunological presentation included profound hypogammaglobulinemia and absence of B cells. Under immunoglobulin substitution for 5 years patient has permanent lymphopenia, skewed phenotype of T cells and diminished number of recent thymic emigrants.
Collapse
|