1
|
Steiner A, Raheem S, Ahmad Z. Significance of Leu and Ser in the βDELSEED-loop of Escherichia coli ATP synthase. Int J Biol Macromol 2020; 165:2588-2597. [DOI: 10.1016/j.ijbiomac.2020.10.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
|
2
|
Noroozi M, Rahmani A, Farhoudian A, Farhadi MH, Waye K, Ahounbar E, Bayani A, Armoon B. Patterns of drug use profiles among injection drug users in Tehran, Iran: a latent class analysis. JOURNAL OF SUBSTANCE USE 2019. [DOI: 10.1080/14659891.2019.1692924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mehdi Noroozi
- Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Azam Rahmani
- Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farhoudian
- Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Hassan Farhadi
- Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Katherine Waye
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Elahe Ahounbar
- Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Azadeh Bayani
- Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Armoon
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Amiri S, Mehrnia MR. Influence of controlled particle size on pore size distribution and mechanical resistance of agarose beads for bioadsorption application. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2018.1455776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sahar Amiri
- Group of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Mehrnia
- Group of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques. Biochem Biophys Rep 2019; 20:100670. [PMID: 31535038 PMCID: PMC6744526 DOI: 10.1016/j.bbrep.2019.100670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Interaction mechanisms of human serum albumin (HSA) with safranal and crocin were studied using UV–Vis absorption, fluorescence quenching and circular dichroism (CD) spectroscopies as well as molecular docking techniques. Changes in absorbance and fluorescence of HSA upon interactions with both compounds were attributed to their binding to amino acid chromophores located in subdomains IIA and IIIA. Fluorescence secondary inner filter effect was excluded using 278 nm and 340 nm as the wavelengths of HSA's excitation and fluorescence while safranal and crocin absorbed at 320 nm and 445 nm, respectively. Stern-Volmer model revealed a static quenching mechanism involve the formation of non-fluorescent ground state complexes. Stern-Volmer, Hill, Benesi-Hilbrand and Scatchard models gave apparent binding constants ranged in 4.25 × 103 - 2.15 × 105 for safranal and 7.67 × 103 - 4.23 × 105 L mol−1 for crocin. CD measurements indicated that 13 folds of safranal and crocin unfolded the α-helix structure of HSA by 7.47–21.20%. In-silico molecular docking revealed selective exothermic binding of safranal on eight binding sites with binding energies ranged in −3.969 to −6.6.913 kcal/mol. Crocin exothermally bound to a new large pocket located on subdomain IIA (sudlow 1) with binding energy of −12.922 kcal/mol. These results confirmed the formation of HSA stable complexes with safranal and crocin and contributed to our understanding for their binding characteristics (affinities, sites, modes, forces … etc.) and structural changes upon interactions. They also proved that HSA can solubilize and transport both compounds in blood to target tissues. The results are of high importance in determining the pharmacological properties of the two phytochemical compounds and for their future developments as anticancer, antispasmodic, antidepressant or aphrodisiac therapeutic agents. Interaction mechanisms of human serum albumin with safranal and crocin were studied using multi-spectroscopic techniques. Stern-Volmer, Hill, Benesi-Hilbrand and Scatchard models gave apparent binding constants ranged in 4.25 × 103 – 4.23 × 105 L.mol-1. In-silico molecular docking revealed selective exothermic binding on multiple HSA sites with ΔE between −3.96 and −12.92 kcal/mol The results confirmed that HSA can solubilize and transport safranal and crocin to target tissues through forming stable complexes. The results are important in determining the pharmacodynamics of both compounds and in their future development as therapeutic agents.
Collapse
|
5
|
Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase. Int J Biol Macromol 2018; 116:977-982. [DOI: 10.1016/j.ijbiomac.2018.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
|
6
|
Ahmad Z, Hassan SS, Azim S. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase. Curr Med Chem 2017; 24:3894-3906. [PMID: 28831918 PMCID: PMC5738703 DOI: 10.2174/0929867324666170823125330] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/01/1970] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| | - Sherif S Hassan
- Department of Medical Education, California University of Sciences and Medicine, School of Medicine (Cal Med-SOM), Colton, California 92324, USA
| | - Sofiya Azim
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| |
Collapse
|
7
|
Liu M, Amini A, Ahmad Z. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Int J Biol Macromol 2017; 95:145-152. [PMID: 27865956 PMCID: PMC5884629 DOI: 10.1016/j.ijbiomac.2016.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Safranal, a dominant component of saffron, is known to have antitumor, cytotoxic, and antibacterial properties. In this study, we examined safranal and its structural analogs-thymol, carvacrol, damascenone, cuminol, 2,6,6-trimethyl-2-cyclohexene-1,4-dione (TMCHD), 4-isopropylbenzyl bromide (IPBB), and 4-tert-butylphenol (TBP) induced inhibition of Escherichia coli membrane bound F1Fo ATP synthase. Safranal and its analogs inhibited wild-type enzyme to variable degrees. While safranal caused 100% inhibition of wild-type F1Fo ATP synthase, only about 50% inhibition occurred for αR283D mutant ATP synthase. Moreover, safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP all fully abrogated the growth of wild-type E. coli cells and had partial or no effect on the growth of null and mutant E. coli strains. Therefore, the antimicrobial properties of safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP can be linked to their binding and inhibition of ATP synthase. Total loss of growth in wild-type and partial or no growth loss in null or mutant E. coli strains demonstrates that ATP synthase is a molecular target for safranal and its structural analogs. Partial inhibition of the αArg-283 mutant enzyme establishes that αArg-283 residue is required in the polyphenol binding pocket of ATP synthase for the binding of safranal. Furthermore, partial growth loss for the null and mutant strains in the presence of inhibitors also suggests the role of other targets and residues in the process of inhibition.
Collapse
Affiliation(s)
- Mason Liu
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States
| | - Amon Amini
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States.
| |
Collapse
|
8
|
Ahmad Z, Tayou J, Laughlin TF. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase. Int J Biol Macromol 2015; 75:37-43. [PMID: 25603139 DOI: 10.1016/j.ijbiomac.2014.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
Abstract
This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States.
| | - Junior Tayou
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States
| | - Thomas F Laughlin
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States
| |
Collapse
|
9
|
Hosseinzadeh H, Mehri S, Heshmati A, Ramezani M, Sahebkar A, Abnous K. Proteomic screening of molecular targets of crocin. ACTA ACUST UNITED AC 2014; 22:5. [PMID: 24393168 PMCID: PMC3922837 DOI: 10.1186/2008-2231-22-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/22/2013] [Indexed: 12/31/2022]
Abstract
Background Traditional drug discovery approaches are mainly relied on the observed phenotypic changes following administration of a plant extract, drug candidate or natural product. Recently, target-based approaches are becoming more popular. The present study aimed to identify the cellular targets of crocin, the bioactive dietary carotenoid present in saffron, using an affinity-based method. Methods Heart, kidney and brain tissues of BALB/c mice were homogenized and extracted for the experiments. Target deconvolution was carried out by first passing cell lysate through an affinity column prepared by covalently attaching crocin to agarose beads. Isolated proteins were separated on a 2D gel, trypsinized in situ and identified by MALDI-TOF/TOF mass spectrometry. MASCOT search engine was used to analyze Mass Data. Results Part of proteome that physically interacts with crocin was found to consist of beta-actin-like protein 2, cytochrome b-c1 complex subunit 1, ATP synthase subunit beta, tubulin beta-3 chain, tubulin beta-6 chain, 14-3-3 protein beta/alpha, V-type proton ATPase catalytic subunitA, 60 kDa heat shock protein, creatine kinase b-type, peroxiredoxin-2, cytochrome b-c1 complex subunit 2, acetyl-coA acetyltransferase, cytochrome c1, proteasome subunit alpha type-6 and proteasome subunit alpha type-4. Conclusion The present findings revealed that crocin physically binds to a wide range of cellular proteins such as structural proteins, membrane transporters, and enzymes involved in ATP and redox homeostasis and signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Khalil Abnous
- Pharmaceutical Research Center, Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, 91775-1365 Mashhad, Iran.
| |
Collapse
|