1
|
Liu X, Cherepanov S, Abouzari M, Zuko A, Yang S, Sayadi J, Jia X, Terao C, Sasaki T, Yokoyama S. R150S mutation in the human oxytocin receptor: Gain-of-function effects and implication in autism spectrum disorder. Peptides 2024; 182:171301. [PMID: 39395443 DOI: 10.1016/j.peptides.2024.171301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
This study investigates the rs547238576 (R150S) missense variant in the oxytocin receptor (OXTR) gene, previously observed through screening of rare variants in Japanese individuals with autism spectrum disorders (ASD). Contrary to the anticipated loss-of-function, R150S exhibits gain-of-function effects, enhancing oxytocin (OXT) sensitivity, ligand-binding affinity, and OXT-induced Ca2+ mobilization in vitro. This suggests R150S may alter OXT signaling, potentially contributing to the excitatory/inhibitory imbalance seen in ASD and other psychiatric disorders. Our findings underscore the significance of genetic variations in OXTR on functional activity and highlight the necessity for population-specific genetic study and in vitro analysis to elucidate genetic susceptibilities to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Stanislav Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan; Institute for Functional Genomics, French National Centre for Scientific Research, Montpellier, Occitanie, France
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Jamasb Sayadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xiaoyuan Jia
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, Japan; Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan.
| |
Collapse
|
2
|
Higashida H, Oshima Y, Yamamoto Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 2024; 178:171230. [PMID: 38677620 DOI: 10.1016/j.peptides.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
3
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
4
|
George K, Hoang HT, Tibbs T, Nagaraja RY, Li G, Troyano-Rodriguez E, Ahmad M. Robust GRK2/3/6-dependent desensitization of oxytocin receptor in neurons. iScience 2024; 27:110047. [PMID: 38883814 PMCID: PMC11179071 DOI: 10.1016/j.isci.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain. Both cell autonomous spiking response and presynaptic activation undergo similar agonist-induced desensitization. G-protein-coupled receptor kinases (GRK) GRK2, GRK3, and GRK6 are recruited to the activated OXTR in neurons, followed by recruitment of β-arrestin-1 and -2. Neuronal OXTR desensitization was impaired by suppression of GRK2/3/6 kinase activity but remained unaltered with double knockout of β-arrestin-1 and -2. Additionally, we observed robust agonist-induced internalization of neuronal OXTR and its Rab5-dependent recruitment to early endosomes, which was impaired by GRK2/3/6 inhibition. This work defines distinctive aspects of the mechanisms governing OXTR desensitization and internalization in neurons compared to prior studies in heterologous cells.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hanh T.M. Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Taryn Tibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eva Troyano-Rodriguez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
6
|
Kohlhoff J, Cibralic S, Hawes D, Eapen V. Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: a systematic narrative review. Neurosci Biobehav Rev 2022; 135:104573. [PMID: 35149102 DOI: 10.1016/j.neubiorev.2022.104573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
This study systematically reviewed available evidence regarding associations between polymorphisms of the oxytocin receptor (OXTR) gene and socio-emotional and behavioral functioning in children and adolescents. The search yielded 69 articles, which were grouped into nine categories: depression, anxiety, and internalizing symptoms, alcohol abuse, borderline personality disorder, conduct disorder symptoms or diagnosis, autism spectrum disorder, Attention deficit hyperactivity disorder, early childhood attachment and behavior, pro-social skills, and resilience. Direct and/or gene x environment interactions were identified in over half of the studies. ASD and conduct disorder (including callous unemotional traits) were the diagnoses that were most studied and for which there was the strongest evidence of direct links with OXTR polymorphisms. In most studies identifying gene x environment interactions, the candidate OXTR polymorphism was rs53576. Results suggest that OXTR polymorphisms are associated with social, emotional or behavioural functioning in children and adolescents. The mixed findings do, however, highlight the need for further research.
Collapse
Affiliation(s)
- Jane Kohlhoff
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Karitane, P.O. Box 241, Villawood NSW 2163, Australia.
| | - Sara Cibralic
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia.
| | - David Hawes
- School of Psychology, Faculty of Science, University of Sydney, Camperdown NSW 2006, Australia.
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Academic Unit of Child Psychiatry and Clinical Academic, South West Sydney Local Health District, Liverpool Hospital, Elizabeth Street, Liverpool NSW 2170, Australia.
| |
Collapse
|
7
|
Naturally Occurring Genetic Variants in the Oxytocin Receptor Alter Receptor Signaling Profiles. ACS Pharmacol Transl Sci 2021; 4:1543-1555. [PMID: 34661073 PMCID: PMC8506602 DOI: 10.1021/acsptsci.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 01/04/2023]
Abstract
![]()
The hormone oxytocin
is commonly administered during childbirth
to initiate and strengthen uterine contractions and prevent postpartum
hemorrhage. However, patients have wide variation in the oxytocin
dose required for a clinical response. To begin to uncover the mechanisms
underlying this variability, we screened the 11 most prevalent missense
genetic variants in the oxytocin receptor (OXTR)
gene. We found that five variants, V45L, P108A, L206V, V281M, and
E339K, significantly altered oxytocin-induced Ca2+ signaling
or β-arrestin recruitment and proceeded to assess the effects
of these variants on OXTR trafficking to the cell membrane, desensitization,
and internalization. The variants P108A and L206V increased OXTR localization
to the cell membrane, whereas V281M and E339K caused OXTR to be retained
inside the cell. We examined how the variants altered the balance
between OXTR activation and desensitization, which is critical for
appropriate oxytocin dosing. The E339K variant impaired OXTR activation,
internalization, and desensitization to roughly equal extents. In
contrast, V281M decreased OXTR activation but had no effect on internalization
and desensitization. V45L and P108A did not alter OXTR activation
but did impair β-arrestin recruitment, internalization, and
desensitization. Molecular dynamics simulations predicted that V45L
and P108A prevent extension of the first intracellular loop of OXTR,
thus inhibiting β-arrestin binding. Overall, our data suggest
mechanisms by which OXTR genetic variants could alter
clinical response to oxytocin.
Collapse
|
8
|
Nakata Y, Kanahara N, Kimura A, Niitsu T, Komatsu H, Oda Y, Nakamura M, Ishikawa M, Hasegawa T, Kamata Y, Yamauchi A, Inazumi K, Kimura H, Shiko Y, Kawasaki Y, Iyo M. Oxytocin system dysfunction in patients with treatment-resistant schizophrenia: Alterations of blood oxytocin levels and effect of a genetic variant of OXTR. J Psychiatr Res 2021; 138:219-227. [PMID: 33866050 DOI: 10.1016/j.jpsychires.2021.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Treatment-resistant schizophrenia (TRS) has a quite complex pathophysiology that includes not only severe positive symptoms but also other symptom domains. Much attention has been devoted to the overlapping psychological and biological profiles of schizophrenia and autistic spectrum disorder (ASD). We compared TRS patients (n = 30) with schizophrenia patients in remission (RemSZ, n = 28) and ASD patients (n = 28), focusing on general cognitive and social cognitive impairment and oxytocin system dysfunction. Our analyses revealed that there was no difference in oxytocin concentration among the three groups. The TRS patients' oxytocin blood concentrations were positively correlated with their processing speed and theory-of-mind scores, whereas the RemSZ and ASD groups had no significant relation with any measures. Rs53576, a single nucleotide polymorphism on the oxytocin receptor gene, affected social cognition abilities in the schizophrenia group. Although the overall findings are preliminary, they indicate that oxytocin system dysfunction could be involved in the serious cognitive deficits in TRS patients. Further, these results suggest that patients with TRS might have early neurodevelopmental abnormalities based on their shared biological features with ASD patients.
Collapse
Affiliation(s)
- Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsushi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Miwako Nakamura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masatomo Ishikawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Hasegawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Palliative Care Center, Chiba University Hospital, Chiba, Japan
| | - Yu Kamata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Yamauchi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Chiba Rosai Hospital, Ichihara, Japan
| | - Kazuhiko Inazumi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
9
|
Dobewall H, Saarinen A, Lyytikäinen LP, Keltikangas-Järvinen L, Lehtimäki T, Hintsanen M. Functional Polymorphisms in Oxytocin and Dopamine Pathway Genes and the Development of Dispositional Compassion Over Time: The Young Finns Study. Front Psychol 2021; 12:576346. [PMID: 33897514 PMCID: PMC8060576 DOI: 10.3389/fpsyg.2021.576346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background: We define compassion as an enduring disposition that centers upon empathetic concern for another person's suffering and the motivation to act to alleviate it. The contribution of specific candidate genes to the development of dispositional compassion for others is currently unknown. We examine candidate genes in the oxytocin and dopamine signaling pathways. Methods: In a 32-year follow-up of the Young Finns Study (N = 2,130, 44.0% men), we examined with multiple indicators latent growth curve modeling the molecular genetic underpinnings of dispositional compassion for others across the life span. We selected five single nucleotide polymorphisms (SNPs) whose functions are known in humans: rs2268498 (OXTR), rs3796863 (CD38) (related to lower oxytocin levels), rs1800497 (ANKK1/DRD2), rs4680 (COMT), and rs1611115 (DBH) (related to higher dopamine levels). Compassion was measured with Cloninger's Temperament and Character Inventory on three repeated observations spanning 15 years (1997–2012). Differences between gender were tested. Results: We did not find an effect of the five SNPs in oxytocin and dopamine pathway genes on the initial levels of dispositional compassion for others. Individuals who carry one or two copies of the T-allele of DBH rs1611115, however, tend to increase faster in compassion over time than those homozygotes for the C-allele, b = 0.063 (SE = 0.027; p = 0.018). This effect was largely driven by male participants, 0.206 (SE = 0.046; p < 0.001), and was not significant in female participants when analyzed separately. Conclusions: Men who are known to have, on average, lower compassion than women seem to reduce this difference over time if they carry the T-allele of DBH rs1611115. The direction of the association indicates that dopamine signaling activity rather than overall dopamine levels might drive the development of compassion.
Collapse
Affiliation(s)
- Henrik Dobewall
- Research Unit of Psychology, University of Oulu, Oulu, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aino Saarinen
- Research Unit of Psychology, University of Oulu, Oulu, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leo-Pekka Lyytikäinen
- Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Terho Lehtimäki
- Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mirka Hintsanen
- Research Unit of Psychology, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
11
|
Inositol 1,4,5-Trisphosphate Receptors in Human Disease: A Comprehensive Update. J Clin Med 2020; 9:jcm9041096. [PMID: 32290556 PMCID: PMC7231134 DOI: 10.3390/jcm9041096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (ITPRs) are intracellular calcium release channels located on the endoplasmic reticulum of virtually every cell. Herein, we are reporting an updated systematic summary of the current knowledge on the functional role of ITPRs in human disorders. Specifically, we are describing the involvement of its loss-of-function and gain-of-function mutations in the pathogenesis of neurological, immunological, cardiovascular, and neoplastic human disease. Recent results from genome-wide association studies are also discussed.
Collapse
|
12
|
Mahmuda NA, Yokoyama S, Munesue T, Hayashi K, Yagi K, Tsuji C, Higashida H. One Single Nucleotide Polymorphism of the TRPM2 Channel Gene Identified as a Risk Factor in Bipolar Disorder Associates with Autism Spectrum Disorder in a Japanese Population. Diseases 2020; 8:diseases8010004. [PMID: 32046066 PMCID: PMC7151227 DOI: 10.3390/diseases8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin 2 (TRPM2) is a non-specific cation channel, resulting in Ca2+ influx at warm temperatures from 34 °C to 47 °C, thus including the body temperature range in mammals. TRPM2 channels are activated by β-NAD+, ADP-ribose (ADPR), cyclic ADPR, and 2′-deoxyadenosine 5′-diphosphoribose. It has been shown that TRPM2 cation channels and CD38, a type II or type III transmembrane protein with ADP-ribosyl cyclase activity, simultaneously play a role in heat-sensitive and NAD+ metabolite-dependent intracellular free Ca2+ concentration increases in hypothalamic oxytocinergic neurons. Subsequently, oxytocin (OT) is released to the brain. Impairment of OT release may induce social amnesia, one of the core symptoms of autism spectrum disorder (ASD). The risk of single nucleotide polymorphisms (SNPs) and variants of TRPM2 have been reported in bipolar disorder, but not in ASD. Therefore, it is reasonable to examine whether SNPs or haplotypes in TRPM2 are associated with ASD. Here, we report a case-control study with 147 ASD patients and 150 unselected volunteers at Kanazawa University Hospital in Japan. The sequence-specific primer-polymerase chain reaction method together with fluorescence correlation spectroscopy was applied. Of 14 SNPs examined, one SNP (rs933151) displayed a significant p-value (OR = 0.1798, 95% CI = 0.039, 0.83; Fisher’s exact test; p = 0.0196). The present research data suggest that rs93315, identified as a risk factor for bipolar disorder, is a possible association factor for ASD.
Collapse
Affiliation(s)
- Naila Al Mahmuda
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Faculty of Business Administration, Eastern University, Dhaka 1205, Bangladesh
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Toshio Munesue
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Kunimasa Yagi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
- Correspondence:
| |
Collapse
|
13
|
Ichinose W, Cherepanov SM, Shabalova AA, Yokoyama S, Yuhi T, Yamaguchi H, Watanabe A, Yamamoto Y, Okamoto H, Horike S, Terakawa J, Daikoku T, Watanabe M, Mano N, Higashida H, Shuto S. Development of a Highly Potent Analogue and a Long-Acting Analogue of Oxytocin for the Treatment of Social Impairment-Like Behaviors. J Med Chem 2019; 62:3297-3310. [PMID: 30896946 DOI: 10.1021/acs.jmedchem.8b01691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nonapeptide hormone oxytocin (OT) has pivotal brain roles in social recognition and interaction and is thus a promising therapeutic drug for social deficits. Because of its peptide structure, however, OT is rapidly eliminated from the bloodstream, which decreases its potential therapeutic effects in the brain. We found that newly synthesized OT analogues in which the Pro7 of OT was replaced with N-( p-fluorobenzyl)glycine (2) or N-(3-hydroxypropyl)glycine (5) exhibited highly potent binding affinities for OT receptors and Ca2+ mobilization effects by selectively activating OT receptors over vasopressin receptors in HEK cells, where 2 was identified as a superagonist ( EMax = 131%) for OT receptors. Furthermore, the two OT analogues had a remarkably long-acting effect, up to 16-24 h, on recovery from impaired social behaviors in two strains of CD38 knockout mice that exhibit autism spectrum disorder-like social behavioral deficits, whereas the effect of OT itself rapidly diminished.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroaki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | - Ayu Watanabe
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | | | | | - Shinichi Horike
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | - Junpei Terakawa
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | - Takiko Daikoku
- Kanazawa University Advanced Science Research Center , Kanazawa 920-8640 , Japan
| | | | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai 980-8574 , Japan
| | | | | |
Collapse
|
14
|
Higashida H, Munesue T, Kosaka H, Yamasue H, Yokoyama S, Kikuchi M. Social Interaction Improved by Oxytocin in the Subclass of Autism with Comorbid Intellectual Disabilities. Diseases 2019; 7:E24. [PMID: 30813294 PMCID: PMC6473850 DOI: 10.3390/diseases7010024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Approximately half of all autism spectrum disorder (ASD) individuals suffer from comorbid intellectual disabilities. Furthermore, the prevalence of epilepsy has been estimated to be 46% of patients with low intelligence quotient. It is important to investigate the therapeutic benefits and adverse effects of any recently developed drugs for this proportion of individuals with the so-called Kanner type of ASD. Therefore, we investigated the therapeutic and/or adverse effects of intranasal oxytocin (OT) administration, especially in adolescents and adults with ASD and comorbid intellectual disability and epilepsy, with regard to core symptoms of social deficits. We have already reported three randomized placebo-controlled trials (RCTs). However, we revisit results in our pilot studies from the view of comorbidity. Most of the intellectually disabled participants were found to be feasible participants of the RCT. We observed significantly more events regarded as reciprocal social interaction in the OT group compared with the placebo group. In the trial, no or little differences in adverse events were found between the OT and placebo arms, as found in some other reports. However, seizures were induced in three participants with medical history of epilepsy during or after OT treatment. In conclusion, we stress that behavioral changes in ASD patients with intellectual disabilities could be recognized not by the conventional measurements of ASD symptoms but by detailed evaluation of social interactions arising in daily-life situations.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Graduate School of Medical Sciences and Research Center for Child Mental Development, University of Fukui, Eiheiji 910-1193, Japan.
| | - Hidenori Yamasue
- Department of Psychiatry and Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
15
|
Bozdogan ST, Kutuk MO, Tufan E, Altıntaş Z, Temel GO, Toros F. No Association between Polymorphisms of Vitamin D and Oxytocin Receptor Genes and Autistic Spectrum Disorder in a Sample of Turkish Children. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:415-421. [PMID: 30466214 PMCID: PMC6245295 DOI: 10.9758/cpn.2018.16.4.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social skills and communication with repetitive behaviors. Etiology is still unclear although it is thought to develop with interaction of genes and environmental factors. Oxytocin has extensive effects on intrauterine brain development. Vitamin D, affects neural development and differentiation and contributes to the regulation of around 900 genes including oxytocin receptor gene. In the present study, the contribution of D vitamin receptor and oxytocin receptor gene polymorphisms in the development of ASD in Turkish community was investigated. To our knowledge, this is the first study examining these two associated genes together in the literature. Methods Eighty-five patients diagnosed with ASD according to DSM-5 who were referred to outpatient clinics of Child and Adolescent Psychiatry of Başkent University and Mersin University and 52 healthy, age and gender-matched controls were included in the present study. Vitamin D receptor gene rs731236 (Taq1), rs2228570 (Fok1), rs1544410 (Bsm1), rs7975232 (Apa1) polymorphisms and oxytocin receptor gene rs1042778 and rs2268493 polymorphisms were investigated using real time polymerase chain reaction method. Results No significant difference between groups in terms of distribution of genotype and alleles in each of polymorphisms for these genes could be found. Conclusion Knowledge of genes and polymorphisms associated with the development of ASD may be beneficial for early diagnosis and future treatment. Further studies with larger populations are required to demonstrate molecular pathways which may play part in the development of ASD in Turkey.
Collapse
Affiliation(s)
- Sevcan Tug Bozdogan
- Department of Medical Genetics, School of Medicine, Çukurova University, Adana, Turkey
| | - Meryem Ozlem Kutuk
- Department of Child and Adolescent Psychiatry, School of Medicine, Başkent University, Adana, Turkey
| | - Evren Tufan
- Department of Child and Adolescent Psychiatry, School of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Zuhal Altıntaş
- Department of Medical Genetics, School of Medicine, Mersin University, Mersin, Turkey
| | - Gülhan Orekici Temel
- Department of Biostatistics and Medical Informatics, School of Medicine, Mersin University, Mersin, Turkey
| | - Fevziye Toros
- Department of Child and Adolescent Psychiatry, School of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
16
|
Waye MMY, Cheng HY. Genetics and epigenetics of autism: A Review. Psychiatry Clin Neurosci 2018; 72:228-244. [PMID: 28941239 DOI: 10.1111/pcn.12606] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Autism is a developmental disorder that starts before age 3 years, and children with autism have impairment in both social interaction and communication, and have restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. There is a strong heritable component of autism and autism spectrum disorder (ASD) as studies have shown that parents who have a child with ASD have a 2-18% chance of having a second child with ASD. The prevalence of autism and ASD have been increasing during the last 3 decades and much research has been carried out to understand the etiology, so as to develop novel preventive and treatment strategies. This review aims at summarizing the latest research studies related to autism and ASD, focusing not only on the genetics but also some epigenetic findings of autism/ASD. Some promising areas of research using transgenic/knockout animals and some ideas related to potential novel treatment and prevention strategies will be discussed.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yu Cheng
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci Bull 2017; 33:238-246. [PMID: 28283809 PMCID: PMC5360847 DOI: 10.1007/s12264-017-0120-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorders characterized by impaired social interactions, communication deficits, and repetitive behavior. Although the mechanisms underlying its etiology and manifestations are poorly understood, several lines of evidence from rodent and human studies suggest involvement of the evolutionarily highly-conserved oxytocin (OXT) and arginine-vasopressin (AVP), as these neuropeptides modulate various aspects of mammalian social behavior. As far as we know, there is no comprehensive review of the roles of the OXT and AVP systems in the development of ASD from the genetic aspect. In this review, we summarize the current knowledge regarding associations between ASD and single-nucleotide variants of the human OXT-AVP pathway genes OXT, AVP, AVP receptor 1a (AVPR1a), OXT receptor (OXTR), the oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl cyclase (CD38).
Collapse
|
18
|
Cherepanov SM, Yokoyama S, Mizuno A, Ichinose W, Lopatina O, Shabalova AA, Salmina AB, Yamamoto Y, Okamoto H, Shuto S, Higashida H. Structure-specific effects of lipidated oxytocin analogs on intracellular calcium levels, parental behavior, and oxytocin concentrations in the plasma and cerebrospinal fluid in mice. Pharmacol Res Perspect 2017; 5:e00290. [PMID: 28596839 PMCID: PMC5461640 DOI: 10.1002/prp2.290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022] Open
Abstract
Oxytocin (OT) is a neuroendocrine nonapeptide that plays an important role in social memory and behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects in some clinical trials. As a central nervous system (CNS) drug, however, OT has two unfavorable characteristics: OT is short‐acting and shows poor permeability across the blood–brain barrier, because it exists in charged form in the plasma and has short half‐life. To overcome these drawbacks, an analog with long‐lasting effects is required. We previously synthesized the analog, lipo‐oxytocin‐1 (LOT‐1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues. In this study, we synthesized and evaluated the analogs lipo‐oxytocin‐2 (LOT‐2) and lipo‐oxytocin‐3 (LOT‐3), which feature the conjugation of one palmitoyl group at the cysteine and tyrosine residues, respectively. In human embryonic kidney‐293 cells overexpressing human OT receptors, these three LOTs demonstrated comparably weak effects on the elevation of intracellular free calcium concentrations after OT receptor activation, compared to the effects of OT. The three LOTs and OT exhibited different time‐dependent effects on recovery from impaired pup retrieval behavior in sires of CD38‐knockout mice. Sires treated with LOT‐1 showed the strongest effect, whereas others had no or little effects at 24 h after injection. These results indicated that LOTs have structure‐specific agonistic effects, and suggest that lipidation of OT might have therapeutic benefits for social impairment.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Akira Mizuno
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Olga Lopatina
- Research Institute of Molecular Medicine & Pathobiochemistry Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky Krasnoyarsk 660022 Russia
| | - Anna A Shabalova
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Alla B Salmina
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan.,Research Institute of Molecular Medicine & Pathobiochemistry Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky Krasnoyarsk 660022 Russia
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyGraduate School of Medical Sciences Kanazawa University Kanazawa 920-8640 Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular BiologyGraduate School of Medical Sciences Kanazawa University Kanazawa 920-8640 Japan.,Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories) Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan.,Center for Research and Education on Drug Discovery Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo060-0812 Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| |
Collapse
|
19
|
Molecular Basis of Oxytocin Receptor Signalling in the Brain: What We Know and What We Need to Know. Curr Top Behav Neurosci 2017; 35:3-29. [PMID: 28812263 DOI: 10.1007/7854_2017_6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide involved in regulating the social behaviour of all vertebrates, has been proposed as a treatment for a number of neuropsychiatric disorders characterised by deficits in the social domain. Over the last few decades, advances focused on understanding the social effects of OT and its role in physiological conditions and brain diseases, but much less has been done to clarify the molecular cascade of events involved in mediating such effects and in particular the cellular and molecular pharmacology of OT and its target receptor (OTR) in neuronal and glial cells.The entity and persistence of OT activity in the brain is closely related to the expression and regulation of the OTR expressed on the cell surface, which transmits the signal intracellularly and permits OT to affect cell function. Understanding the various signalling mechanisms mediating OTR-induced cell responses is crucial to determine the different responses in different cells and brain regions, and the success of OT and OT-derived analogues in the treatment of neurodevelopmental and psychiatric diseases depends on how well we can control such responses. In this review, we will consider the most important aspects of OT/OTR signalling by focusing on the molecular events involved in OT binding and coupling, on the main signalling pathways activated by the OTR in neuronal cells and on intracellular and plasma membrane OTR trafficking, all of which contribute to the quantitative and qualitative features of OT responses in the brain.
Collapse
|
20
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
21
|
Reuter M, Montag C, Altmann S, Bendlow F, Elger C, Kirsch P, Becker A, Schoch-McGovern S, Simon M, Weber B, Felten A. Functional characterization of an oxytocin receptor gene variant (rs2268498) previously associated with social cognition by expression analysis in vitro and in human brain biopsy. Soc Neurosci 2016; 12:604-611. [DOI: 10.1080/17470919.2016.1214174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
- Center for Economics & Neuroscience, University of Bonn, Bonn, Germany
| | - Christian Montag
- Institute of Psychology and Education, Ulm University, Ulm, Germany
- Key Laboratory for NeuroInformation/Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Steffen Altmann
- Institute of Economics, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Bendlow
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Christian Elger
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
- Department of NeuroCognition, Life & Brain Center, Bonn, Germany
| | - Peter Kirsch
- Department of Psychiatry, Central Institute of Mental Health Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital of Bonn, Bonn, Germany
| | | | - Matthias Simon
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Bernd Weber
- Center for Economics & Neuroscience, University of Bonn, Bonn, Germany
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
- Department of NeuroCognition, Life & Brain Center, Bonn, Germany
| | - Andrea Felten
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
- Center for Economics & Neuroscience, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Toward a Mechanistic Understanding of How Variation in the Oxytocin Receptor Gene Shapes Individual Differences in Brain and Social Behavior. Biol Psychiatry 2016; 80:e7-e9. [PMID: 27346083 DOI: 10.1016/j.biopsych.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
|
23
|
Patak J, Zhang-James Y, Faraone SV. Endosomal system genetics and autism spectrum disorders: A literature review. Neurosci Biobehav Rev 2016; 65:95-112. [PMID: 27048963 PMCID: PMC4866511 DOI: 10.1016/j.neubiorev.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.
Collapse
Affiliation(s)
- Jameson Patak
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States.
| | - Yanli Zhang-James
- Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States.
| | - Stephen V Faraone
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States; Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
24
|
Mahmuda NA, Yokoyama S, Huang JJ, Liu L, Munesue T, Nakatani H, Hayashi K, Yagi K, Yamagishi M, Higashida H. A Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder. Int J Mol Sci 2016; 17:772. [PMID: 27213354 PMCID: PMC4881591 DOI: 10.3390/ijms17050772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate-methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1), is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs) examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16-0.91, p = 0.0394; Fisher's exact test). Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study.
Collapse
Affiliation(s)
- Naila Al Mahmuda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Jian-Jun Huang
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Li Liu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Hideo Nakatani
- Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
| | - Kunimasa Yagi
- Medical Education Research Center, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
25
|
Hidema S, Fukuda T, Hiraoka Y, Mizukami H, Hayashi R, Otsuka A, Suzuki S, Miyazaki S, Nishimori K. Generation of Oxtr cDNA(HA)-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner. J Cell Biochem 2016; 117:1099-111. [PMID: 26442453 DOI: 10.1002/jcb.25393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Abstract
The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR.
Collapse
Affiliation(s)
- Shizu Hidema
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomokazu Fukuda
- Department of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yuichi Hiraoka
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ryotaro Hayashi
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ayano Otsuka
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shingo Suzuki
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shinji Miyazaki
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Katsuhiko Nishimori
- Department of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Feldman R, Monakhov M, Pratt M, Ebstein RP. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Biol Psychiatry 2016; 79:174-84. [PMID: 26392129 DOI: 10.1016/j.biopsych.2015.08.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across ecological contexts.
Collapse
Affiliation(s)
- Ruth Feldman
- Department of Psychology (RF, MP) Bar-Ilan University, Ramat-Gan, Israel; Gonda Brain Sciences Center (RF), Bar-Ilan University, Ramat-Gan, Israel.
| | - Mikhail Monakhov
- Department of Psychology (MM, RPE), National University of Singapore, Singapore, Singapore
| | - Maayan Pratt
- Department of Psychology (RF, MP) Bar-Ilan University, Ramat-Gan, Israel
| | - Richard P Ebstein
- Department of Psychology (MM, RPE), National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals. Hum Genome Var 2015; 2:15024. [PMID: 27081536 PMCID: PMC4785550 DOI: 10.1038/hgv.2015.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
The oxytocin receptor (OXTR) gene has been implicated as a risk gene for autism spectrum disorder (ASD)—a neurodevelopmental disorder with essential features of impairments in social communication and reciprocal interaction. The genetic associations between common variations in OXTR and ASD have been reported in multiple ethnic populations. However, little is known about the distribution of rare variations within OXTR in ASD patients. In this study, we resequenced the full length of OXTR in 105 ASD individuals using an approach that combined the power of next-generation sequencing technology, long-range PCR and DNA pooling. We demonstrated that rare variants with minor allele frequency as low as 0.05% could be reliably detected by our method. We identified 28 novel variants including potential functional variants in the intron region and one rare missense variant (R150S). We subsequently performed Sanger sequencing and validated five novel variants located in previously suggested candidate regions in ASD individuals. Further sequencing of 312 healthy subjects showed that the burden of rare variants is significantly higher in ASDs compared with healthy individuals. Our results support that the rare variation in OXTR gene might be involved in ASD.
Collapse
|
28
|
Yokoyama S, Al Mahmuda N, Munesue T, Hayashi K, Yagi K, Yamagishi M, Higashida H. Association Study between the CD157/BST1 Gene and Autism Spectrum Disorders in a Japanese Population. Brain Sci 2015; 5:188-200. [PMID: 26010484 PMCID: PMC4493464 DOI: 10.3390/brainsci5020188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
CD157, also referred to as bone marrow stromal cell antigen-1 (BST-1), is a glycosylphosphatidylinositol-anchored molecule that promotes pre-B-cell growth. Previous studies have reported associations between single-nucleotide polymorphisms (SNPs) of the CD157/BST1 gene with Parkinson’s disease. In an attempt to determine whether SNPs or haplotypes in the CD157/BST1 are associated with other brain disorders, we performed a case-control study including 147 autism spectrum disorder (ASD) patients at Kanazawa University Hospital in Japan and 150 unselected Japanese volunteers by the sequence-specific primer-polymerase chain reaction method combined with fluorescence correlation spectroscopy. Of 93 SNPs examined, two SNPs showed significantly higher allele frequencies in cases with ASDs than in unaffected controls (rs4301112, OR = 6.4, 95% CI = 1.9 to 22, p = 0.0007; and rs28532698, OR = 6.2, 95% CI = 1.8 to 21, p = 0.0012; Fisher’s exact test; p < 0.002 was considered significant after multiple testing correction). In addition, CT genotype in rs10001565 was more frequently observed in the ASD group than in the control group (OR = 15, 95% CI = 2.0 to 117, p = 0.0007; Fisher’s exact test). The present data indicate that genetic variation of the CD157/BST1 gene might confer susceptibility to ASDs.
Collapse
Affiliation(s)
- Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
- MEXT Strategic Research Program for Brain Sciences (SRPBS), Okazaki 444-0840, Japan.
| | - Naila Al Mahmuda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
- MEXT Strategic Research Program for Brain Sciences (SRPBS), Okazaki 444-0840, Japan.
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan.
| | - Kunimasa Yagi
- Medical Education Research Center, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan.
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
- MEXT Strategic Research Program for Brain Sciences (SRPBS), Okazaki 444-0840, Japan.
| |
Collapse
|
29
|
Egawa J, Watanabe Y, Shibuya M, Endo T, Sugimoto A, Igeta H, Nunokawa A, Inoue E, Someya T. Resequencing and association analysis of OXTR with autism spectrum disorder in a Japanese population. Psychiatry Clin Neurosci 2015; 69:131-5. [PMID: 24836510 DOI: 10.1111/pcn.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 05/11/2014] [Indexed: 12/12/2022]
Abstract
AIMS The oxytocin receptor (OXTR) is implicated in the pathophysiology of autism spectrum disorder (ASD). A recent study found a rare non-synonymous OXTR gene variation, rs35062132 (R376G), associated with ASD in a Japanese population. In order to investigate the association between rare non-synonymous OXTR variations and ASD, we resequenced OXTR and performed association analysis with ASD in a Japanese population. METHODS We resequenced the OXTR coding region in 213 ASD patients. Rare non-synonymous OXTR variations detected by resequencing were genotyped in 213 patients and 667 controls. RESULTS We detected three rare non-synonymous variations: rs35062132 (R376G/C), rs151257822 (G334D), and g.8809426G>T (R150S). However, there was no significant association between these rare non-synonymous variations and ASD. CONCLUSIONS Our present study does not support the contribution of rare non-synonymous OXTR variations to ASD susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mizuno A, Cherepanov SM, Kikuchi Y, Fakhrul AAKM, Akther S, Deguchi K, Yoshihara T, Ishihara K, Shuto S, Higashida H. Lipo-oxytocin-1, a Novel Oxytocin Analog Conjugated with Two Palmitoyl Groups, Has Long-Lasting Effects on Anxiety-Related Behavior and Social Avoidance in CD157 Knockout Mice. Brain Sci 2015; 5:3-13. [PMID: 25612002 PMCID: PMC4390788 DOI: 10.3390/brainsci5010003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/03/2014] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Oxytocin (OT) is a nonapeptide hormone that is secreted into the brain and blood circulation. OT has not only classical neurohormonal roles in uterine contraction and milk ejection during the reproductive phase in females, but has also been shown to have new pivotal neuromodulatory roles in social recognition and interaction in both genders. A single administration of OT through nasal spray increases mutual recognition and trust in healthy subjects and psychiatric patients, suggesting that OT is a potential therapeutic drug for autism spectrum disorders, schizophrenia, and some other psychiatric disorders. Although the mechanism is not well understood, it is likely that OT can be transported into the brain where it activates OT receptors to exert its function in the brain. However, the amount transported into the brain may be low. To ensure equivalent effects, an OT analog with long-lasting and effective blood-brain barrier penetration properties would be beneficial for use as a therapeutic drug. Here, we designed and synthesized a new oxytocin analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated at the amino group of the cysteine9 residue and the phenolic hydroxyl group of the tyrosine8 residue of the OT molecule. To determine whether LOT-1 actually has an effect on the central nervous system, we examined its effects in a CD157 knockout model mouse of the non-motor psychiatric symptoms of Parkinson’s disease. Similar to OT, this analog rescued anxiety-like behavior and social avoidance in the open field test with the social target in a central arena 30 min after intraperitoneal injection in CD157 knockout mice. When examined 24 h after injection, the mice treated with LOT-1 displayed more recovery than those given OT. The results suggest that LOT-1 has a functional advantage in recovery of social behavioral impairment, such as those caused by neurodegenerative diseases, autism spectrum disorders, and schizophrenia.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; E-Mails: (A.M.); (Y.K.)
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; E-Mails: (S.M.C.); (A.A.F.); (S.A.); (T.Y.)
| | - Yusuke Kikuchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; E-Mails: (A.M.); (Y.K.)
| | - Azam AKM Fakhrul
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; E-Mails: (S.M.C.); (A.A.F.); (S.A.); (T.Y.)
| | - Shirin Akther
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; E-Mails: (S.M.C.); (A.A.F.); (S.A.); (T.Y.)
| | - Kisaburo Deguchi
- Medical Research Institute, Kanazawa Medical University and Medical Care Proteomics Biotechnology Co., Uchinada, Ishikawa 920-0293, Japan; E-Mail:
| | - Toru Yoshihara
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; E-Mails: (S.M.C.); (A.A.F.); (S.A.); (T.Y.)
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; E-Mail:
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; E-Mails: (A.M.); (Y.K.)
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (H.H.); Tel./Fax: +81-11-706-3769 (S.S.); +81-76-234-4213 (H.H.)
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; E-Mails: (S.M.C.); (A.A.F.); (S.A.); (T.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (H.H.); Tel./Fax: +81-11-706-3769 (S.S.); +81-76-234-4213 (H.H.)
| |
Collapse
|
31
|
Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014; 28:2398-413. [PMID: 24558199 DOI: 10.1096/fj.13-246546] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder.
Collapse
Affiliation(s)
- Rhonda P Patrick
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
32
|
Anagnostou E, Soorya L, Brian J, Dupuis A, Mankad D, Smile S, Jacob S. Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 2014; 1580:188-98. [PMID: 24508578 DOI: 10.1016/j.brainres.2014.01.049] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a paucity of treatments targeting core symptom domains in Autism Spectrum Disorder (ASD). Several animal models and research in typically developing volunteers suggests that manipulation of the oxytocin system may have therapeutic potential for the treatment of social deficits. We review the literature for oxytocin and ASD and report on early dosing, safety and efficacy data of multi-dose oxytocin on aspects of social cognition/function, as well as repetitive behaviors and co-occurring anxiety within ASD. METHODS Fifteen children and adolescents with verbal IQs≥70 were diagnosed with ASD using the ADOS and the ADI-R. They participated in a modified maximum tolerated dose study of intranasal oxytocin (Syntocinon). Data were modeled using repeated measures regression analysis controlling for week, dose, age, and sex. RESULTS Among 4 doses tested, the highest dose evaluated, 0.4 IU/kg/dose, was found to be well tolerated. No serious or severe adverse events were reported and adverse events reported/observed were mild to moderate. Over 12 weeks of treatment, several measures of social cognition/function, repetitive behaviors and anxiety showed sensitivity to change with some measures suggesting maintenance of effect 3 months past discontinuation of intranasal oxytocin. CONCLUSIONS This pilot study suggests that daily administration of intranasal oxytocin at 0.4 IU/kg/dose in children and adolescents with ASD is safe and has therapeutic potential. Larger studies are warranted. This article is part of a Special Issue entitled Oxytocin and Social Behav.
Collapse
Affiliation(s)
- Evdokia Anagnostou
- Bloorview Research Institute, University of Toronto, 150 Kilgour Road, Toronto, ON, Canada M4G 1R8.
| | - Latha Soorya
- Rush University Medical Center, Department of Psychiatry, 2150 West Harrison Street, Chicago, IL 606103, USA
| | - Jessica Brian
- Bloorview Research Institute, University of Toronto, 150 Kilgour Road, Toronto, ON, Canada M4G 1R8
| | - Annie Dupuis
- The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, 555 University Avenue, Toronto, Canada M5G 1X8
| | - Deepali Mankad
- Bloorview Research Institute, University of Toronto, 150 Kilgour Road, Toronto, ON, Canada M4G 1R8
| | - Sharon Smile
- Bloorview Research Institute, University of Toronto, 150 Kilgour Road, Toronto, ON, Canada M4G 1R8
| | - Suma Jacob
- University of Minnesota, Department of Psychiatry & Pediatrics, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N. Epigenetic findings in autism: new perspectives for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4261-73. [PMID: 24030655 PMCID: PMC3799534 DOI: 10.3390/ijerph10094261] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, Napoli 16-80138, Italy
- Centre for Autism—La Forza del Silenzio, Caserta 81036, Italy
- Cancellautismo—Non-Profit Association for Autism Care, Florence 50132, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-81-566-5880; Fax: +39-0-81-566-7503
| | - Alessandra Cirillo
- Institute of Protein Biochemistry, National Research Council of Italy; Naples 80128, Italy; E-Mail:
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari 70126, Italy; E-Mail:
| |
Collapse
|