1
|
Miura Y, Hashimoto M, Nakamura Y, Ishikawa N. Investigation of a DNA Profiling Method Using Only Cementum More Than 70 Years After Death. Cureus 2024; 16:e56998. [PMID: 38681342 PMCID: PMC11045671 DOI: 10.7759/cureus.56998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Short tandem repeat (STR) typing is widely used not only for blood relationship identification but also for the personal identification of unidentified bodies. However, DNA is susceptible to the effects of environmental factors, consequently leading to reduced DNA yields. Therefore, to maximize the DNA yield required for identification, teeth are generally completely pulverized during DNA extraction. However, this renders subsequent testing after DNA profiling impossible. In this study, we investigated the utility of DNA profiling using only the cementum from teeth that had been left outdoors for long postmortem intervals. We analyzed 90 molars (fresh teeth) that were extracted within six months at a dental clinic and 90 molars (stale teeth) exposed outdoors for over 70 years, and following cementum extraction, the accuracy of STR profiling, optimal site for cementum collection, and minimum amount of cementum required for STR profiling were determined. The results demonstrated that the profiling accuracy of DNA extracted from cementum was comparable to that of DNA from dental pulp and dentin. Furthermore, the collection of cementum from either near the cervical line or from the root apex areas did not show significant differences in DNA profiling accuracy, indicating that securing at least 5 mg of cementum was sufficient to ensure precise DNA profiling. These findings suggest that DNA profiling using only cementum is viable even in teeth that have been subjected to a long postmortem interval.
Collapse
Affiliation(s)
- Yuna Miura
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Masatsugu Hashimoto
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Yasutaka Nakamura
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| |
Collapse
|
2
|
Leskovar T, Pajnič IZ. Comparative analysis of DNA preservation in permanent and deciduous teeth of adults and non-adults: Implications for archaeological and forensic research. Forensic Sci Int 2023; 353:111882. [PMID: 37979239 DOI: 10.1016/j.forsciint.2023.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
This study investigates the preservation of DNA in different categories of teeth, including permanent and deciduous, fully developed and not fully developed, in both adults and non-adults. Teeth were sampled from a modern-era cemetery in Ljubljana, Slovenia. DNA extraction was performed using a full demineralisation protocol. DNA quantity and quality were assessed using qPCR analyses, and autosomal STR typing was conducted to verify genetic profiles. Results revealed significant differences in DNA preservation among various tooth categories. Fully developed permanent teeth of adults exhibited the highest DNA yields, attributed to their fully developed roots and thicker cementum, which is rich in DNA. Deciduous teeth, with thinner enamel and cementum, showed lower DNA preservation regardless of developmental stage. Non-adult teeth generally yielded less DNA compared to adults, even when considering only fully developed permanent teeth, indicating factors beyond developmental stage. These findings suggest that, in archaeological and forensic contexts, researchers should prioritize fully developed permanent teeth for DNA analysis due to their superior preservation. Additionally, this study underscores the importance of considering tooth type and developmental stage when selecting samples for genetic analysis in cases where petrous bone is unavailable, expanding our understanding of DNA preservation in human remains.
Collapse
Affiliation(s)
- Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Wei YF, Lin CY, Yu YJ, Linacre A, Lee JCI. DNA identification from dental pulp and cementum. Forensic Sci Int Genet 2023; 67:102945. [PMID: 37844374 DOI: 10.1016/j.fsigen.2023.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Teeth are one of the body tissues remaining after severe decomposition from which a DNA profile can be obtained to aid in human identification. Currently, the standard approach to isolate DNA from teeth requires pulverizing the entire tooth. This destructive approach compromises any further morphological or anthropological study. We report on two methods of DNA isolation that minimizes destruction of the tooth when accessing the DNA within pulp and cementum. Forty-nine teeth, removed as part of normal dental procedures, were buried for up to 92 days, with a further nine teeth acting as unburied controls. Additionally, four teeth samples collected during a forensic examination were included in this study. The two processes were: using a fine drill to access the pulp from the crown and then using endodontic files to collect the biological material; and using a sterile blade to scrape the cementum. It was found that the samples collected from the cementum had greater DNA quality compared to those samples obtained from the pulp. Microbial activity was found to play a role in the degradation of the nuclear material, reducing DNA yields from pulp. DNA profiling data from 24 loci, including 22 STR markers, indicated that multi-rooted teeth provided better DNA quantity and quality than those with a single root. The DNA quantity obtained from pulp samples of teeth which exhibited cavities was adversely affected, although this DNA loss was not from samples collected from the cementum of teeth in similar condition. Obtaining samples from DNA profiling from the cementum was found to be ideal if the morphological preservation of the tooth is required. Obtaining pathogen DNA is of interest when an occlusal approach to retrieve pulp may serve as a good alternative to prepare DNA without destruction of the tooth structure.
Collapse
Affiliation(s)
- Yi-Feng Wei
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei 10051, Taiwan
| | - Chun-Yen Lin
- Institute of Forensic Medicine, Ministry of Justice, New Taipei City 23016, Taiwan
| | - Yu-Jen Yu
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei 10051, Taiwan
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5001, Australia
| | - James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei 10051, Taiwan.
| |
Collapse
|
4
|
Rahmat RA, Humphries MA, Saedon NA, Self PG, Linacre AMT. Diagnostic models to predict nuclear DNA and mitochondrial DNA recovery from incinerated teeth. Int J Legal Med 2023; 137:1353-1360. [PMID: 37306739 DOI: 10.1007/s00414-023-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5-99.7%).
Collapse
Affiliation(s)
- Rabiah A Rahmat
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Melissa A Humphries
- School and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, 5006, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, the University of Adelaide, Adelaide, South Australia, Australia
| | - Nor A Saedon
- Forensic DNA Division, Forensic Science Analysis Centre, Department of Chemistry, Selangor, 46661, Malaysia
| | - Peter G Self
- CSIRO, Land and Water, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Adrian M T Linacre
- College of Science and Engineering, Flinders University, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
5
|
Scarsbrook L, Verry AJF, Walton K, Hitchmough RA, Rawlence NJ. Ancient mitochondrial genomes recovered from small vertebrate bones through minimally destructive DNA extraction: phylogeography of the New Zealand gecko genus
Hoplodactylus. Mol Ecol 2022; 32:2964-2984. [DOI: 10.1111/mec.16434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lachie Scarsbrook
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Alexander J. F. Verry
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Kerry Walton
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | | | - Nicolas J. Rawlence
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| |
Collapse
|
6
|
Bini C, Cilli E, Sarno S, Traversari M, Fontani F, Boattini A, Pelotti S, Luiselli D. Twenty-Seven Y-Chromosome Short Tandem Repeats Analysis of Italian Mummies of the 16th and 18th Centuries: An Interdisciplinary Research. Front Genet 2021; 12:720640. [PMID: 34659342 PMCID: PMC8514714 DOI: 10.3389/fgene.2021.720640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Roccapelago (MO) is a small village located in the Northern Central Apennines, with a population of 31 inhabitants (2014). In 2010, more than 400 individuals dated between the end of the 16th and the 18th century, many of which partially mummified, were discovered in the crypt of the church. This small village, because of its geographical location and surrounding environment, seems to possess the characteristics of a genetic isolate, useful for population genetics and genealogical analyses. Thus, a diachronic study of DNA aimed at investigating the structure and dynamics of the population of Roccapelago over the about 4 centuries, was conducted by analyzing ancient and modern inhabitants of the village. The 14 modern samples were selected by considering both the founder surnames of the village, identified thanks to the study of parish registers, and the grandparent's criterion. From 25 ancient mummies, morphologically assigned to male individuals, the petrous bone, that harbors high DNA amounts, was selected for the DNA extraction. The quantification and qualitative assessment of total human male DNA were evaluated by a real-time PCR assay using the Quantifiler Trio DNA Quantification Kit and multiplex PCR of 27 Y-chromosome short tandem repeat (Y-STR) markers included in the Yfiler Plus PCR Amplification Kit, with seven rapidly mutating Y-STR loci for improving discrimination of male lineages, was performed to genotype the samples. Y-STRs were analyzed according to the criteria of ancient DNA (aDNA) analysis to ensure that authentic DNA typing results were obtained from these ancient samples. The molecular analysis showed the usefulness of the Y chromosome to identify historically relevant remains and discover patterns of relatedness in communities moving from anthropology to genetic genealogy and forensics.
Collapse
Affiliation(s)
- Carla Bini
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mirko Traversari
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Francesco Fontani
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
7
|
Popović D, Molak M, Ziółkowski M, Vranich A, Sobczyk M, Vidaurre DU, Agresti G, Skrzypczak M, Ginalski K, Lamnidis TC, Nakatsuka N, Mallick S, Baca M. Ancient genomes reveal long-range influence of the pre-Columbian culture and site of Tiwanaku. SCIENCE ADVANCES 2021; 7:eabg7261. [PMID: 34559567 PMCID: PMC8462900 DOI: 10.1126/sciadv.abg7261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/03/2021] [Indexed: 05/18/2023]
Abstract
Tiwanaku civilization flourished in the Lake Titicaca basin between 500 and 1000 CE and at its apogee influenced wide areas across the southern Andes. Despite a considerable amount of archaeological data, little is known about the Tiwanaku population. We analyzed 17 low-coverage genomes from individuals dated between 300 and 1500 CE and demonstrated genetic continuity in the Lake Titicaca basin throughout this period, which indicates that the substantial cultural and political changes in the region were not accompanied by large-scale population movements. Conversely, the ritual center of Tiwanaku revealed high diversity, including individuals with primarily local genetic ancestry and those with foreign admixture or provenance from as far as the Amazon. Nonetheless, most human offerings associated with the Akapana platform exhibited pure Titicaca basin ancestry and dated to ca. 950 CE—the onset of Tiwanaku’s decline as a sociopolitical center. Our results strengthen the view of Tiwanaku as a complex and far-reaching polity.
Collapse
Affiliation(s)
- Danijela Popović
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Corresponding author. (D.P.); (M.B.)
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland
| | - Mariusz Ziółkowski
- Centre for Andean Studies, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Alexei Vranich
- Department of Anthropology, University of Texas San Antonio College of Liberal and Fine Arts, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | - Maciej Sobczyk
- Centre for Andean Studies, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
- Faculty of Archaeology University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Delfor Ulloa Vidaurre
- Unit of Archeology and Museums, Vice Ministry of Interculturality, Tiahuanaco Street No. 93 at the corner of Federico Suazo, Box 4856, La Paz, Bolivia
| | - Guido Agresti
- Centre for Andean Studies, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Magdalena Skrzypczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Krzysztof Ginalski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Thiseas Christos Lamnidis
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Nathan Nakatsuka
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02446, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Corresponding author. (D.P.); (M.B.)
| |
Collapse
|
8
|
Chierto E, Cena G, Mann RW, Mattutino G, Nuzzolese E, Robino C. Sweet tooth: DNA profiling of a cranium from an isolated retained root fragment. J Forensic Sci 2021; 66:1973-1979. [PMID: 34106477 PMCID: PMC8453871 DOI: 10.1111/1556-4029.14748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Sampling of healthy multi‐rooted teeth is recommended for the genetic identification of human skeletal remains. However, this may not always be possible, as in the reported case consisting of an isolated human cranium found in an aggregate crushing and processing plant in Piedmont, Northwest Italy. The cranium displayed significant weathering, suggesting a post‐mortem interval of several years, and was edentulous with the exception of the apical root fragment of the upper left canine, consequence of an antemortem horizontal fracture. Prolonged decalcification of the root fragment followed by powder‐free DNA extraction from ~10 mg of root tip tissue led to the recovery of >10 ng of high molecular weight human DNA, in comparison with ~0.01 ng of DNA per mg of bone powder obtained from the petrous portion of the temporal bone. Quantity and quality of DNA isolated from apical tooth tissue enabled multiple genotyping, including a reportable female STR profile, mitochondrial DNA analysis, and ancestry‐informative insertion/deletion polymorphisms. Although the cranium remained unidentified after DNA comparisons, our findings confirm that apical tooth tissue is a promising source of DNA, easily obtained through a powder‐free extraction protocol. Results also indicate that root tips should not be overlooked in challenging identification cases, even in the presence of compromised tooth specimens.
Collapse
Affiliation(s)
- Elena Chierto
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Greta Cena
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Robert W Mann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Grazia Mattutino
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Emilio Nuzzolese
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Carlo Robino
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci Int Genet 2021; 54:102538. [PMID: 34265517 DOI: 10.1016/j.fsigen.2021.102538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Research on ancient and forensic DNA is related in many ways, and the two fields must deal with similar obstacles. Therefore, communication between these two communities has the potential to improve results in both research fields. Here, we present the insights gained in the ancient DNA community with regard to analyzing DNA from aged skeletal material and the potential use of the developed protocols in forensic work. We discuss the various steps, from choosing samples for DNA extraction to deciding between classical PCR amplification and massively parallel sequencing approaches. Based on the progress made in ancient DNA analyses combined with the requirements of forensic work, we suggest that there is substantial potential for incorporating ancient DNA approaches into forensic protocols, a process that has already begun to a considerable extent. However, taking full advantage of the experiences gained from ancient DNA work will require comparative studies by the forensic DNA community to tailor the methods developed for ancient samples to the specific needs of forensic studies and case work. If successful, in our view, the benefits for both communities would be considerable.
Collapse
Affiliation(s)
- Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Jiri Sneberger
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Department of the History of the Middle Ages of Museum of West Bohemia, Kopeckeho sady 2, Pilsen 30100, Czech Republic; Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague 18086, Czech Republic
| | - Martin Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Biologicals s.r.o., Sramkova 315, Ricany 25101, Czech Republic
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7 17000, Czech Republic; Institute of Legal Medicine, Bulovka Hospital, Prague, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
10
|
Harney É, Cheronet O, Fernandes DM, Sirak K, Mah M, Bernardos R, Adamski N, Broomandkhoshbacht N, Callan K, Lawson AM, Oppenheimer J, Stewardson K, Zalzala F, Anders A, Candilio F, Constantinescu M, Coppa A, Ciobanu I, Dani J, Gallina Z, Genchi F, Nagy EG, Hajdu T, Hellebrandt M, Horváth A, Király Á, Kiss K, Kolozsi B, Kovács P, Köhler K, Lucci M, Pap I, Popovici S, Raczky P, Simalcsik A, Szeniczey T, Vasilyev S, Virag C, Rohland N, Reich D, Pinhasi R. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res 2021; 31:472-483. [PMID: 33579752 PMCID: PMC7919446 DOI: 10.1101/gr.267534.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.
Collapse
Affiliation(s)
- Éadaoin Harney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena D-07745, Germany
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandra Anders
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | - Francesca Candilio
- Superintendency of Archaeology, Fine Arts and Landscape for the City of Cagliari and the Provinces of Oristano and South Sardinia, 09121 Cagliari, Italy
| | | | - Alfredo Coppa
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
- Department of Environmental Biology, Sapienza University, 00185 Rome, Italy
| | - Ion Ciobanu
- Cultural-Natural Reserve "Orheiul Vechi", 3552 Orhei, Republic of Moldova
- Institute of Bioarchaeological and Ethnocultural Research, 2012 Chișinău, Republic of Moldova
| | | | - Zsolt Gallina
- Ásatárs Kulturális, Régészeti Szolgáltató és Kereskedelmi Limited, 6000 Kecskemét, Hungary
| | - Francesco Genchi
- Department of Environmental Biology, Sapienza University, 00185 Rome, Italy
| | | | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | | | | | - Ágnes Király
- Institute of Archaeology, Research Centre for the Humanities, 1097 Budapest, Hungary
| | - Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | | | | | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, 1097 Budapest, Hungary
| | - Michaela Lucci
- Department of History, Anthropology, Religion, Arts and Performing Arts, Sapienza University, 00185 Rome, Italy
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, 2012 Chișinău, Republic of Moldova
| | - Pál Raczky
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | - Angela Simalcsik
- Institute of Bioarchaeological and Ethnocultural Research, 2012 Chișinău, Republic of Moldova
- Olga Necrasov Center for Anthropological Research, Romanian Academy, 700481 Iasi, Romania
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology of the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Egyptological Studies of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - David Reich
- The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena D-07745, Germany
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
11
|
Gonzalez A, Cannet C, Zvénigorosky V, Geraut A, Koch G, Delabarde T, Ludes B, Raul JS, Keyser C. The petrous bone: Ideal substrate in legal medicine? Forensic Sci Int Genet 2020; 47:102305. [PMID: 32446165 DOI: 10.1016/j.fsigen.2020.102305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Over the last few years, palaeogenomic studies of the petrous bone (the densest part of the temporal bone) have shown that it is a source of DNA in both larger quantities and of better quality than other bones. This dense bone around the otic capsule has therefore been called the choice substrate in palaeogenomics. Because the practice of forensic genetics responds to different imperatives, we implemented a study aimed at (i) understanding how and why the petrous bone is an advantageous substrate in ancient DNA studies and (ii) establishing whether it is advantageous in forensic STR typing. We selected 50 individual skeletal remains and extracted DNA from one tooth and one petrous bone from each. We then amplified 24 STR markers commonly used in forensic identification and compared the quality of that amplification using the RFU intensities of the signal as read on the STR profiles. We also performed histological analyses to compare (i) the microscopic structure of a petrous bone and of a tooth and (ii) the microscopic structure of fresh petrous bone and of an archaeological or forensic sample. We show that the RFU intensities read on STR profiles are systematically higher in experiments using DNA extracted from petrous bones rather than teeth. For this reason, we were more likely to obtain a complete STR profile from petrous bone material, increasing the chance of identification in a forensic setting. Histological analyses revealed peculiar microstructural characteristics (tissue organization), unique to the petrous bone, that might explain the good preservation of DNA in that substrate. Therefore, it appears that despite the necessity of analysing longer fragments in forensic STR typing compared to NGS palaeogenomics, the use of petrous bones in forensic genetics could prove valuable, especially in cases involving infants, toothless individuals or very degraded skeletal remains.
Collapse
Affiliation(s)
- Angéla Gonzalez
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France.
| | - Catherine Cannet
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France.
| | - Vincent Zvénigorosky
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France; CNRS, FRE2029-BABEL, Université Paris Descartes, France.
| | - Annie Geraut
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France.
| | - Guillaume Koch
- Institut d'Anatomie Normale, Hôpitaux Universitaires de Strasbourg, Faculté de médecine de Strasbourg, France.
| | | | - Bertrand Ludes
- CNRS, FRE2029-BABEL, Université Paris Descartes, France; Institut Médico-Légal de Paris, France; Institut National de la Transfusion Sanguine, Paris, France.
| | - Jean-Sébastien Raul
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France.
| | - Christine Keyser
- Institut de Médecine Légale, Université de Strasbourg, Faculté de médecine de Strasbourg, France; CNRS, FRE2029-BABEL, Université Paris Descartes, France; Institut National de la Transfusion Sanguine, Paris, France.
| |
Collapse
|
12
|
Effect of sodium hypochlorite decontamination on the DNA recovery from human teeth. Int J Legal Med 2019; 134:93-99. [PMID: 31691839 DOI: 10.1007/s00414-019-02174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Genetic identification of skeletal human remains is often realized by short tandem repeat (STR) genotyping of nuclear DNA. Dental DNA is preferred to DNA from bone for the better protection of the endogenous DNA. Especially if whole tooth grinding is intended to access the DNA, contaminations with exogenous DNA have to be avoided. The immersion of the tooth in sodium hypochlorite (NaOCl, known as bleach) is one common procedure to clean the outer surface from extraneous DNA and PCR inhibitors. To investigate the impact of bleaching on endogenous DNA and the decontamination success, 71 recently extracted teeth were differently treated with sodium hypochlorite (2.5 or 5.0% NaOCl for 30 or 60 s, 5.0% NaOCl for 10 min, and control group) in the beginning of the extraction process, whereas equally handled afterwards. Quantitative and qualitative evaluation of the extracted DNA was performed. There was a great variation for the DNA concentration of the extracts even within a group of the same NaOCl treatment. Complete DNA profiles from single persons with alleles for the 16 ESS (European Standard Set) STR loci were obtained for all regarded teeth. A statistically significant difference between the DNA yields of the treatment groups was not determined. Moreover, a negative effect of NaOCl (2.5% and 5.0%) on the DNA recovery could not be observed. Significant larger amounts of DNA were extracted from anterior teeth in contrast to posterior teeth.
Collapse
|
13
|
Mansour H, Krebs O, Pinnschmidt HO, Griem N, Hammann-Ehrt I, Püschel K. Factors affecting dental DNA in various real post-mortem conditions. Int J Legal Med 2019; 133:1751-1759. [DOI: 10.1007/s00414-019-02151-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/20/2019] [Indexed: 11/24/2022]
|
14
|
Winters M, Torkelson A, Booth R, Mailand C, Hoareau Y, Tucker S, Wasser S. Isolation of DNA from small amounts of elephant ivory: Sampling the cementum with total demineralization extraction. Forensic Sci Int 2018; 288:131-139. [DOI: 10.1016/j.forsciint.2018.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
|
15
|
Mansour H, Krebs O, Sperhake JP, Fuhrmann A, Püschel K. Identification of scattered skeletal remains. Rechtsmedizin (Berl) 2018. [DOI: 10.1007/s00194-018-0235-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Cementum as a source of DNA in challenging forensic cases. J Forensic Leg Med 2018; 54:76-81. [DOI: 10.1016/j.jflm.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/23/2017] [Accepted: 12/30/2017] [Indexed: 11/20/2022]
|
17
|
|
18
|
Kholief M, El Shanawany S, Gomaa R. Sex determination from dental pulp DNA among Egyptians. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2017. [DOI: 10.1186/s41935-017-0030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Corrêa HSD, Pedro FLM, Volpato LER, Pereira TM, Siebert Filho G, Borges ÁH. Forensic DNA typing from teeth using demineralized root tips. Forensic Sci Int 2017; 280:164-168. [DOI: 10.1016/j.forsciint.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
20
|
Abstract
Acquisition of DNA from skeletal remains can be a delicate process. With the advent of improved extraction buffers that provide complete demineralization of the osseous materials, extraction of total genomic DNA from nearly any skeletal element is possible. This chapter describes both traditional organic and more newly developed inorganic extraction methods for fresh and dried skeletal remains.
Collapse
Affiliation(s)
- Suni M Edson
- Armed Forces DNA Identification Laboratory (AFDIL), American Registry of Pathology (ARP), Contractors supporting the Armed Forces Medical Examiner System (AFMES), 115 Purple Heart Drive, Dover AFB, DE, 19902, USA.
| | - Timothy P McMahon
- Armed Forces DNA Identification Laboratory (AFDIL), American Registry of Pathology (ARP), Contractors supporting the Armed Forces Medical Examiner System (AFMES), 115 Purple Heart Drive, Dover AFB, DE, 19902, USA
| |
Collapse
|
21
|
Giuliani C, Cilli E, Bacalini MG, Pirazzini C, Sazzini M, Gruppioni G, Franceschi C, Garagnani P, Luiselli D. Inferring chronological age from DNA methylation patterns of human teeth. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:585-95. [PMID: 26667772 DOI: 10.1002/ajpa.22921] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Current methods to determine chronological age from modern and ancient remains rely on both morphological and molecular approaches. However, low accuracy and the lack of standardized protocols make the development of alternative methods for the estimation of individual's age even more urgent for several research fields, such as biological anthropology, biodemography, forensics, evolutionary genetics, and ancient DNA studies. Therefore, the aim of this study is to identify genomic regions whose DNA methylation level correlates with age in modern teeth. METHODS We used MALDI-TOF mass spectrometry to analyze DNA methylation levels of specific CpGs located in the ELOVL2, FHL2, and PENK genes. We considered methylation data from cementum, dentin and pulp of 21 modern teeth (from 17 to 77 years old) to construct a mathematical model able to exploit DNA methylation values to predict age of the individuals. RESULTS The median difference between the real age and that estimated using DNA methylation values is 1.20 years (SD = 1.9) if DNA is recovered from both cementum and pulp of the same modern teeth, 2.25 years (SD = 2.5) if DNA is recovered from dental pulp, 2.45 years (SD = 3.3) if DNA is extracted from cementum and 7.07 years (SD = 7.0) when DNA is recovered from dentin only. DISCUSSION We propose for the first time the evaluation of DNA methylation at ELOVL2, FHL2, and PENK genes as a powerful tool to predict age in modern teeth for anthropological applications. Future studies are needed to apply this method also to historical and relatively ancient human teeth.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Bologna, 40126, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage (DBC), Laboratories of Physical Anthropology and Ancient DNA, University of Bologna, Ravenna, 48121, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy.,Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Bologna, 40126, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy.,Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Bologna, 40126, Italy
| | - Marco Sazzini
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Bologna, 40126, Italy
| | - Giorgio Gruppioni
- Department of Cultural Heritage (DBC), Laboratories of Physical Anthropology and Ancient DNA, University of Bologna, Ravenna, 48121, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy.,Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Bologna, 40126, Italy.,IRCCS Institute of Neurological Sciences, Bologna, 40139, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy.,Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Bologna, 40126, Italy.,Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
22
|
Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS One 2015; 10:e0129102. [PMID: 26086078 PMCID: PMC4472748 DOI: 10.1371/journal.pone.0129102] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.
Collapse
|
23
|
Improving access to endogenous DNA in ancient bones and teeth. Sci Rep 2015; 5:11184. [PMID: 26081994 PMCID: PMC4472031 DOI: 10.1038/srep11184] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022] Open
Abstract
Poor DNA preservation is the most limiting factor in ancient genomic research. In the majority of
ancient bones and teeth, endogenous DNA molecules represent a minor fraction of the whole DNA
extract, rendering shot-gun sequencing inefficient for obtaining genomic data. Based on ancient
human bone samples from temperate and tropical environments, we show that an EDTA-based enzymatic
‘pre-digestion’ of powdered bone increases the proportion of endogenous DNA several
fold. By performing the pre-digestion step between 30 min and 6 hours on five bones,
we observe an asymptotic increase in endogenous DNA content, with a 2.7-fold average increase
reached at 1 hour. We repeat the experiment using a brief pre-digestion (15 or
30 mins) on 21 ancient bones and teeth from a variety of archaeological contexts and observe
an improvement in 16 of these. We here advocate the implementation of a brief pre-digestion step as
a standard procedure in ancient DNA extractions. Finally, we demonstrate on 14 ancient teeth that by
targeting the outer layer of the roots we obtain up to 14 times more endogenous DNA than when using
the inner dentine. Our presented methods are likely to increase the proportion of ancient samples
that are suitable for genome-scale characterization.
Collapse
|