1
|
Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals (Basel) 2022; 12:2955. [PMID: 36359078 PMCID: PMC9657999 DOI: 10.3390/ani12212955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Nowadays, selection of superior male candidates in livestock as a source of frozen semen based on sperm quality at the cellular level is not considered accurate enough for predicting the potential of male fertility. Sperm transcriptome analysis approaches, such as messenger RNA levels, have been shown to correlate with fertility rates. Using this technology in livestock growth has become the principal method, which can be widely applied to predict male fertility potential in the livestock industry through the analysis of the sperm transcriptome. It provides the gene expression to validate the function of sperm in spermatogenesis, fertilization, and embryo development, as the parameters of male fertility. This review proposes a transcriptomic analysis approach as a high-throughput method to predict the fertility potential of livestock more accurately in the future.
Collapse
Affiliation(s)
- Rhesti Indriastuti
- Reproductive Biology Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Tuah Sakato Technology and Resource Development Center, Department of Animal Husbandry and Animal Health of West Sumatra, Payakumbuh 26229, Indonesia
| | - Berlin Pandapotan Pardede
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Bambang Purwantara
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
2
|
Croce O, Röttinger E. Creating a User-Friendly and Open-Access Gene Expression Database for Comparing Embryonic Development and Regeneration in Nematostella vectensis. Methods Mol Biol 2022; 2450:649-662. [PMID: 35359334 PMCID: PMC9761911 DOI: 10.1007/978-1-0716-2172-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sea anemone Nematostella vectensis has emerged as a powerful research model to understand at the gene regulatory network level, to what extend regeneration recapitulates embryonic development. Such comparison involves massive transcriptomic analysis, a routine approach for identifying differential gene expression. Here we present a workflow to build a user-friendly, mineable, and open-access database providing access to the scientific community to various RNAseq datasets.
Collapse
Affiliation(s)
- Olivier Croce
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Eric Röttinger
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
| |
Collapse
|
3
|
Zhang J, Ibrahim F, Najmulski E, Katholos G, Altarawy D, Heath LS, Tulin SL. Developmental gene regulatory network connections predicted by machine learning from gene expression data alone. PLoS One 2021; 16:e0261926. [PMID: 34962963 PMCID: PMC8714117 DOI: 10.1371/journal.pone.0261926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development-representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes-is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Farhan Ibrahim
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Emily Najmulski
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - George Katholos
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - Doaa Altarawy
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Sarah L. Tulin
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| |
Collapse
|
4
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
5
|
Amiel AR, Michel V, Carvalho JE, Shkreli M, Petit C, Röttinger E. [The sea anemone Nematostella vectensis, an emerging model for biomedical research: Mechano-sensitivity, extreme regeneration and longevity]. Med Sci (Paris) 2021; 37:167-177. [PMID: 33591260 DOI: 10.1051/medsci/2020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Vincent Michel
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France
| | - João E Carvalho
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France
| | - Christine Petit
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France - Collège de France, 75005 Paris, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| |
Collapse
|
6
|
Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis. Methods Mol Biol 2020; 2047:25-43. [PMID: 31552647 DOI: 10.1007/978-1-4939-9732-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cnidarian sea anemone Nematostella vectensis has grown in popularity as a model system to complement the ongoing work in traditional bilaterian model species (e.g. Drosophila, C. elegans, vertebrate). The driving force behind developing cnidarian model systems is the potential of this group of animals to impact EvoDevo studies aimed at better determining the origin and evolution of bilaterian traits, such as centralized nervous systems. However, it is becoming apparent that cnidarians have the potential to impact our understanding of regenerative neurogenesis and systems neuroscience. Next-generation sequencing and the development of reverse genetic approaches led to functional genetics becoming routine in the Nematostella system. As a result, researchers are beginning to understand how cnidarian nerve nets are related to the bilaterian nervous systems. This chapter describes the methods for morpholino and mRNA injections to knockdown or overexpress genes of interest, respectively. Carrying out these techniques in Nematostella requires obtaining and preparing embryos for microinjection, designing and generating effective morpholino and mRNA molecules with controls for injection, and optimizing injection conditions.
Collapse
|
7
|
The genetic basis for PRC1 complex diversity emerged early in animal evolution. Proc Natl Acad Sci U S A 2020; 117:22880-22889. [PMID: 32868440 DOI: 10.1073/pnas.2005136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polycomb group proteins are essential regulators of developmental processes across animals. Despite their importance, studies on Polycomb are often restricted to classical model systems and, as such, little is known about the evolution of these important chromatin regulators. Here we focus on Polycomb Repressive Complex 1 (PRC1) and trace the evolution of core components of canonical and non-canonical PRC1 complexes in animals. Previous work suggested that a major expansion in the number of PRC1 complexes occurred in the vertebrate lineage. We show that the expansion of the Polycomb Group RING Finger (PCGF) protein family, an essential step for the establishment of the large diversity of PRC1 complexes found in vertebrates, predates the bilaterian-cnidarian ancestor. This means that the genetic repertoire necessary to form all major vertebrate PRC1 complexes emerged early in animal evolution, over 550 million years ago. We further show that PCGF5, a gene conserved in cnidarians and vertebrates but lost in all other studied groups, is expressed in the nervous system in the sea anemone Nematostella vectensis, similar to its mammalian counterpart. Together this work provides a framework for understanding the evolution of PRC1 complex diversity and it establishes Nematostella as a promising model system in which the functional ramifications of this diversification can be further explored.
Collapse
|
8
|
Abstract
The diversified NF-κB transcription factor family has been extensively characterized in organisms ranging from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, and jellyfish), Porifera (sponges), and single-celled protists, including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble those of mammalian NF-κB p100 proteins, and their posttranslational activation appears to have aspects of both canonical and noncanonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Initial Virome Characterization of the Common Cnidarian Lab Model Nematostella vectensis. Viruses 2020; 12:v12020218. [PMID: 32075325 PMCID: PMC7077227 DOI: 10.3390/v12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.
Collapse
|
10
|
The genome of the sea anemone Actinia equina (L.): Meiotic toolkit genes and the question of sexual reproduction. Mar Genomics 2020; 53:100753. [PMID: 32057717 DOI: 10.1016/j.margen.2020.100753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
The beadlet anemone Actinia equina (L.) (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most familiar organisms of the North European intertidal zone. Once considered a single, morphologically variable species across northern Europe, it is now recognised as one member of a variable species complex. Previous studies of distribution, aggression, allozymes and mitochondrial DNA suggest that the diversity in form and colour within A. equina may hide still unrecognised species diversity. To empower further study of A. equina population genetics and systematics, we sequenced (PacBio Sequel) the genome of a single A. equina individual to produce a high-quality genome assembly (contig N50 = 492,607 bp, 1485 contigs, number of protein coding genes = 47,671, 97% BUSCO completeness). There is debate as to whether A. equina reproduces solely asexually, since no reliable, consistent evidence of sexual reproduction has been found. To gain further insight, we examined the genome for evidence of a 'meiotic toolkit' - genes believed to be found consistently in sexually reproducing organisms - and demonstrate that the A. equina genome appears not to have this full complement. Additionally, Smudgeplot analysis, coupled with high haplotype diversity, indicates this genome assembly to be of ambiguous ploidy, suggesting that A. equina may not be diploid. The suggested polyploid nature of this species coupled with the deficiency in meiotic toolkit genes, indicates that further field and laboratory studies of this species is warranted to understand how this species reproduces and what role ploidy may play in speciation within this speciose genus.
Collapse
|
11
|
Zang H, Nakanishi N. Expression Analysis of Cnidarian-Specific Neuropeptides in a Sea Anemone Unveils an Apical-Organ-Associated Nerve Net That Disintegrates at Metamorphosis. Front Endocrinol (Lausanne) 2020; 11:63. [PMID: 32140137 PMCID: PMC7042181 DOI: 10.3389/fendo.2020.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropeptides are ancient neuronal signaling molecules that have diversified across Cnidaria (e.g., jellyfish, corals, and sea anemones) and its sister group Bilateria (e.g., vertebrates, insects, and worms). Over the course of neuropeptide evolution emerged lineage-specific neuropeptides, but their roles in the evolution and diversification of nervous system function remain enigmatic. As a step toward filling in this knowledge gap, we investigated the expression pattern of a cnidarian-specific neuropeptide-RPamide-during the development of the starlet sea anemone Nematostella vectensis, using in situ hybridization and immunohistochemistry. We show that RPamide precursor transcripts first occur during gastrulation in scattered epithelial cells of the aboral ectoderm. These RPamide-positive epithelial cells exhibit a spindle-shaped, sensory-cell-like morphology, and extend basal neuronal processes that form a nerve net in the aboral ectoderm of the free-swimming planula larva. At the aboral end, RPamide-positive sensory cells become integrated into the developing apical organ that forms a bundle of long cilia referred to as the apical tuft. Later during planula development, RPamide expression becomes evident in sensory cells in the oral ectoderm of the body column and pharynx, and in the developing endodermal nervous system. At metamorphosis into a polyp, the RPamide-positive sensory nerve net in the aboral ectoderm degenerates by apoptosis, and RPamide expression begins in ectodermal sensory cells of growing oral tentacles. In addition, we find that the expression pattern of RPamide in planulae differs from that of conserved neuropeptides that are shared across Cnidaria and Bilateria, indicative of distinct functions. Our results not only provide the anatomical framework necessary to analyze the function of the cnidarian-specific neuropeptides in future studies, but also reveal previously unrecognized features of the sea anemone nervous system-the apical organ neurons of the planula larva, and metamorphosis-associated reorganization of the ectodermal nervous system.
Collapse
Affiliation(s)
- Hannah Zang
- Lyon College, Batesville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nagayasu Nakanishi
| |
Collapse
|
12
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
13
|
Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience 2019; 8:giy158. [PMID: 30544207 PMCID: PMC6481552 DOI: 10.1093/gigascience/giy158] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/18/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND De novo transcriptome assemblies are required prior to analyzing RNA sequencing data from a species without an existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the effects of using different workflows, or "pipelines," on the resulting assemblies are poorly understood. Here, a pipeline was programmatically automated and used to assemble and annotate raw transcriptomic short-read data collected as part of the Marine Microbial Eukaryotic Transcriptome Sequencing Project. The resulting transcriptome assemblies were evaluated and compared against assemblies that were previously generated with a different pipeline developed by the National Center for Genome Research. RESULTS New transcriptome assemblies contained the majority of previous contigs as well as new content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dinoflagellata showed a higher number of contigs and unique k-mers than transcriptomes from other phyla, while assemblies from Ciliophora had a lower percentage of open reading frames compared to other phyla. CONCLUSIONS Given current bioinformatics approaches, there is no single "best" reference transcriptome for a particular set of raw data. As the optimum transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable pipelines are invaluable for managing the computationally intensive tasks required for re-processing large sets of samples with revised pipelines and ensuring a common evaluation workflow is applied to all samples. Thus, re-assembling existing data with new tools using automated and programmable pipelines may yield more accurate identification of taxon-specific trends across samples in addition to novel and useful products for the community.
Collapse
Affiliation(s)
- Lisa K Johnson
- Department of Population Health, and Reproduction, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Harriet Alexander
- Department of Population Health, and Reproduction, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - C Titus Brown
- Department of Population Health, and Reproduction, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Molecular, Cellular, and Integrative Physiology Graduate Group, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Genome Center, University of California Davis, 451 Health Sciences Dr, Davis, CA 95616, USA
| |
Collapse
|
14
|
Nathaniel Clarke D, Lowe CJ, James Nelson W. The cadherin-catenin complex is necessary for cell adhesion and embryogenesis in Nematostella vectensis. Dev Biol 2019; 447:170-181. [PMID: 30629955 PMCID: PMC6433513 DOI: 10.1016/j.ydbio.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
Abstract
The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - Christopher J Lowe
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford CA 94305, United States.
| |
Collapse
|
15
|
Chou HC, Acevedo-Luna N, Kuhlman JA, Schneider SQ. PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans. BMC Genomics 2018; 19:618. [PMID: 30115014 PMCID: PMC6097317 DOI: 10.1186/s12864-018-4987-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The marine polychaete annelid Platynereis dumerilii has recently emerged as a prominent organism for the study of development, evolution, stem cells, regeneration, marine ecology, chronobiology and neurobiology within metazoans. Its phylogenetic position within the spiralian/ lophotrochozoan clade, the comparatively high conservation of ancestral features in the Platynereis genome, and experimental access to any stage within its life cycle, make Platynereis an important model for elucidating the complex regulatory and functional molecular mechanisms governing early development, later organogenesis, and various features of its larval and adult life. High resolution RNA-seq gene expression data obtained from specific developmental stages can be used to dissect early developmental mechanisms. However, the potential for discovery of these mechanisms relies on tools to search, retrieve, and compare genome-wide information within Platynereis, and across other metazoan taxa. RESULTS To facilitate exploration and discovery by the broader scientific community, we have developed a web-based, searchable online research tool, PdumBase, featuring the first comprehensive transcriptome database for Platynereis dumerilii during early stages of development (2 h ~ 14 h). Our database also includes additional stages over the P. dumerilii life cycle and provides access to the expression data of 17,213 genes (31,806 transcripts) along with annotation information sourced from Swiss-Prot, Gene Ontology, KEGG pathways, Pfam domains, TmHMM, SingleP, and EggNOG orthology. Expression data for each gene includes the stage, the normalized FPKM, the raw read counts, and information that can be leveraged for statistical analyses of differential gene expression and the construction of genome-wide co-expression networks. In addition, PdumBase offers early stage transcriptome expression data from five further species as a valuable resource for investigators interested in comparing early development in different organisms. To understand conservation of Platynereis gene models and to validate gene annotation, most Platynereis gene models include a comprehensive phylogenetic analysis across 18 species representing diverse metazoan taxa. CONCLUSIONS PdumBase represents the first online resource for the early developmental transcriptome of Platynereis dumerilii. It serves as a research platform for discovery and exploration of gene expression during early stages, throughout the Platynereis life cycle, and enables comparison to other model organisms. PdumBase is freely available at http://pdumbase.gdcb.iastate.edu .
Collapse
Affiliation(s)
- Hsien-Chao Chou
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
- Present address: Center for Cancer Research, National Institutes of Health, Rockville, MD 20894 USA
| | - Natalia Acevedo-Luna
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Julie A. Kuhlman
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Stephan Q. Schneider
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
16
|
Melo Clavijo J, Donath A, Serôdio J, Christa G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol Rev Camb Philos Soc 2018; 93:2006-2020. [PMID: 29808579 DOI: 10.1111/brv.12430] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol - a phenomenon called 'functional kleptoplasty'. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| | - Gregor Christa
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany.,Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| |
Collapse
|
17
|
Rivera-de-Torre E, Martínez-Del-Pozo Á, Garb JE. Stichodactyla helianthus' de novo transcriptome assembly: Discovery of a new actinoporin isoform. Toxicon 2018; 150:105-114. [PMID: 29787779 DOI: 10.1016/j.toxicon.2018.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/29/2023]
Abstract
Transcriptomic profiling of venom producing tissues from different animals is an effective approach for discovering new toxins useful in biotechnological and pharmaceutical applications, as well in evolutionary comparative studies of venomous animals. Stichodactyla helianthus is a Caribbean sea anemone which produces actinoporins as part of its toxic venom. This family of pore forming toxins is multigenic and at least two different isoforms, encoded by separate genes, are produced by S. helianthus. These isoforms, sticholysins I and II, share 93% amino acid identity but differ in their pore forming activity and act synergistically. This observation suggests that other actinoporin isoforms, if present in the venomous mixture, could offer an advantageous strategy to modulate whole venom activity. Using high-throughput sequencing we generated a de novo transcriptome of S. helianthus and determined the relative expression of assembled transcripts using RNA-Seq to better characterize components of this species' venom, focusing on actinoporin diversity. Applying this approach, we have discovered at least one new actinoporin variant from S. helianthus in addition to several other putative venom components.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA; Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
18
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
19
|
Intraspecific variation in oxidative stress tolerance in a model cnidarian: Differences in peroxide sensitivity between and within populations of Nematostella vectensis. PLoS One 2018; 13:e0188265. [PMID: 29373572 PMCID: PMC5786289 DOI: 10.1371/journal.pone.0188265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022] Open
Abstract
Nematostella vectensis is a member of the phylum Cnidaria, a lineage that includes anemones, corals, hydras, and jellyfishes. This estuarine anemone is an excellent model system for investigating the evolution of stress tolerance because it is easy to collect in its natural habitat and to culture in the laboratory, and it has a sequenced genome. Additionally, there is evidence of local adaptation to environmental stress in different N. vectensis populations, and abundant protein-coding polymorphisms have been identified, including polymorphisms in proteins that are implicated in stress responses. N. vectensis can tolerate a wide range of environmental parameters, and has recently been shown to have substantial intraspecific variation in temperature preference. We investigated whether different clonal lines of anemones also exhibit differential tolerance to oxidative stress. N. vectensis populations are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism and by other environmental factors. Fifteen clonal lines of N. vectensis collected from four different estuaries were exposed to hydrogen peroxide. Pronounced differences in survival and regeneration were apparent between clonal lines collected from Meadowlands, NJ, Baruch, SC, and Kingsport, NS, as well as among 12 clonal lines collected from a single Cape Cod marsh. To our knowledge, this is the first example of intraspecific variability in oxidative stress resistance in cnidarians or in any marine animal. As oxidative stress often accompanies heat stress in marine organisms, resistance to oxidative stress could strongly influence survival in warming oceans. For example, while elevated temperatures trigger bleaching in corals, oxidative stress is thought to be the proximal trigger of bleaching at the cellular level.
Collapse
|
20
|
Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A 2017; 114:E10122-E10131. [PMID: 29109290 PMCID: PMC5703304 DOI: 10.1073/pnas.1711530114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR-to-NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR-expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.
Collapse
|
21
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
22
|
Renfer E, Technau U. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat Protoc 2017; 12:1844-1854. [DOI: 10.1038/nprot.2017.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 2017; 144:2951-2960. [PMID: 28705897 PMCID: PMC5592810 DOI: 10.1242/dev.145839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.
Collapse
Affiliation(s)
- Marc D Servetnick
- Division of Biological Sciences, University of Washington Bothell, Bothell, WA 98011, USA
| | - Bailey Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Miguel Salinas-Saavedra
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
24
|
Toporkova YY, Gorina SS, Mukhitova FK, Hamberg M, Ilyina TM, Mukhtarova LS, Grechkin AN. Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1099-1109. [PMID: 28774820 DOI: 10.1016/j.bbalip.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/16/2017] [Accepted: 07/29/2017] [Indexed: 01/08/2023]
Abstract
The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C18-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18O atoms from [18O2-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tatyana M Ilyina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
25
|
Gaitán-Espitia JD, Hofmann GE. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Mesocentrotus franciscanus. Ecol Evol 2017; 7:2798-2811. [PMID: 28428870 PMCID: PMC5395446 DOI: 10.1002/ece3.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo‐to‐larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up‐regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.
Collapse
Affiliation(s)
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
26
|
Clarke DN, Miller PW, Lowe CJ, Weis WI, Nelson WJ. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion. Mol Biol Evol 2016; 33:2016-29. [PMID: 27189570 PMCID: PMC4948710 DOI: 10.1093/molbev/msw084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans.
Collapse
Affiliation(s)
| | - Phillip W Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | | | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine Department of Structural Biology, Stanford University School of Medicine
| | - William James Nelson
- Department of Biology, Stanford University Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| |
Collapse
|
27
|
Layden MJ, Johnston H, Amiel AR, Havrilak J, Steinworth B, Chock T, Röttinger E, Martindale MQ. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016; 14:61. [PMID: 27480076 PMCID: PMC4968017 DOI: 10.1186/s12915-016-0282-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background The nerve net of Nematostella is generated using a conserved cascade of neurogenic transcription factors. For example, NvashA, a homolog of the achaete-scute family of basic helix-loop-helix transcription factors, is necessary and sufficient to specify a subset of embryonic neurons. However, positive regulators required for the expression of neurogenic transcription factors remain poorly understood. Results We show that treatment with the MEK/MAPK inhibitor U0126 severely reduces the expression of known neurogenic genes, Nvath-like, NvsoxB(2), and NvashA, and known markers of differentiated neurons, suggesting that MAPK signaling is necessary for neural development. Interestingly, ectopic NvashA fails to rescue the expression of neural markers in U0126-treated animals. Double fluorescence in situ hybridization and transgenic analysis confirmed that NvashA targets represent both unique and overlapping populations of neurons. Finally, we used a genome-wide microarray to identify additional patterning genes downstream of MAPK that might contribute to neurogenesis. We identified 18 likely neural transcription factors, and surprisingly identified ~40 signaling genes and transcription factors that are expressed in either the aboral domain or animal pole that gives rise to the endomesoderm at late blastula stages. Conclusions Together, our data suggest that MAPK is a key early regulator of neurogenesis, and that it is likely required at multiple steps. Initially, MAPK promotes neurogenesis by positively regulating expression of NvsoxB(2), Nvath-like, and NvashA. However, we also found that MAPK is necessary for the activity of the neurogenic transcription factor NvashA. Our forward molecular approach provided insight about the mechanisms of embryonic neurogenesis. For instance, NvashA suppression of Nvath-like suggests that inhibition of progenitor identity is an active process in newly born neurons, and we show that downstream targets of NvashA reflect multiple neural subtypes rather than a uniform neural fate. Lastly, analysis of the MAPK targets in the early embryo suggests that MAPK signaling is critical not only to neurogenesis, but also endomesoderm formation and aboral patterning. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | - Hereroa Johnston
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Aldine R Amiel
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Bailey Steinworth
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Taylor Chock
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Eric Röttinger
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA.
| |
Collapse
|
28
|
MetaTrans: an open-source pipeline for metatranscriptomics. Sci Rep 2016; 6:26447. [PMID: 27211518 PMCID: PMC4876386 DOI: 10.1038/srep26447] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/29/2016] [Indexed: 01/08/2023] Open
Abstract
To date, meta-omic approaches use high-throughput sequencing technologies, which produce a huge amount of data, thus challenging modern computers. Here we present MetaTrans, an efficient open-source pipeline to analyze the structure and functions of active microbial communities using the power of multi-threading computers. The pipeline is designed to perform two types of RNA-Seq analyses: taxonomic and gene expression. It performs quality-control assessment, rRNA removal, maps reads against functional databases and also handles differential gene expression analysis. Its efficacy was validated by analyzing data from synthetic mock communities, data from a previous study and data generated from twelve human fecal samples. Compared to an existing web application server, MetaTrans shows more efficiency in terms of runtime (around 2 hours per million of transcripts) and presents adapted tools to compare gene expression levels. It has been tested with a human gut microbiome database but also proposes an option to use a general database in order to analyze other ecosystems. For the installation and use of the pipeline, we provide a detailed guide at the following website (www.metatrans.org).
Collapse
|
29
|
Babonis LS, Martindale MQ, Ryan JF. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 2016; 16:114. [PMID: 27216622 PMCID: PMC4877951 DOI: 10.1186/s12862-016-0683-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The evolution of novel genes is thought to be a critical component of morphological innovation but few studies have explicitly examined the contribution of novel genes to the evolution of novel tissues. Nematosomes, the free-floating cellular masses that circulate through the body cavity of the sea anemone Nematostella vectensis, are the defining apomorphy of the genus Nematostella and are a useful model for understanding the evolution of novel tissues. Although many hypotheses have been proposed, the function of nematosomes is unknown. To gain insight into their putative function and to test hypotheses about the role of lineage-specific genes in the evolution of novel structures, we have re-examined the cellular and molecular biology of nematosomes. RESULTS Using behavioral assays, we demonstrate that nematosomes are capable of immobilizing live brine shrimp (Artemia salina) by discharging their abundant cnidocytes. Additionally, the ability of nematosomes to engulf fluorescently labeled bacteria (E. coli) reveals the presence of phagocytes in this tissue. Using RNA-Seq, we show that the gene expression profile of nematosomes is distinct from that of the tentacles and the mesenteries (their tissue of origin) and, further, that nematosomes (a Nematostella-specific tissue) are enriched in Nematostella-specific genes. CONCLUSIONS Despite the small number of cell types they contain, nematosomes are distinct among tissues, both functionally and molecularly. We provide the first evidence that nematosomes comprise part of the innate immune system in N. vectensis, and suggest that this tissue is potentially an important place to look for genes associated with pathogen stress. Finally, we demonstrate that Nematostella-specific genes comprise a significant proportion of the differentially expressed genes in all three of the tissues we examined and may play an important role in novel cell functions.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA.
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
30
|
Jellyfish Bioactive Compounds: Methods for Wet-Lab Work. Mar Drugs 2016; 14:md14040075. [PMID: 27077869 PMCID: PMC4849079 DOI: 10.3390/md14040075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022] Open
Abstract
The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.
Collapse
|
31
|
Iaria D, Chiappetta A, Muzzalupo I. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube. ScientificWorldJournal 2016; 2016:4305252. [PMID: 26998509 PMCID: PMC4779530 DOI: 10.1155/2016/4305252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 11/17/2022] Open
Abstract
In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.
Collapse
Affiliation(s)
- Domenico Iaria
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (OLI), 87036 Rende, Italy
| | - Adriana Chiappetta
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Ponte Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Innocenzo Muzzalupo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (OLI), 87036 Rende, Italy
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Polifunzionale, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
32
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
33
|
Iaria DL, Chiappetta A, Muzzalupo I. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation. FRONTIERS IN PLANT SCIENCE 2016; 6:1246. [PMID: 26834761 PMCID: PMC4717290 DOI: 10.3389/fpls.2015.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 05/23/2023]
Abstract
Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in information regarding metabolic processes, including those linked to fruit pigmentation in the olive.
Collapse
Affiliation(s)
- Domenico L. Iaria
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaCosenza, Italy
| | - Innocenzo Muzzalupo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Olivicoltura e l'Industria OleariaCosenza, Italy
- Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Università della CalabriaCosenza, Italy
| |
Collapse
|
34
|
Richardson MF, Sherman CDH. De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome. PLoS One 2015; 10:e0142003. [PMID: 26529321 PMCID: PMC4631335 DOI: 10.1371/journal.pone.0142003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.
Collapse
Affiliation(s)
- Mark F. Richardson
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
- * E-mail:
| | - Craig D. H. Sherman
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
35
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
36
|
Tarrant AM, Gilmore TD, Reitzel AM, Levy O, Technau U, Martindale MQ. Current directions and future perspectives from the third Nematostella research conference. ZOOLOGY 2014; 118:135-40. [PMID: 25450665 DOI: 10.1016/j.zool.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, N. vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene-environment interactions.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Woodward Hall 245, Charlotte, NC 28223, USA
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32136, USA
| |
Collapse
|
37
|
Ioannidis P, Lu Y, Kumar N, Creasy T, Daugherty S, Chibucos MC, Orvis J, Shetty A, Ott S, Flowers M, Sengamalay N, Tallon LJ, Pick L, Dunning Hotopp JC. Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics 2014; 15:738. [PMID: 25168586 PMCID: PMC4174608 DOI: 10.1186/1471-2164-15-738] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
Background Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. Results Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. Conclusions Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-738) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Fischer AHL, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. SeaBase: a multispecies transcriptomic resource and platform for gene network inference. Integr Comp Biol 2014; 54:250-63. [PMID: 24907201 DOI: 10.1093/icb/icu065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marine and aquatic animals are extraordinarily useful as models for identifying mechanisms of development and evolution, regeneration, resistance to cancer, longevity and symbiosis, among many other areas of research. This is due to the great diversity of these organisms and their wide-ranging capabilities. Genomics tools are essential for taking advantage of these "free lessons" of nature. However, genomics and transcriptomics are challenging in emerging model systems. Here, we present SeaBase, a tool for helping to meet these needs. Specifically, SeaBase provides a platform for sharing and searching transcriptome data. More importantly, SeaBase will support a growing number of tools for inferring gene network mechanisms. The first dataset available on SeaBase is a developmental transcriptomic profile of the sea anemone Nematostella vectensis (Anthozoa, Cnidaria). Additional datasets are currently being prepared and we are aiming to expand SeaBase to include user-supplied data for any number of marine and aquatic organisms, thereby supporting many potentially new models for gene network studies. SeaBase can be accessed online at: http://seabase.core.cli.mbl.edu.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy*Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Dmitry Mozzherin
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - A Murat Eren
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Kristen D Lans
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Nathan Wilson
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Joel Smith
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
39
|
Fassbinder-Orth CA. Methods for quantifying gene expression in ecoimmunology: from qPCR to RNA-Seq. Integr Comp Biol 2014; 54:396-406. [PMID: 24812328 DOI: 10.1093/icb/icu023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Historically, the use of cutting-edge molecular techniques to study immunological gene expression and related cellular pathways has been largely limited to model organisms. Few studies have been performed that quantify the molecular immunological responses of non-model species, especially in response to environmental factors, life-history events, or exposure to parasites. This dearth of information has largely occurred due to the lack of available non-model species-specific gene sequences and immunological reagents and also due to prohibitively expensive technology. However, with the rapid development of various sequencing and transcriptomic technologies, profiling the gene expression of non-model organisms has become possible. Technologies and concepts explored here include an overview of current technologies for quantifying gene expression, including: qPCR, multiplex branched DNA assays, microarrays, and profiling gene expression (RNA sequencing [RNA-Seq]) based on next-generation sequencing. Examples of the advancement of these technologies in non-model systems are discussed. Additionally, applications, limitations, and feasibility of the use of these methodologies in non-model systems to address questions in ecological immunology and disease-ecology are specifically addressed.
Collapse
|
40
|
Babonis LS, Martindale MQ. Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 2014; 54:714-22. [PMID: 24771087 DOI: 10.1093/icb/icu027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how new cell types arise is critical for understanding the evolution of organismal complexity. Questions of this nature, however, can be difficult to answer due to the challenge associated with defining the identity of a truly novel cell. Cnidarians (anemones, jellies, and their allies) provide a unique opportunity to investigate the molecular regulation and development of cell-novelty because they possess a cell that is unique to the cnidarian lineage and that also has a very well-characterized phenotype: the cnidocyte (stinging cell). Because cnidocytes are thought to differentiate from the cell lineage that also gives rise to neurons, cnidocytes can be expected to express many of the same genes expressed in their neural "sister" cells. Conversely, only cnidocytes posses a cnidocyst (the explosive organelle that gives cnidocytes their sting); therefore, those genes or gene-regulatory relationships required for the development of the cnidocyst can be expected to be expressed uniquely (or in unique combination) in cnidocytes. This system provides an important opportunity to: (1) construct the gene-regulatory network (GRN) underlying the differentiation of cnidocytes, (2) assess the relative contributions of both conserved and derived genes in the cnidocyte GRN, and (3) test hypotheses about the role of novel regulatory relationships in the generation of novel cell types. In this review, we summarize common challenges to studying the evolution of novelty, introduce the utility of cnidocyte differentiation in the model cnidarian, Nematostella vectensis, as a means of overcoming these challenges, and describe an experimental approach that leverages comparative tissue-specific transcriptomics to generate hypotheses about the GRNs underlying the acquisition of the cnidocyte identity.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| |
Collapse
|
41
|
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics 2014; 15:71. [PMID: 24467778 PMCID: PMC3909931 DOI: 10.1186/1471-2164-15-71] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022] Open
Abstract
Background The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. Description We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215–364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. Conclusions The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a “non-model system.”
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Reitzel AM, Passamaneck YJ, Karchner SI, Franks DG, Martindale MQ, Tarrant AM, Hahn ME. Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding. Dev Genes Evol 2013; 224:13-24. [PMID: 24292160 DOI: 10.1007/s00427-013-0458-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has diverse roles in development, physiology, and environmental sensing in bilaterian animals. Studying the expression of conserved genes and function of proteins in outgroups to protostomes and deuterostomes assists in understanding the antiquity of gene function and deciphering lineage-specific differences in these bilaterian clades. We describe the developmental expression of AHR from the sea anemone Nematostella vectensis and compare its expression with three other members of the bHLH-PAS family (AHR nuclear translocator (ARNT), Cycle, and a proto-Single-Minded/Trachealess). NvAHR expression was highest early in the larval stage with spatial expression in the basal portion of the ectoderm that became increasingly restricted to the oral pole with concentrated expression in tentacles of the juvenile polyp. The other bHLH-PAS genes showed a divergent expression pattern in later larval stages and polyps, in which gene expression was concentrated in the aboral end, with broader expression in the endoderm later in development. In co-immunoprecipitation assays, we found no evidence for heterodimerization of AHR with ARNT, contrary to the conservation of this specific interaction in all bilaterians studied to date. Similar to results with other invertebrate AHRs but in contrast to vertebrate AHRs, NvAHR failed to bind two prototypical xenobiotic AHR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin, β-naphthoflavone). Together, our data suggest that AHR's original function in Eumetazoa likely involved developmental patterning, potentially of neural tissue. The role of heterodimerization in the function of AHR may have arisen after the cnidarian-bilaterian ancestor. The absence of xenobiotic binding to NvAHR further supports a hypothesis for a derived role of this protein in chemical sensing within the chordates.
Collapse
Affiliation(s)
- Adam M Reitzel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA,
| | | | | | | | | | | | | |
Collapse
|
43
|
Fischer AHL, Tulin S, Fredman D, Smith J. Employing BAC-reporter constructs in the sea anemone Nematostella vectensis. Integr Comp Biol 2013; 53:832-46. [PMID: 23956207 DOI: 10.1093/icb/ict091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Changes in the expression and function of genes drive evolutionary change. Comparing how genes are regulated in different species is therefore becoming an important part of evo-devo studies. A key tool for investigating the regulation of genes is represented by bacterial artificial chromosomes (BAC)-reporter constructs. BACs are large insert libraries, often >100 kb, which thus capture the genomic sequences surrounding a gene of interest, including all, or nearly all, of the elements underpinning regulation. Recombinant BACs, containing a reporter gene in place of the endogenous coding sequence of genes, can be utilized to drive the expression of reporter genes under the regulatory control of the gene of interest while still embedded within its genomic context. Systematic deletions within the BAC-reporter construct can be used to identify the minimal reporter in an unbiased way, avoiding the risk of overlooking regulatory elements that may be many kilobases away from the transcription start-site. Nematostella vectensis (Edwardsiidae, Anthozoa, Cnidaria) has become an important model in regenerative biology, ecology, and especially in studies of evo-devo and gene-regulatory networks due to its interesting phylogenetic position and amenability to molecular techniques. The increasing interest in this rising model system also led to a demand for methods that can be used to study the regulation of genes in Nematostella. Here, we present our progress in employing BAC-reporter constructs to visualize gene-expression in Nematostella. Using a new Nematostella-specific recombination cassette, we made nine different BAC-reporter constructs. Although five BAC recombinants gave variable effects, three constructs, namely Nv-bra:eGFP::L10 BAC, Nv-dpp:eGFP::L10 BAC, and Nv-grm:eGFP::L10 BAC delivered promising results. We show that these three constructs express the reporter gene eGFP in 10.4-17.2% of all analyzed larvae, out of which 26.2-41.9% express GFP in a mosaic fashion within the expected domain. In addition to the expression within the known domains, we also observed cases of misexpression of eGFP and examples that could represent actual expression outside the described domain. Furthermore, we deep-sequenced and assembled five different BACs containing Nv-chordin, Nv-foxa, Nv-dpp, Nv-wnta, and Nv-wnt1, to improve assembly around these genes. The use of BAC-reporter constructs will foster cis-regulatory analyses in Nematostella and thus help to improve our understanding of the regulatory network in this cnidarian system. Ultimately, this will advance the comparison of gene-regulation across species and lead to a much better understanding of evolutionary changes and novelties.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Molecular Evolution and Development, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | |
Collapse
|