1
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
2
|
Kim J, Kim H, Lee MS, Lee H, Kim YJ, Lee WY, Yun SH, Kim HC, Hong HK, Hannenhalli S, Cho YB, Park D, Choi SS. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J Transl Med 2023; 21:209. [PMID: 36941605 PMCID: PMC10029176 DOI: 10.1186/s12967-023-04053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Previous investigations of transcriptomic signatures of cancer patient survival and post-therapy relapse have focused on tumor tissue. In contrast, here we show that in colorectal cancer (CRC) transcriptomes derived from normal tissues adjacent to tumors (NATs) are better predictors of relapse. RESULTS Using the transcriptomes of paired tumor and NAT specimens from 80 Korean CRC patients retrospectively determined to be in recurrence or nonrecurrence states, we found that, when comparing recurrent with nonrecurrent samples, NATs exhibit a greater number of differentially expressed genes (DEGs) than tumors. Training two prognostic elastic net-based machine learning models-NAT-based and tumor-based in our Samsung Medical Center (SMC) cohort, we found that NAT-based model performed better in predicting the survival when the model was applied to the tumor-derived transcriptomes of an independent cohort of 450 COAD patients in TCGA. Furthermore, compositions of tumor-infiltrating immune cells in NATs were found to have better prognostic capability than in tumors. We also confirmed through Cox regression analysis that in both SMC-CRC as well as in TCGA-COAD cohorts, a greater proportion of genes exhibited significant hazard ratio when NAT-derived transcriptome was used compared to when tumor-derived transcriptome was used. CONCLUSIONS Taken together, our results strongly suggest that NAT-derived transcriptomes and immune cell composition of CRC are better predictors of patient survival and tumor recurrence than the primary tumor.
Collapse
Affiliation(s)
- Jinho Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Min-Seok Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Heetak Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseng-gu, Daejeon, 34126, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Kyung Hong
- Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Korea
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, Bethesda, 20814, MD, USA
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
3
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
4
|
Feddersen UR, Hendel SK, Berner-Hansen MA, Jepps TA, Berner-Hansen M, Bindslev N. Nanomolar EP4 receptor potency and expression of eicosanoid-related enzymes in normal appearing colonic mucosa from patients with colorectal neoplasia. BMC Gastroenterol 2022; 22:234. [PMID: 35549670 PMCID: PMC9097415 DOI: 10.1186/s12876-022-02311-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aberrations in cyclooxygenase and lipoxygenase (LOX) pathways in non-neoplastic, normal appearing mucosa from patients with colorectal neoplasia (CRN), could hypothetically qualify as predisposing CRN-markers. Methods To test this hypothesis, biopsies were obtained during colonoscopy from macroscopically normal colonic mucosa from patients with and without CRN. Prostaglandin E2 (PGE2) receptors, EP1-4, were examined in Ussing-chambers by exposing biopsies to selective EP receptor agonists, antagonists and PGE2. Furthermore, mRNA expression of EP receptors, prostanoid synthases and LOX enzymes were evaluated with qPCR. Results Data suggest that PGE2 binds to both high and low affinity EP receptors. In particular, PGE2 demonstrated EP4 receptor potency in the low nanomolar range. Similar results were detected using EP2 and EP4 agonists. In CRN patients, mRNA-levels were higher for EP1 and EP2 receptors and for enzymes prostaglandin-I synthase, 5-LOX, 12-LOX and 15-LOX. Conclusions In conclusion, normal appearing colonic mucosa from CRN patients demonstrates deviating expression in eicosanoid pathways, which might indicate a likely predisposition for early CRN development and furthermore that PGE2 potently activates high affinity EP4 receptor subtypes, supporting relevance of testing EP4 antagonists in colorectal neoplasia management. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02311-z.
Collapse
Affiliation(s)
| | | | | | - Thomas Andrew Jepps
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mark Berner-Hansen
- Digestive Disease Center, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| |
Collapse
|
5
|
Van der Mude A. A proposed Information-Based modality for the treatment of cancer. Biosystems 2021; 211:104587. [PMID: 34915101 DOI: 10.1016/j.biosystems.2021.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Treatment modalities for cancer involve physical manipulations such as surgery, immunology, radiation, chemotherapy or gene editing. This is a proposal for an information-based modality. This modality does not change the internal state of the cancer cell directly - instead, the cancer cell is manipulated by giving it information to instruct the cell to perform an action. This modality is based on a theory of Structure Encoding in DNA, where information about body part structure controls the epigenetic state of cells in the process of development from pluripotent cells to fully differentiated cells. It has been noted that cancer is often due to errors in morphogenetic differentiation accompanied by associated epigenetic processes. This implies a model of cancer called the Epigenetic Differentiation Model. A major feature of the Structure Encoding Theory is that the characteristics of the differentiated cell are affected by inter-cellular information passed in the tissue microenvironment, which specifies the exact location of a cell in a body part structure. This is done by exosomes that carry fragments of long non-coding RNA and transposons, which convey structure information. In the normal process of epigenetic differentiation, the information passed may lead to apoptosis due to the constraints of a particular body part structure. The proposed treatment involves determining what structure information is being passed in a particular tumor, then adding artificial exosomes that overwhelm the current information with commands for the cells to go into apoptosis.
Collapse
|
6
|
XPF -673C>T variation is associated with the susceptibility to breast cancer. Cancer Epidemiol 2021; 74:102007. [PMID: 34416547 DOI: 10.1016/j.canep.2021.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE XPF variations might decrease the DNA repair capacity and further contribute to cancer development. This study aimed to investigate the association of XPF polymorphisms with risk of developing breast cancer. METHODS TCGA, the Human Protein Atlas and Kaplan-Meier plotter were used to analyze the expression of XPF in breast cancer tissues and its effect on the survival of breast cancer patients. The expression of XPF in breast cancer tissues was detected by qRT-PCR. This case-control study included 467 breast cancer patients and 467 healthy controls. The genotype of genetic variation was detected by polymerase chain reaction restriction fragment length polymorphism. Odds ratios and 95 % confidence intervals were calculated. Correlations between XPF variation and clinicopathological parameters were assessed through Kendall's Tau-b test. The relationship between XPF gene function variation and XPF gene expression was analyzed by GTEx. RESULTS The expression of XPF in breast cancer tissues is higher than that in normal tissues. Breast cancer patients with high XPF expression have a higher relapse free survival rate (HR = 0.88, 95 % CI = 0.80-0.97), but have no effect on the overall survival rate (logrank P = 0.28). XPF -673C > T variant can reduce the risk of breast cancer patients (OR = 0.35, 95 %CI = 0.20-0.63 for codominant mode; OR = 0.66, 95 %CI = 0.51-0.85 for dominant model; OR = 0.40, 95 %CI = 0.23-0.70 for recessive model). The XPF 11985 GG genotype reduced the risk of early breast cancer (OR = 0.49, 95 %CI = 0.24-0.97), but not the risk of advanced breast cancer (OR = 1.20, 95 % CI = 0.58-2.48). XPF 11985A > G variant can also reduce the risk of ERBB2 expression in patients (OR = 0.50, 95 %CI = 0.27-0.94). There is no correlation between XPF -673C > T/XPF11985A > G variants and ER and PR. XPF -673C > T variant can reduce XPF expression (P < 0.05). CONCLUSIONS Genetic variations of XPF gene may affect its expression and the risk of breast cancer in the Chinese population.
Collapse
|
7
|
Huangteerakul C, Aung HM, Thosapornvichai T, Duangkaew M, Jensen AN, Sukrong S, Ingkaninan K, Jensen LT. Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules 2021; 26:1207. [PMID: 33668176 PMCID: PMC7956252 DOI: 10.3390/molecules26051207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chananya Huangteerakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Marisa Duangkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10400, Thailand;
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| |
Collapse
|
8
|
Matuszczak M, Salagierski M. Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers. Int J Mol Sci 2020; 21:ijms21093360. [PMID: 32397531 PMCID: PMC7247579 DOI: 10.3390/ijms21093360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
The high occurrence of bladder cancer and its tendency to recur in combination with a lifelong surveillance make the treatment of superficial bladder cancer one of the most expensive and time-consuming. Moreover, carcinoma in situ often leads to muscle invasion with an unfavorable prognosis. Currently, invasive methods including cystoscopy and cytology remain a gold standard. The aim of this study was to explore urine-based biomarkers to find the one with the best specificity and sensitivity, which would allow optimizing the treatment plan. In this review, we sum up the current knowledge about Cytokeratin fragments (CYFRA 21.1), Excision Repair Cross-Complementation 1 (ERCC1), Tumour Protein p53 (Tp53), Fibroblast Growth Factor Receptor 3 (FGFR3), Tumor-Associated Trypsin Inhibitor (TATI) and their potential applications in clinical practice.
Collapse
|
9
|
Raglan O, Assi N, Nautiyal J, Lu H, Gabra H, Gunter MJ, Kyrgiou M. Proteomic analysis of malignant and benign endometrium according to obesity and insulin-resistance status using Reverse Phase Protein Array. Transl Res 2020; 218:57-72. [PMID: 31954096 DOI: 10.1016/j.trsl.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Obesity and hyperinsulinemia are known risk factors for endometrial cancer, yet the biological pathways underlying this relationship are incompletely understood. This study investigated protein expression in endometrial cancer and benign tissue and its correlation with obesity and insulin resistance. One hundred and seven women undergoing hysterectomy for endometrial cancer or benign conditions provided a fasting blood sample and endometrial tissue. We performed proteomic expression according to body mass index, insulin resistance, and serum marker levels. We used linear regression and independent t test for statistical analysis. Proteomic data from 560 endometrial cancer cases from The Cancer Genome Atlas (TCGA) databank were used to assess reproducibility of results. One hundred and twenty seven proteins were significantly differentially expressed between 66 cancer and 26 benign patients. Protein expression involved in cell cycle progression, impacting cytoskeletal dynamics (PAK1) and cell survival (Rab 25), were most significantly altered. Obese women with cancer had increased PRAS40_pT246; a downstream marker of increased PI3K-AKT signaling. Obese women without cancer had increased mitogenic and antiapoptotic signaling by way of upregulation of Mcl-1, DUSP4, and Insulin Receptor-b. This exploratory study identified a number of candidate proteins specific to endometrioid endometrial cancer and benign endometrial tissues. Obesity and insulin resistance in women with benign endometrium leads to specific upregulation of proteins involved in insulin and driver oncogenic signaling pathways such as the PI3K-AKT-mTOR and growth factor signaling pathways which are mitogenic and also disruptive to metabolism.
Collapse
Affiliation(s)
- Olivia Raglan
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Nada Assi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Haonan Lu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Maria Kyrgiou
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
10
|
Helicobacter pylori severely reduces expression of DNA repair proteins PMS2 and ERCC1 in gastritis and gastric cancer. DNA Repair (Amst) 2020; 89:102836. [PMID: 32143126 DOI: 10.1016/j.dnarep.2020.102836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Gastric cancers are the third leading cause of cancer mortality in the world. Helicobacter pylori causes over 60 % of all stomach cancers. Colonization of the gastric mucosa by H. pylori results in increased DNA damage. Repair of DNA damage may also be reduced by H. pylori infection. Reduced DNA repair in combination with increased DNA damage can cause carcinogenic mutations. During progression to gastric cancer, gastric epithelium goes through stages of increasing pathology. Determining the levels of DNA repair enzymes during progression to gastric cancer could illuminate treatment approaches. Our aim is to determine the level of gastric expression of DNA repair proteins ERCC1 (a nucleotide excision repair enzyme) and PMS2 (a mismatch repair enzyme) in the presence of H. pylori infection at successive stages of gastric pathology and in gastric cancers. We analyzed gastric tissues of 300 individuals, including 30 without dyspepsia, 200 with dyspepsia and 70 with gastric cancers. The presence of H. pylori, gastric pathology and expression of DNA repair proteins ERCC1 and PMS2 were evaluated. Infection by H. pylori carrying the common cagA gene reduced median nuclear expression of ERCC1 and PMS2 to less than 20 % and 15 % of normal, respectively, in all pathologic stages preceding cancer. ERCC1 and PMS2 nuclear expression was 0-5 % of normal in gastric cancers. H. pylori can cause deficiency of ERCC1 and PMS2 protein expression. These deficiencies are associated with gastric pathology and cancer. This reduction in DNA repair likely causes carcinogenic mutations. Substantially reduced ERCC1 and PMS2 expression appears to be an early step in progression to H. pylori-induced gastric cancer.
Collapse
|
11
|
Li P, Ma Y. Correlation of xeroderma pigmentosum complementation group F expression with gastric cancer and prognosis. Oncol Lett 2018; 16:6971-6976. [PMID: 30546430 PMCID: PMC6256733 DOI: 10.3892/ol.2018.9529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/09/2018] [Indexed: 11/06/2022] Open
Abstract
Correlation of xeroderma pigmentosum complementation group F (XPF) expression with gastric cancer and prognosis was investigated. We randomly selected 76 gastric cancer patients who were admitted to the Second People's Hospital of Dezhou City and received treatment, and detected XPF expression in gastric cancer tissues (observation group) and normal gastric mucosa adjacent to tumor (control group) via immunohistochemistry. Correlation between XPF expression and clinicopathological indicators of gastric cancer was verified via single-factor Chi-square test. Cox's proportional hazard regression model was used in the analysis of influencing factors of patient's prognosis, and Kaplan-Meier was used to analyze the survival rates of XPF-positive and -negative patients. In the observation group, the XPF-positive rate was significantly higher than that in the control group with a statistically significant difference (P<0.05). Single-factor analysis showed that XPF expression was correlated with the family history and Laurén classification (P<0.05). Kaplan-Meier survival analysis revealed that the survival time of XPF-positive patients was shorter than that of XPF-negative patients (P<0.05). Multifactorial analysis using Cox's hazards model suggested that XPF was an independent factor affecting the prognosis of gastric cancer (P<0.05). In conclusion, XPF expression plays an important role in the occurrence and development of gastric cancer, and a high expression of XPF suggests a poor prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Peilin Li
- Department of General Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong 253000, P.R. China
| | - Yuanzhong Ma
- Department of Anesthesia, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
12
|
Aung HM, Huangteerakul C, Panvongsa W, Jensen AN, Chairoungdua A, Sukrong S, Jensen LT. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:10-21. [PMID: 29777901 DOI: 10.1016/j.jep.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).
Collapse
Affiliation(s)
- Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
13
|
Sharp SP, Malizia RA, Walrath T, D'Souza SS, Booth CJ, Kartchner BJ, Lee EC, Stain SC, O'Connor W. DNA damage response genes mark the early transition from colitis to neoplasia in colitis-associated colon cancer. Gene 2018; 677:299-307. [PMID: 30121380 DOI: 10.1016/j.gene.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Chronic intestinal inflammation predisposes patients with Inflammatory Bowel Disease (IBD) to Colitis-Associated Cancer (CAC). In the setting of chronic inflammation, microsatellite instability (MSI) results from early loss of DNA damage response (DDR) genes, ultimately leading to tumor formation. Despite continued efforts to improve early detection of high risk, pre-dysplastic regions in IBD patients, current macroscopic and genetic surveillance modalities remain limited. Therefore, understanding the regulation of key DDR genes in the progression from colitis to cancer may improve molecular surveillance of CAC. To evaluate DDR gene regulation in the transition from colitis to tumorigenesis, we utilized the well-established Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) pre-clinical murine model of CAC in C57BL/6 mice. In order to assess colonic tumor burden in the setting of mutagen and intestinal irritation, tumors were visualized and graded in real time through high-resolution murine colonoscopy. Upon sacrifice, colons were opened and assessed for macroscopic tumor via high magnification surgical lenses (HMSL). Tissues were then sectioned and separated into groups based on the presence or absence of macroscopically visible tumor. Critical DDR genes were evaluated by semi-quantitative RT-PCR. Interestingly, colon tissue with macroscopically visible tumor (MVT) and colon tissue prior to observable tumor (the non-macroscopically visible tumor-developing group, NMVT) were identical in reduced mRNA expression of mlh1, anapc1, and ercc4 relative to colitic mice without mutagen, or those receiving mutagen alone. Colitis alone was sufficient to reduce colonic ercc4 expression when compared to NMVT mice. Therefore, reduced ercc4 expression may mark the early transition to CAC in a pre-clinical model, with expression reduced prior to the onset of observable tumor. Moreover, the expression of select DDR genes inversely correlated with chronicity of inflammatory disease. These data suggest ercc4 expression may define early stages in the progression to CAC.
Collapse
Affiliation(s)
- Stephen P Sharp
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | | | - Travis Walrath
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University, New Haven, CT, USA.
| | - Brittany J Kartchner
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Edward C Lee
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | - Steven C Stain
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | - William O'Connor
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
14
|
Domagala P, Hybiak J, Rys J, Byrski T, Cybulski C, Lubinski J. Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in BRCA1-associated triple-negative breast cancers. Oncotarget 2018; 7:68662-68673. [PMID: 27626685 PMCID: PMC5356581 DOI: 10.18632/oncotarget.11900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Pathologic complete response (pCR) after neoadjuvant chemotherapy is considered a suitable surrogate marker of treatment efficacy in patients with triple-negative breast cancers (TNBCs). However, the molecular mechanisms underlying pCR as a result of such treatment remain obscure. Using real-time PCR arrays we compared the expression levels of 120 genes involved in the main mechanisms of DNA repair in 43 pretreatment biopsies of BRCA1-associated TNBCs exhibiting pCR and no pathological complete response (non-pCR) after neoadjuvant chemotherapy with cisplatin. Altogether, 25 genes were significantly differentially expressed between tumors exhibiting pCR and non-pCR, and these genes were downregulated in the pCR group compared to the non-pCR group. A difference in expression level greater than 1.5-fold was detected for nine genes: MGMT, ERCC4, FANCB, UBA1, XRCC5, XPA, XPC, PARP3, and RPA1. The non-homologous end joining and nucleotide excision repair pathways of DNA repair showed the most significant relevance. Expression profile of DNA repair genes associated with pCR was different in the node-positive (20 genes with fold change >1.5) and node-negative (only 3 genes) subgroups. Although BRCA1 germline mutations are the principal defects in BRCA1-associated TNBC, our results indicate that the additional downregulation of other genes engaged in major pathways of DNA repair may play a decisive role in the pathological response of these tumors to cisplatin neoadjuvant chemotherapy. The results suggest that patients with node-positive BRCA1-associated TNBCs that do not exhibit pCR after cisplatin neoadjuvant chemotherapy may be candidates for subsequent therapy with PARP inhibitors, whereas UBA1 may be a potential therapeutic target in node-negative subgroup.
Collapse
Affiliation(s)
- Pawel Domagala
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jolanta Hybiak
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Maria Sklodowska-Curie Memorial Cancer Centre & Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Tomasz Byrski
- Department of Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Tóth C, Sükösd F, Valicsek E, Herpel E, Schirmacher P, Tiszlavicz L. Loss of CDX2 gene expression is associated with DNA repair proteins and is a crucial member of the Wnt signaling pathway in liver metastasis of colorectal cancer. Oncol Lett 2018; 15:3586-3593. [PMID: 29467879 PMCID: PMC5796384 DOI: 10.3892/ol.2018.7756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) has been well-established as a diagnostic marker for colorectal cancer (CRC); however, less is known about its regulation, particularly its potential interactions with the DNA repair proteins, adenomatous polyposis coli (APC) and β-catenin, in a non-transcriptional manner. In the present study, the protein expression of CDX2 was analyzed, depending on the expression of the DNA repair proteins, mismatch repair (MMR), O6-methylguanine DNA methyltransferase (MGMT) and excision repair cross-complementing 1 (ERCC1), and its importance in Wnt signaling was also determined. A total of 101 liver metastases were punched into tissue microarray (TMA) blocks and serial sections were cut for immunohistochemistry. For each protein, an immunoreactive score was generated according to literature data and the scores were fitted to TMA. Subsequently, statistical analysis was performed to compare the levels of expression with each other and with clinical data. CDX2 loss of expression was observed in 38.5% of the CRC liver metastasis cases. A statistically significant association between CDX2 and each of the investigated MMRs was observed: MutL Homolog 1 (P<0.01), MutS protein Homolog (MSH) 2 (P<0.01), MSH6 (P<0.01), and postmeiotic segregation increased 2 (P=0.040). Furthermore, loss of MGMT and ERCC1 was also associated with CDX2 loss (P=0.039 and P<0.01, respectively). In addition, CDX2 and ERCC1 were inversely associated with metastatic tumor size (P=0.038 and P=0.027, respectively). Sustained CDX2 expression was associated with a higher expression of cytoplasmic/membranous β-catenin and with nuclear APC expression (P=0.042 and P<0.01, respectively). In conclusion, CDX2 loss of expression was not a rare event in liver metastasis of CRC and the results suggested that CDX2 may be involved in mechanisms resulting in the loss of DNA repair protein expression, and in turn methylation; however, its exact function in this context remains to be elucidated.
Collapse
Affiliation(s)
- Csaba Tóth
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, 6725 Szeged, Hungary
| | - Erzsébet Valicsek
- Department of Oncotherapy, University of Szeged, 6725 Szeged, Hungary
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Tissue Bank of The National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Zhou S, Chen G. Design, synthesis, and bioactivity evaluation of antitumor sorafenib analogues. RSC Adv 2018; 8:37643-37651. [PMID: 35558629 PMCID: PMC9089424 DOI: 10.1039/c8ra08246d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Malignant tumors are a serious threat to human health and are generally treated with chemical therapy.
Collapse
Affiliation(s)
- Shiyang Zhou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
| | - Guangying Chen
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
| |
Collapse
|
17
|
Guo H, Zeng W, Feng L, Yu X, Li P, Zhang K, Zhou Z, Cheng S. Integrated transcriptomic analysis of distance-related field cancerization in rectal cancer patients. Oncotarget 2017; 8:61107-61117. [PMID: 28977850 PMCID: PMC5617410 DOI: 10.18632/oncotarget.17864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022] Open
Abstract
Field cancerization (FC) occurs in various epithelial carcinomas, including colorectal cancer, which indicates that the molecular events in carcinogenesis might occur in normal tissues extending from tumors. However, the transcriptomic characteristics of FC in colorectal cancer (CRC) remain largely unexplored. To investigate the changes in gene expression associated with proximity to the tumor, we analyzed the global gene expression profiles of cancer tissues and histologically normal tissues taken at various distances from the tumor (1 cm, 5 cm and the proximal end of the resected sample) from 32 rectal cancer patients. Significantly differentially expressed genes related to the distance from the tumor were screened by linear mixed effects analysis using the lme4 package in R. The distance-related differentially expressed genes that were gradually up-regulated (n=302) or gradually down-regulated (n=568) from normal tissues to the tumor were used to construct protein-protein interaction (PPI) networks. Three subnetworks among the gradually up-regulated genes and four subnetworks among the gradually down-regulated genes were identified using the MCODE plugin in the Cytoscape software program. The most significantly enriched Gene Ontology (GO) biological process terms were "ribosome biogenesis", "mRNA splicing via spliceosome", and "positive regulation of leukocyte migration" for the gradually up-regulated subnetworks and "cellular calcium ion homeostasis", "cell separation after cytokinesis", "cell junction assembly", and "fatty acid metabolic process" for the gradually down-regulated subnetworks. Combined with the previously constructed multistep carcinogenesis model used for the analysis, 50.59% of the genes in the subnetworks (43/85) displayed identical changes in expression from normal colon tissues to adenoma and colon cancer. We focused on the 7 genes associated with fatty acid metabolic processes in the distance-related down-regulated subnetwork. Survival analysis of patients in the CRC dataset from The Cancer Genome Atlas (TCGA) revealed that higher expression of these 7 genes, especially CPT2, ACAA2 and ACADM, was associated with better prognosis (p = 0.034, p = 0.00058, p = 0.039, p = 0.04). Cox proportional hazards regression analysis revealed that CPT2 was an independent prognostic factor (p = 0.004131). Our results demonstrate that field cancerization occurs in CRC and affects gene expression in normal tissues extending from the tumor, which may provide new insights into CRC oncogenesis and patient progression.
Collapse
Affiliation(s)
- Honglin Guo
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weigen Zeng
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ping Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
18
|
Kigasawa H, Fujiwara M, Ishii J, Chiba T, Terado Y, Shimoyamada H, Mochizuki M, Kitamura O, Kamma H, Ohkura Y. Altered expression of cytokeratin 7 and CD117 in transitional mucosa adjacent to human colorectal cancer. Oncol Lett 2017; 14:119-126. [PMID: 28693143 PMCID: PMC5494860 DOI: 10.3892/ol.2017.6156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/09/2017] [Indexed: 01/31/2023] Open
Abstract
The multi-step progression of colorectal cancer through precancerous lesions (adenoma and dysplasia) is associated with cumulative molecular alterations, a number of which have also been demonstrated to be present in morphologically normal transitional mucosa adjacent to colorectal cancer. The cytoskeletal protein cytokeratin 7 (CK7) and the receptor tyrosine kinase, KIT proto-oncogene receptor tyrosine kinase (CD117), encoded by the proto-oncogene c-Kit, are lacking in normal colorectal crypt epithelium and are aberrantly expressed in a subset of colorectal cancer. The aim of the present study was to evaluate the expression of CK7 and CD117 in morphologically normal transitional mucosa adjacent to colorectal cancer. Immunohistochemical staining for CK7 and CD117 was performed in the mucosa adjacent to five groups of surgically resected colorectal tumors [low-grade adenoma, high-grade adenoma, mucosal adenocarcinoma, small-sized invasive adenocarcinoma (≤2 cm) and large-sized invasive adenocarcinoma (>2 cm)]. CK7 was expressed in the mucosa adjacent to a subset of colorectal tumors, and the positivity ratio increased according to tumor grade from low-grade adenoma up to small-sized invasive adenocarcinoma (61.2%). However, the positivity ratio of CK7 in the mucosa adjacent to the large-sized invasive adenocarcinoma (25.0%) was significantly lower compared with that of the next lower grade. CD117 was also expressed in the mucosa adjacent to a subset of colorectal tumors. In contrast to CK7, the positivity ratio of CD117 increased according to tumor grade from low-grade adenoma all the way through to the large-sized invasive adenocarcinoma (45.0%). Based on these results, the mechanism of CK7 and CD117 expression in the transitional mucosa adjacent to colorectal cancer may be different, and analysis of their individual expression may provide novel insights into the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Hideaki Kigasawa
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan.,Department of Forensic Medicine, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Masachika Fujiwara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Jun Ishii
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Tomohiro Chiba
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Yuichi Terado
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Hiroaki Shimoyamada
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Makoto Mochizuki
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Osamu Kitamura
- Department of Forensic Medicine, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Hiroshi Kamma
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Yasuo Ohkura
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
19
|
Dong Y, Cui P, Li Z, Zhang S. Aging asymmetry: systematic survey of changes in age-related biomarkers in the annual fish Nothobranchius guentheri. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:309-319. [PMID: 27614442 DOI: 10.1007/s10695-016-0288-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Aging asymmetry is the observation that different tissues age in different ways and at different rates. This has not been assessed in a single organism using multiple biomarkers of aging. Here we clearly demonstrated that the levels of protein oxidation and lipid peroxidation as well as CAT, SOD and GPX activities all showed a tissue-dependent change with advancing age; and DNA repair ability, as revealed by the expression of ercc1 and its protein levels, also exhibited a tissue-specific variation with age. We also found that protein oxidation and lipid peroxidation levels remained relatively stable in the liver, intestine, skin and testis as well as in the brain, eye and heart of young, adult and aged fishes; SOD and GPX activities displayed little variation in the intestine, eye and skin as well as in the brain and skin of young, adult and aged fishes; and low and stable expression of ercc1 was observed in the spleen, eye and heart of young, adult and aged fishes. Collectively, these results indicate that aging is tissue specific and asymmetric in N. guentheri. The observation of aging asymmetry may have practical implications for the application of non-intrusion intervention approaches to prolong lifespan.
Collapse
Affiliation(s)
- Yuan Dong
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Cui
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhijian Li
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution and Development, Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Wessels D, Lusche DF, Voss E, Kuhl S, Buchele EC, Klemme MR, Russell KB, Ambrose J, Soll BA, Bossler A, Milhem M, Goldman C, Soll DR. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44. PLoS One 2017; 12:e0173400. [PMID: 28264026 PMCID: PMC5338862 DOI: 10.1371/journal.pone.0173400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Daniel F. Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Edward Voss
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Joseph Ambrose
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
| | - Aaron Bossler
- Department of Molecular Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA United States of America
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA United States of America
| | - Charles Goldman
- Mercy Hospital System of Des Moines, Des Moines, IA United States of America
| | - David R. Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA United States of America
- * E-mail:
| |
Collapse
|
21
|
Amaro A, Chiara S, Pfeffer U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer Metastasis Rev 2016; 35:63-74. [PMID: 26947218 DOI: 10.1007/s10555-016-9606-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.
Collapse
Affiliation(s)
- Adriana Amaro
- Molecular Pathology, IRCCS AOU San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Silvana Chiara
- Medical Oncology, IRCCS AOU San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ulrich Pfeffer
- Molecular Pathology, IRCCS AOU San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
22
|
Justiniano SE, McElroy JP, Yu L, Yilmaz AS, Coombes KR, Senter L, Nagy R, Wakely P, Volinia S, Vinco M, Giordano TJ, Croce CM, Saji M, Ringel MD. Genetic variants in thyroid cancer distant metastases. Endocr Relat Cancer 2016; 23:L33-6. [PMID: 27542854 PMCID: PMC5026957 DOI: 10.1530/erc-16-0351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Steven E Justiniano
- Division of EndocrinologyDiabetes, and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Joseph P McElroy
- Center for Biostatistics and Department of BioinformaticsThe Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics and Department of BioinformaticsThe Ohio State University, Columbus, OH, USA
| | - Ayse Selen Yilmaz
- Center for Biostatistics and Department of BioinformaticsThe Ohio State University, Columbus, OH, USA
| | - Kevin R Coombes
- Center for Biostatistics and Department of BioinformaticsThe Ohio State University, Columbus, OH, USA
| | - Leigha Senter
- Division of Human GeneticsThe Ohio State University, Columbus, OH, USA
| | - Rebecca Nagy
- Division of Human GeneticsThe Ohio State University, Columbus, OH, USA Guardant HealthInc, Redwood City, California, USA
| | - Paul Wakely
- Department of PathologyThe Ohio State University, Columbus, OH, USA
| | - Stefano Volinia
- Department of MorphologySurgery and Experimental Medicine, University of Ferrara, Italy
| | - Michelle Vinco
- Department of PathologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Thomas J Giordano
- Department of PathologyUniversity of Michigan, Ann Arbor, Michigan, USA Comprehensive Cancer CenterUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Carlo M Croce
- Department of Molecular VirologyImmunology, and Genetics, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Motoyasu Saji
- Division of EndocrinologyDiabetes, and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Matthew D Ringel
- Division of EndocrinologyDiabetes, and Metabolism, The Ohio State University, Columbus, OH, USA Department of Molecular VirologyImmunology, and Genetics, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
23
|
Dobbins SE, Broderick P, Chubb D, Kinnersley B, Sherborne AL, Houlston RS. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes. Fam Cancer 2016; 15:593-9. [PMID: 27356891 PMCID: PMC5010824 DOI: 10.1007/s10689-016-9914-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.
Collapse
Affiliation(s)
- Sara E Dobbins
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Amy L Sherborne
- Division of Pathology, The Institute of Cancer Research, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
24
|
Lopez NE, Peterson CY. Advances in Biomarkers: Going Beyond the Carcinoembryonic Antigen. Clin Colon Rectal Surg 2016; 29:196-204. [PMID: 27582644 DOI: 10.1055/s-0036-1584289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using biologically available markers to guide treatment decisions in colorectal cancer care is becoming increasingly common, though our understanding of these biomarkers is in its infancy. In this article, we will discuss how this area is rapidly changing, review important biomarkers being used currently, and explain how the results influence clinical decision-making. We will also briefly discuss the possibility of a liquid biopsy and explore several exciting and new options.
Collapse
Affiliation(s)
- Nicole E Lopez
- Division of Surgical Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Carrie Y Peterson
- Division of Colorectal Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
25
|
Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation. PLoS One 2016; 11:e0159090. [PMID: 27410681 PMCID: PMC4943641 DOI: 10.1371/journal.pone.0159090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection.
Collapse
|
26
|
O'Reilly SL, McGlynn AP, McNulty H, Reynolds J, Wasson GR, Molloy AM, Strain JJ, Weir DG, Ward M, McKerr G, Scott JM, Downes CS. Folic Acid Supplementation in Postpolypectomy Patients in a Randomized Controlled Trial Increases Tissue Folate Concentrations and Reduces Aberrant DNA Biomarkers in Colonic Tissues Adjacent to the Former Polyp Site. J Nutr 2016; 146:933-9. [PMID: 27075913 DOI: 10.3945/jn.115.222547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Low folate status is associated with an increased risk of colorectal carcinogenesis. Optimal folate status may be genoprotective by preventing uracil misincorporation into DNA and DNA hypomethylation. Adenomatous polyps have low folate status compared with normal colonic mucosa, and they are surrounded by histologically normal mucosa that also is of low folate status. OBJECTIVE In a randomized controlled trial conducted at a single Dublin hospital between April 2002 and March 2004, we assessed the effect of folic acid supplementation on tissue folate, uracil misincorporation into DNA, and global DNA hypomethylation in colonocytes isolated from sites of adenomatous polyps and from histologically normal tissue adjacent and 10-15 cm distal to them. METHODS Twenty patients with adenomatous polyps on initial colonoscopy and polypectomy were randomly assigned to receive either 600 μg folic acid/d [n = 12, 38% men, mean age 64.3 y, and body mass index (BMI, in kg/m(2)) 26.6] or placebo (n = 8, 50% men, mean age 68.4 y, and BMI 27.2) for 6 mo, and then repeat the colonoscopy. Blood and colonocyte tissue folate concentrations were measured with the use of a microbiological assay. Uracil misincorporation and global DNA hypomethylation were measured in colonocytes with the use of modified comet assays. RESULTS Over time, folic acid supplementation, compared with placebo, increased tissue folate (mean ± SEM) from 15.6 ± 2.62 pg/10(5) cells to 18.1 ± 2.12 pg/10(5) cells (P < 0.001) and decreased the global DNA hypomethylation ratio from 1.7 ± 0.1 to 1.0 ± 0.1 (P < 0.001). The uracil misincorporation ratio decreased by 0.5 ± 0.1 for the site adjacent to the polyp over time (P = 0.05). CONCLUSION A response to folic acid supplementation, which increased colonocyte folate and improved folate-related DNA biomarkers of cancer risk, was seen in the participants studied. Exploratory analysis points toward the area formerly adjacent to polyps as possibly driving the response. That these areas persist after polypectomy in the absence of folate supplementation is consistent with a potentially carcinogenic field's causing the appearance of the polyp.
Collapse
Affiliation(s)
| | - Angela P McGlynn
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | - Helene McNulty
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | - John Reynolds
- Faculty of Health, Deakin University, Burwood, Australia
| | - Gillian R Wasson
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | - Anne M Molloy
- Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - J J Strain
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | - Donald G Weir
- Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Mary Ward
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | - George McKerr
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| | | | - C Stephen Downes
- Northern Ireland Centre for Food & Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland; and
| |
Collapse
|
27
|
Ambrose J, Livitz M, Wessels D, Kuhl S, Lusche DF, Scherer A, Voss E, Soll DR. Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. Am J Cancer Res 2015; 5:3485-504. [PMID: 26807328 PMCID: PMC4697694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023] Open
Abstract
Recently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them. We suggest that this newly discovered, specialized characteristic of tumorigenic cells may explain, at least in part, why tumors contain primarily non-tumorigenic cells.
Collapse
Affiliation(s)
- Joseph Ambrose
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Michelle Livitz
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Amanda Scherer
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Edward Voss
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| |
Collapse
|
28
|
Bernstein C, Bernstein H. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. World J Gastrointest Oncol 2015; 7:30-46. [PMID: 25987950 PMCID: PMC4434036 DOI: 10.4251/wjgo.v7.i5.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.
Collapse
|
29
|
Patel A, Tripathi G, Gopalakrishnan K, Williams N, Arasaradnam RP. Field cancerisation in colorectal cancer: A new frontier or pastures past? World J Gastroenterol 2015; 21:3763-3772. [PMID: 25852261 PMCID: PMC4385523 DOI: 10.3748/wjg.v21.i13.3763] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Despite considerable advances in our understanding of cancer biology, early diagnosis of colorectal cancer remains elusive. Based on the adenoma-carcinoma sequence, cancer develops through the progressive accumulation of mutations in key genes that regulate cell growth. However, recent mathematical modelling suggests that some of these genetic events occur prior to the development of any discernible histological abnormality. Cells acquire pro-tumourigenic mutations that are not able to produce morphological change but predispose to cancer formation. These cells can grow to form large patches of mucosa from which a cancer arises. This process has been termed “field cancerisation”. It has received little attention in the scientific literature until recently. Several studies have now demonstrated cellular, genetic and epigenetic alterations in the macroscopically normal mucosa of colorectal cancer patients. In some reports, these changes were effectively utilised to identify patients with a neoplastic lesion suggesting potential application in the clinical setting. In this article, we present the scientific evidence to support field cancerisation in colorectal cancer and discuss important limitations that require further investigation. Characterisation of the field defect is necessary to enable early diagnosis of colorectal cancer and identify molecular targets for chemoprevention. Field cancerisation offers a promising prospect for experimental cancer research and has potential to improve patient outcomes in the clinical setting.
Collapse
|
30
|
Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347:78-81. [PMID: 25554788 PMCID: PMC4446723 DOI: 10.1126/science.1260825] [Citation(s) in RCA: 1230] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue's homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to "bad luck," that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.
Collapse
Affiliation(s)
- Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Baltimore, MD 21205, USA.
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Rezgui R, Lestini R, Kühn J, Fave X, McLeod L, Myllykallio H, Alexandrou A, Bouzigues C. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging. PLoS One 2014; 9:e113493. [PMID: 25412080 PMCID: PMC4239081 DOI: 10.1371/journal.pone.0113493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.
Collapse
Affiliation(s)
- Rachid Rezgui
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Joëlle Kühn
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Xenia Fave
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Lauren McLeod
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Cedric Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
- * E-mail:
| |
Collapse
|
32
|
Prasad AR, Prasad S, Nguyen H, Facista A, Lewis C, Zaitlin B, Bernstein H, Bernstein C. Novel diet-related mouse model of colon cancer parallels human colon cancer. World J Gastrointest Oncol 2014; 6:225-243. [PMID: 25024814 PMCID: PMC4092339 DOI: 10.4251/wjgo.v6.i7.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 04/04/2014] [Accepted: 06/18/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the close parallels between our novel diet-related mouse model of colon cancer and human colon cancer.
METHODS: Twenty-two wild-type female mice (ages 6-8 wk) were fed the standard control diet (AIN-93G) and an additional 22 female mice (ages 6-8 wk) were fed the control diet supplemented with 0.2% deoxycholic acid [diet + deoxycholic acid (DOC)] for 10 mo. Tumors occurred in the colons of mice fed diet + DOC and showed progression to colon cancer [adenocarcinoma (AC)]. This progression is through the stages of tubular adenoma (TA), TA with high grade dysplasia or adenoma with sessile serrated morphology, intramucosal AC, AC stage T1, and AC stage T2. The mouse tumors were compared to human tumors at the same stages by histopathological analysis. Sections of the small and large intestines of mice and humans were evaluated for glandular architecture, cellular and nuclear morphology including cellular orientation, cellular and nuclear atypia, pleomorphism, mitotic activity, frequency of goblet cells, crypt architecture, ulceration, penetration of crypts through the muscularis mucosa and presence of malignant crypts in the muscularis propria. In addition, preserved colonic tissues from genetically similar male mice, obtained from a prior experiment, were analyzed by immunohistochemistry. The male mice had been fed the control diet or diet + DOC. Four molecular markers were evaluated: 8-OH-dG, DNA repair protein ERCC1, autophagy protein beclin-1 and the nuclear location of beta-catenin in the stem cell region of crypts. Also, male mice fed diet + DOC plus 0.007% chlorogenic acid (diet + DOC + CGA) were evaluated for ERCC1, beclin-1 and nuclear location of beta-catenin.
RESULTS: Humans with high levels of diet-related DOC in their colons are at a substantially increased risk of developing colon cancer. The mice fed diet + DOC had levels of DOC in their colons comparable to that of humans on a high fat diet. The 22 mice without added DOC in their diet had no colonic tumors while 20 of the 22 mice (91%) fed diet + DOC developed colonic tumors. Furthermore, the tumors in 10 of these mice (45% of mice) included an adenocarcinoma. All mice were free of cancers of the small intestine. Histopathologically, the colonic tumor types in the mice were virtually identical to those in humans. In humans, characteristic aberrant changes in molecular markers can be detected both in field defects surrounding cancers (from which cancers arise) and within cancers. In the colonic tissues of mice fed diet + DOC similar changes in biomarkers appeared to occur. Thus, 8-OH-dG was increased, DNA repair protein ERCC1 was decreased, autophagy protein beclin-1 was increased and, in the stem cell region at the base of crypts there was substantial nuclear localization of beta-catenin as well as increased cytoplasmic beta-catenin. However, in mice fed diet + DOC + CGA (with reduced frequency of cancer) and evaluated for ERCC1, beclin-1, and beta-catenin in the stem cell region of crypts, mouse tissue showed amelioration of the aberrancies, suggesting that chlorogenic acid is protective at the molecular level against colon cancer. This is the first diet-related model of colon cancer that closely parallels human progression to colon cancer, both at the histomorphological level as well as in its molecular profile.
CONCLUSION: The diet-related mouse model of colon cancer parallels progression to colon cancer in humans, and should be uniquely useful in model studies of prevention and therapeutics.
Collapse
|
33
|
A nonsense mutation in the Xeroderma pigmentosum complementation group F (XPF) gene is associated with gastric carcinogenesis. Gene 2014; 537:238-44. [DOI: 10.1016/j.gene.2013.12.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/16/2013] [Accepted: 12/25/2013] [Indexed: 01/22/2023]
|
34
|
Bernstein C, Nfonsam V, Prasad AR, Bernstein H. Epigenetic field defects in progression to cancer. World J Gastrointest Oncol 2013; 5:43-49. [PMID: 23671730 PMCID: PMC3648662 DOI: 10.4251/wjgo.v5.i3.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 03/07/2013] [Indexed: 02/05/2023] Open
Abstract
A field defect is a field of pre-malignant tissue in which a new cancer is likely to arise. Field defects often appear to be histologically normal under the microscope. Recent research indicates that cells within a field defect characteristically have an increased frequency of epigenetic alterations and these may be fundamentally important as underlying factors in progression to cancer. However, understanding of epigenetic field defects is at an early stage, and the work of Katsurano et al published this year, is a key contribution to this field. One question examined by Katsurano et al was how early could the formation of an epigenetic field defect be detected in a mouse colitis model of tumorigenesis. They highlighted a number of measurable epigenetic alterations, detected very early in normal appearing tissue undergoing histologically invisible tumorigenesis. They also documented the increasing presence of the epigenetic alterations at successive times during progression to cancer. In this commentary, we offer a perspective on the changes they observed within a broader sequence of epigenetic events that occur in progression to cancer. In particular, we highlight the likely central role of epigenetic deficiencies in DNA repair gene expression that arise during progression to cancer.
Collapse
|
35
|
Polymorphisms in XPD and ERCC1 Associated with Colorectal Cancer Outcome. Int J Mol Sci 2013; 14:4121-34. [PMID: 23429196 PMCID: PMC3588089 DOI: 10.3390/ijms14024121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/09/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022] Open
Abstract
Using the comprehensive approach to selecting polymorphisms to date, we sought to examine whether recurrence in colorectal cancer was associated with inherited variation in three genes involved in DNA repair and cell proliferation. Three polymorphisms, which are excision repair cross-complementation 1 (ERCC1), xeroderma pigmentosum group D (XPD) and epidermal growth factor receptor (EGFR), were assessed in 257 postoperative stage II/III CRC patients with 5-fluorouracial chemotherapy in Taiwan. In addition, the correlations between genetic polymorphisms and patients’ clinicopathological features were investigated. Genotypes of XPD codon751 A/A and ERCC1 codon118 T/T were associated with regional recurrence in a statistically significant way (p = 0.018). Patients who carried XPD AA and ERCC1 TT genotypes demonstrated a significantly greater regional recurrence risk (OR = 5.625, 95% CI, 1.557–20.32). Inherited variation in XPD and ERCC1 was associated with outcome in patients with colorectal cancer in Taiwan. As the significant association of single-nucleotide polymorphisms has not been studied previously in colorectal cancer, these findings suggest novel sites of variation, in part explaining the range of treatment responses seen in this disease.
Collapse
|