1
|
Rakotopare J, Toledo F. p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes. Int J Mol Sci 2023; 24:14940. [PMID: 37834388 PMCID: PMC10573108 DOI: 10.3390/ijms241914940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Rakotopare J, Lejour V, Duval C, Eldawra E, Escoffier H, Toledo F. A systematic approach identifies p53-DREAM pathway target genes associated with blood or brain abnormalities. Dis Model Mech 2023; 16:dmm050376. [PMID: 37661832 PMCID: PMC10581385 DOI: 10.1242/dmm.050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Carla Duval
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | | | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| |
Collapse
|
3
|
Barnes RP, Thosar SA, Opresko PL. Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road. Genes (Basel) 2023; 14:genes14020348. [PMID: 36833275 PMCID: PMC9956152 DOI: 10.3390/genes14020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.
Collapse
Affiliation(s)
- Ryan P. Barnes
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Correspondence: (R.P.B.); (P.L.O.)
| | - Sanjana A. Thosar
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (R.P.B.); (P.L.O.)
| |
Collapse
|
4
|
Cytogenetics in Fanconi Anemia: The Importance of Follow-Up and the Search for New Biomarkers of Genomic Instability. Int J Mol Sci 2022; 23:ijms232214119. [PMID: 36430597 PMCID: PMC9699043 DOI: 10.3390/ijms232214119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by genomic instability, increased sensitivity to DNA cross-linking agents, and the presence of clonal chromosomal abnormalities. This genomic instability can compromise the bone marrow (BM) and confer a high cancer risk to the patients, particularly in the development of Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). The diagnosis of FA patients is complex and cannot be based only on clinical features at presentation. The gold standard diagnostic assay for these patients is cytogenetic analysis, revealing chromosomal breaks induced by DNA cross-linking agents. Clonal chromosome abnormalities, such as the ones involving chromosomes 1q, 3q, and 7, are also common features in FA patients and are associated with progressive BM failure and/or a pre-leukemia condition. In this review, we discuss the cytogenetic methods and their application in diagnosis, stratification of the patients into distinct prognostic groups, and the clinical follow-up of FA patients. These methods have been invaluable for the understanding of FA pathogenesis and identifying novel disease biomarkers. Additional evidence is required to determine the association of these biomarkers with prognosis and cancer risk, and their potential as druggable targets for FA therapy.
Collapse
|
5
|
Landelouci K, Sinha S, Pépin G. Type-I Interferon Signaling in Fanconi Anemia. Front Cell Infect Microbiol 2022; 12:820273. [PMID: 35198459 PMCID: PMC8859461 DOI: 10.3389/fcimb.2022.820273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fanconi Anemia (FA) is a genome instability syndrome caused by mutations in one of the 23 repair genes of the Fanconi pathway. This heterogenous disease is usually characterized by congenital abnormalities, premature ageing and bone marrow failure. FA patients also show a high predisposition to hematological and solid cancers. The Fanconi pathway ensures the repair of interstrand crosslinks (ICLs) DNA damage. Defect in one of its proteins prevents functional DNA repair, leading to the accumulation of DNA breaks and genome instability. Accumulating evidence has documented a close relationship between genome instability and inflammation, including the production of type-I Interferon. In this context, type-I Interferon is produced upon activation of pattern recognition receptors by nucleic acids including by the cyclic GMP-AMP synthase (cGAS) that detects DNA. In mouse models of diseases displaying genome instability, type-I Interferon response is responsible for an important part of the pathological symptoms, including premature aging, short stature, and neurodegeneration. This is illustrated in mouse models of Ataxia-telangiectasia and Aicardi-Goutières Syndrome in which genetic depletion of either Interferon Receptor IFNAR, cGAS or STING relieves pathological symptoms. FA is also a genetic instability syndrome with symptoms such as premature aging and predisposition to cancer. In this review we will focus on the different molecular mechanisms potentially leading to type-I Interferon activation. A better understanding of the molecular mechanisms engaging type-I Interferon signaling in FA may ultimately lead to the discovery of new therapeutic targets to rescue the pathological inflammation and premature aging associated with Fanconi Anemia.
Collapse
Affiliation(s)
- Karima Landelouci
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Shruti Sinha
- Department of Biotechnology, GITAM Institute of Technology, GITAM deemed to be University, Visakhapatnam, India
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
6
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
7
|
Shah A, George M, Dhangar S, Rajendran A, Mohan S, Vundinti BR. Severe telomere shortening in Fanconi anemia complementation group L. Mol Biol Rep 2021; 48:585-593. [PMID: 33394227 DOI: 10.1007/s11033-020-06101-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023]
Abstract
Fanconi Anemia (FA) is a rare genetic disease with the incidence of 1 in 360,000 and is characterised by bone marrow failure, physical abnormalities, pancytopenia, and high frequency of chromosomal breakage and increased risk of evolving into malignancy. Telomere plays an important role in genomic stability, ageing process and cancers. Telomere shortening has been reported in FA. We studied telomere length in FA subjects and compared with complementation groups. Chromosomal breakage analysis from PHA stimulated, MMC induced peripheral blood culture was carried out in 37 clinically diagnosed FA. Molecular study of FANCA, G, and L was done through Sanger sequencing and next generation sequencing. Telomere length was estimated using real time quantitative polymerase chain reaction (qPCR) method. Student t-test was applied to test the significance. A high frequency of chromosomal breakage was observed in all the patients compared to healthy controls. We found significantly shorter telomere length in all the three complementation groups compare to age matched healthy controls. Among all complementation groups, FANCL showed severe telomere shortening (P value 0.0001). A negative correlation was observed between telomere length and chromosomal breakage frequency (R = -0.3116). Telomere shortening is not uncommon in FA subjects. However the telomere length shortening is different in complementation groups as FANCL showed severe telomere shortening in FA subjects. Though BM transplantation is essential for the management of the FA subjects, the telomere length can be considered as biological marker to understand the prognosis of the disease as FA subjects primarily treated with androgens.
Collapse
Affiliation(s)
- Anjali Shah
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, 13th floor, New Multistoried Building, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, 13th floor, New Multistoried Building, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, 13th floor, New Multistoried Building, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Aruna Rajendran
- Department of Hematology, Institute of Child Health and Hospital for Children, Egmore, Chennai, Tamil Nadu, India
| | - Sheila Mohan
- Pediatric Haematology Department, Apollo Children's Hospital, Chennai, Tamil Nadu, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, 13th floor, New Multistoried Building, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
8
|
Zahnreich S, Weber B, Rösch G, Schindler D, Schmidberger H. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. DNA Repair (Amst) 2020; 96:102992. [PMID: 33069004 DOI: 10.1016/j.dnarep.2020.102992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Fanconi anemia (FA) is a rare chromosomal instability syndrome with various clinical features and high cancer incidence. Despite being a DNA repair disorder syndrome and a frequently observed clinical hypersensitivity of FA patients towards ionizing radiation, the experimental evidence regarding the efficiency of radiation-induced DNA double-strand break (DSB) repair in FA is very controversial. Here, we performed a thorough analysis of the repair of radiation-induced DSBs in G1 and G2 in FA fibroblasts of complementation groups A, C, D1 (BRCA2), D2, E, F, G and P (SLX4) in comparison to normal human lung and skin fibroblasts. γH2AX, 53BP1, or RPA foci quantification after X-irradiation was combined with cell cycle markers. Cytogenetic analyses were performed on first metaphases after irradiation in G1 and by premature chromosome condensation after exposure in G2. Furthermore, the role of canonical-NHEJ and alternative-NHEJ for the fidelity of the repair of radiation-induced DSBs was examined. In FA fibroblasts, DSB repair was normal in G1 but compromised and more error-prone in the slow repair component of G2 as suggested by higher yields of radiation-induced γH2AX and 53BP1 foci as well as chromatid exchanges. However, RPA foci quantification in G2 indicated proficiency for homology-directed repair of DSBs in FA except for FA D1 (BRCA2). In lung fibroblasts, DSB repair in G1 was conducted with normal kinetics but elevated chromosome exchanges compared to skin fibroblasts. The overall repair of radiation-induced DSBs and the formation of chromosome exchanges in normal and FA fibroblasts in G1 and G2 were governed by canonical-NHEJ with no contribution of alternative-NHEJ. Together, we show impaired repair of radiation-induced DSBs in various FA complementation groups in the slow repair component of G2 that might promote the formation of potentially oncogenic aberrations and clinical radiation hypersensitivity.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg, University Mainz, Germany.
| | - Britta Weber
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg, University Mainz, Germany
| | - Gundula Rösch
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg, University Mainz, Germany
| | - Detlev Schindler
- Institute of Human Genetics, Julius-Maximilians-University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg, University Mainz, Germany
| |
Collapse
|
9
|
Volleth M, Zenker M, Joksic I, Liehr T. Long-term Culture of EBV-induced Human Lymphoblastoid Cell Lines Reveals Chromosomal Instability. J Histochem Cytochem 2020; 68:239-251. [PMID: 32108534 DOI: 10.1369/0022155420910113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To preserve material for future genetic studies, human B-lymphocytes from whole blood samples are routinely transformed into lymphoblastoid cell lines (LCLs) by in vitro infection with Epstein-Barr virus. To determine the rate and frequency of chromosomal changes during long-term culture, we established 10 LCLs (from eight individuals). Before transformation, these cases showed a normal karyotype (three cases), a small supernumerary marker chromosome (three cases), or an aberrant karyotype (four cases). Chromosome analyses were performed at 8-week intervals over a period of at least 1 year, up to 3 years. Surprisingly, we demonstrate that chromosomal instability is the rule, rather than the exception, during long-term culture of LCLs. The most commonly observed acquired clonal aberration was trisomy 12, which emerged in all cell lines within 21 to 49 weeks after infection. Telomeric fusions indicating telomere shortening were found after ~21 weeks. After 1 year of cultivation, the proportion of cells with the original karyotype decreased to ≤10% in 7 of the 10 cell lines. To preserve cells with aberrant genomes, we conclude the cultivation time of LCLs must be restricted to the absolute minimum time required.
Collapse
Affiliation(s)
- Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ivana Joksic
- Gynecology and Obstetrics Clinic, GAK Narodni front, Belgrade, Serbia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Arias-Salgado EG, Galvez E, Planas-Cerezales L, Pintado-Berninches L, Vallespin E, Martinez P, Carrillo J, Iarriccio L, Ruiz-Llobet A, Catalá A, Badell-Serra I, Gonzalez-Granado LI, Martín-Nalda A, Martínez-Gallo M, Galera-Miñarro A, Rodríguez-Vigil C, Bastos-Oreiro M, Perez de Nanclares G, Leiro-Fernández V, Uria ML, Diaz-Heredia C, Valenzuela C, Martín S, López-Muñiz B, Lapunzina P, Sevilla J, Molina-Molina M, Perona R, Sastre L. Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes. Orphanet J Rare Dis 2019; 14:82. [PMID: 30995915 PMCID: PMC6471801 DOI: 10.1186/s13023-019-1046-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/12/2019] [Indexed: 01/19/2023] Open
Abstract
Background Telomeres are nucleoprotein structures present at the terminal region of the chromosomes. Mutations in genes coding for proteins involved in telomere maintenance are causative of a number of disorders known as telomeropathies. The genetic origin of these diseases is heterogeneous and has not been determined for a significant proportion of patients. Methods This article describes the genetic characterization of a cohort of patients. Telomere length was determined by Southern blot and quantitative PCR. Nucleotide variants were analyzed either by high-resolution melting analysis and Sanger sequencing of selected exons or by massive sequencing of a panel of genes. Results Forty-seven patients with telomere length below the 10% of normal population, affected with three telomeropathies: dyskeratosis congenita (4), aplastic anemia (22) or pulmonary fibrosis (21) were analyzed. Eighteen of these patients presented known pathogenic or novel possibly pathogenic variants in the telomere-related genes TERT, TERC, RTEL1, CTC1 and ACD. In addition, the analyses of a panel of 188 genes related to haematological disorders indicated that a relevant proportion of the patients (up to 35%) presented rare variants in genes related to DNA repair or in genes coding for proteins involved in the resolution of complex DNA structures, that participate in telomere replication. Mutations in some of these genes are causative of several syndromes previously associated to telomere shortening. Conclusion Novel variants in telomere, DNA repair and replication genes are described that might indicate the contribution of variants in these genes to the development of telomeropathies. Patients carrying variants in telomere-related genes presented worse evolution after diagnosis than the rest of patients analyzed. Electronic supplementary material The online version of this article (10.1186/s13023-019-1046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena G Arias-Salgado
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Eva Galvez
- Hospital Niño Jesús, Hematología y Hemoterapia, Madrid, Spain
| | - Lurdes Planas-Cerezales
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Laura Pintado-Berninches
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Elena Vallespin
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Pilar Martinez
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Carrillo
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Anna Ruiz-Llobet
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Albert Catalá
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | | | | | - Andrea Martín-Nalda
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | | | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Virginia Leiro-Fernández
- Pneumology Department, Hospital Álvaro Cunqueiro, Complexo Hospitalario Universitario de Vigo, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Barcelona, Spain
| | - Maria-Luz Uria
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Cristina Diaz-Heredia
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Sara Martín
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - Julian Sevilla
- Hospital Niño Jesús, Hematología y Hemoterapia, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - María Molina-Molina
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Barcelona, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain. .,CIBER de enfermedades raras (CIBERER), Madrid, Spain.
| |
Collapse
|
11
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
12
|
Degan P, Cappelli E, Longobardi M, Pulliero A, Cuccarolo P, Dufour C, Ravera S, Calzia D, Izzotti A. A Global MicroRNA Profile in Fanconi Anemia: A Pilot Study. Metab Syndr Relat Disord 2018; 17:53-59. [PMID: 30376422 DOI: 10.1089/met.2018.0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Fanconi anemia (FA) is a complex tumor-prone disease defined by an entangled genotype and phenotype. Despite enormous efforts in the last 20 years, a comprehensive and integrated view of the disease is still missing. The aim of this pilot study was to establish whether a global microRNA (miRNA) analysis approach could be helpful in defining aspects in FA phenotype, which might deserve future attention with the perspective to develop miRNA-based therapies. METHODS miRNA array were employed to characterize the global miRNA (miRNoma) profile of FA RNA samples with respect to normal samples. RESULTS We report and compare miRNA profile from two FA established cell lines and three FA patients. This analysis reveals that 36 and 64 miRNAs, respectively, are found differentially expressed (>2-fold variation and P < 0.05) in the samples from FA cell lines and FA patients. Overlap of these data results in 24 miRNAs as shared in the two sample populations. Available bioinformatics methods were used to predict target genes for the differentially expressed miRNAs and to perform pathway enrichment analysis. CONCLUSIONS Seven pathway results associated with the FA phenotype. It is interesting to note that some of these pathways were previously unrelated to FA phenotype. It might be important to focus on these pathways not previously emerged as dysfunctional in FA to better define the pathophysiological context of this disease. This is the first report of a global miRNA analysis in FA.
Collapse
Affiliation(s)
- Paolo Degan
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Alessandra Pulliero
- 3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| | - Paola Cuccarolo
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | - Carlo Dufour
- 2 Hematology, Istituto Giannina Gaslini, Genova, Italy
| | - Silvia Ravera
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Daniela Calzia
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Alberto Izzotti
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy.,3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| |
Collapse
|
13
|
Mangaonkar AA, Patnaik MM. Short Telomere Syndromes in Clinical Practice: Bridging Bench and Bedside. Mayo Clin Proc 2018; 93:904-916. [PMID: 29804726 PMCID: PMC6035054 DOI: 10.1016/j.mayocp.2018.03.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 10/16/2022]
Abstract
Short telomere syndromes (STSs) are accelerated aging syndromes often caused by inheritable gene mutations resulting in decreased telomere lengths. Consequently, organ systems with increased cell turnover, such as the skin, bone marrow, lungs, and gastrointestinal tract, are commonly affected. Owing to diverse clinical presentations, STSs pose a diagnostic challenge, with bone marrow failure and idiopathic pulmonary fibrosis being frequent manifestations, occurring in association with gene mutations involving DKC1 (for expansion of gene symbols, use search tool at www.genenames.org), TERT, TERC, and others. Inherited STSs demonstrate genetic anticipation, occurring at an earlier age with more severe manifestations in the affected progeny. Telomere lengths can be assessed in peripheral blood granulocytes and lymphocytes using a sensitive technique called flow cytometry-fluorescence in situ hybridization, and mutational analysis can be performed using next-generation sequencing assays. In approximately 40% of patients with shortened telomere lengths, gene mutations cannot be identified due to the fact that all STS-associated genes have not yet been defined or due to alternative mechanisms of telomere shortening. Danazol, an anabolic steroid, has been associated with hematologic responses in patients with STSs and associated bone marrow failure; however, its reported ability to increase telomerase activity and reduce telomere attrition needs further elucidation. Organ transplant is reserved for patients with end-organ failure and is associated with substantial morbidity and mortality. Herein, we summarize the clinical and laboratory characteristics of STSs and offer a stepwise approach to diagnose and manage complications in affected patients.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
14
|
The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers (Basel) 2018; 10:cancers10050135. [PMID: 29734785 PMCID: PMC5977108 DOI: 10.3390/cancers10050135] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression.
Collapse
|
15
|
Thompson EL, Yeo JE, Lee EA, Kan Y, Raghunandan M, Wiek C, Hanenberg H, Schärer OD, Hendrickson EA, Sobeck A. FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Res 2017; 45:11837-11857. [PMID: 29059323 PMCID: PMC5714191 DOI: 10.1093/nar/gkx847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/16/2017] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an inherited cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA proteins act in a linear hierarchy: following ICL detection on chromatin, the FA core complex monoubiquitinates and recruits the central FANCI and FANCD2 proteins that subsequently coordinate ICL removal and repair of the ensuing DNA double-stranded break by homology-dependent repair (HDR). FANCD2 also functions during the replication stress response by mediating the restart of temporarily stalled replication forks thereby suppressing the firing of new replication origins. To address if FANCI is also involved in these FANCD2-dependent mechanisms, we generated isogenic FANCI-, FANCD2- and FANCI:FANCD2 double-null cells. We show that FANCI and FANCD2 are partially independent regarding their protein stability, nuclear localization and chromatin recruitment and contribute independently to cellular proliferation. Simultaneously, FANCD2—but not FANCI—plays a major role in HDR-mediated replication restart and in suppressing new origin firing. Consistent with this observation, deficiencies in HDR-mediated DNA DSB repair can be overcome by stabilizing RAD51 filament formation in cells lacking functional FANCD2. We propose that FANCI and FANCD2 have partially non-overlapping and possibly even opposing roles during the replication stress response.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jung E Yeo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Eun-A Lee
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Yinan Kan
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maya Raghunandan
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Orlando D Schärer
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc Natl Acad Sci U S A 2017; 114:E5940-E5949. [PMID: 28673972 DOI: 10.1073/pnas.1708065114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others. Such known genomic loci/regions include centromeres, common fragile sites, subtelomeres, and telomeres. However, the detailed mechanism of how mammalian cells cope with the replication stress at these loci/regions is largely unknown. Here we show that depletion of FANCM, or of one of its obligatory binding partners, FAAP24, MHF1, and MHF2, induces replication stress primarily at the telomeres of cells that use the alternative lengthening of telomeres (ALT) pathway as their telomere maintenance mechanism. Using the telomere-specific single-molecule analysis of replicated DNA technique, we found that depletion of FANCM dramatically reduces the replication efficiency at ALT telomeres. We further show that FANCM, BRCA1, and BLM are actively recruited to the ALT telomeres that are experiencing replication stress and that the recruitment of BRCA1 and BLM to these damaged telomeres is interdependent and is regulated by both ATR and Chk1. Mechanistically, we demonstrated that, in FANCM-depleted ALT cells, BRCA1 and BLM help to resolve the telomeric replication stress by stimulating DNA end resection and homologous recombination (HR). Consistent with their roles in resolving the replication stress induced by FANCM deficiency, simultaneous depletion of BLM and FANCM, or of BRCA1 and FANCM, leads to increased micronuclei formation and synthetic lethality in ALT cells. We propose that these synthetic lethal interactions can be explored for targeting the ALT cancers.
Collapse
|
17
|
Berardinelli F, Coluzzi E, Sgura A, Antoccia A. Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:204-219. [PMID: 28927529 DOI: 10.1016/j.mrrev.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy. In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001). Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.
Collapse
Affiliation(s)
- F Berardinelli
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy.
| | - E Coluzzi
- Dipartimento di Scienze, Università Roma Tre, Rome Italy
| | - A Sgura
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| | - A Antoccia
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| |
Collapse
|
18
|
Toufektchan E, Jaber S, Toledo F. [Dangerous liaisons: p53, dyskeratosis congenita and Fanconi anemia]. Med Sci (Paris) 2017; 33:95-98. [PMID: 28120765 DOI: 10.1051/medsci/20173301018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Eléonore Toufektchan
- Génétique de la suppression tumorale, Équipe Labellisée Ligue, Institut Curie, Centre de recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France - Sorbonne Universités, UPMC, Université Paris 6, Paris, France - CNRS UMR 3244, Paris, France - PSL Research University, Paris, France
| | - Sara Jaber
- Génétique de la suppression tumorale, Équipe Labellisée Ligue, Institut Curie, Centre de recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France - Sorbonne Universités, UPMC, Université Paris 6, Paris, France - CNRS UMR 3244, Paris, France - PSL Research University, Paris, France
| | - Franck Toledo
- Génétique de la suppression tumorale, Équipe Labellisée Ligue, Institut Curie, Centre de recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France - Sorbonne Universités, UPMC, Université Paris 6, Paris, France - CNRS UMR 3244, Paris, France - PSL Research University, Paris, France
| |
Collapse
|
19
|
Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:15-31. [PMID: 28342451 DOI: 10.1016/j.mrrev.2016.11.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Filipović J, Joksić G, Vujić D, Joksić I, Mrasek K, Weise A, Liehr T. First molecular-cytogenetic characterization of Fanconi anemia fragile sites in primary lymphocytes of FA-D2 patients in different stages of the disease. Mol Cytogenet 2016; 9:70. [PMID: 27625703 PMCID: PMC5020439 DOI: 10.1186/s13039-016-0280-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a chromosomal instability syndrome characterized by increased frequency of chromosomal breakages, chromosomal radial figures and accelerated telomere shortening. In this work we performed detailed molecular-cytogenetic characterization of breakpoints in primary lymphocytes of FA-D2 patients in different stages of the disease using fluorescent in situ hybridization. RESULTS We found that chromosomal breakpoints co-localize on the molecular level with common fragile sites, whereas their distribution pattern depends on the severity of the disease. Telomere quantitative fluorescent in situ hybridization revealed that telomere fusions and radial figures, especially radials which involve telomere sequences are the consequence of critically shortened telomeres that increase with the disease progression and could be considered as a predictive parameter during the course of the disease. Sex chromosomes in FA cells are also involved in radial formation indicating that specific X chromosome regions share homology with autosomes and also could serve as repair templates in resolving DNA damage. CONCLUSIONS FA-D2 chromosomal breakpoints co-localize with common fragile sites, but their distribution pattern depends on the disease stage. Telomere fusions and radials figures which involve telomere sequences are the consequence of shortened telomeres, increase with disease progression and could be of predictive value.
Collapse
Affiliation(s)
- Jelena Filipović
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade, 11001 Serbia
| | - Gordana Joksić
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade, 11001 Serbia
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia, "Dr Vukan Cupic", Radoja Dakica 6, Belgrade, 11070 Serbia
| | - Ivana Joksić
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade, 11001 Serbia
| | - Kristin Mrasek
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena, D-07743 Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena, D-07743 Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena, D-07743 Germany
| |
Collapse
|
21
|
Root H, Larsen A, Komosa M, Al-Azri F, Li R, Bazett-Jones DP, Stephen Meyn M. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway. Hum Mol Genet 2016; 25:3255-3268. [DOI: 10.1093/hmg/ddw175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
|
22
|
Sarkar J, Liu Y. Fanconi anemia proteins in telomere maintenance. DNA Repair (Amst) 2016; 43:107-12. [PMID: 27118469 DOI: 10.1016/j.dnarep.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/15/2022]
Abstract
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.
Collapse
Affiliation(s)
- Jaya Sarkar
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA.
| |
Collapse
|
23
|
p53 downregulates the Fanconi anaemia DNA repair pathway. Nat Commun 2016; 7:11091. [PMID: 27033104 PMCID: PMC4821997 DOI: 10.1038/ncomms11091] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/19/2016] [Indexed: 12/12/2022] Open
Abstract
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. P53 is regarded as the guardian of the genome, however it is known that mice with increased p53 activity display characteristics of dyskeratosis congenita. Here the authors show that increased p53 activity leads to the repression of telomere maintenance and DNA repair genes.
Collapse
|
24
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
25
|
Holohan B, Wright WE, Shay JW. Cell biology of disease: Telomeropathies: an emerging spectrum disorder. ACTA ACUST UNITED AC 2014; 205:289-99. [PMID: 24821837 PMCID: PMC4018777 DOI: 10.1083/jcb.201401012] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constellation of related genetic diseases are caused by defects in the telomere maintenance machinery. These disorders, often referred to as telomeropathies, share symptoms and molecular mechanisms, and mounting evidence indicates they are points along a spectrum of disease. Several new causes of these disorders have been recently discovered, and a number of related syndromes may be unrecognized telomeropathies. Progress in the clinical understanding of telomeropathies has in turn driven progress in the basic science of telomere biology. In addition, the pattern of genetic anticipation in some telomeropathies generates thought-provoking questions about the way telomere length impacts the course of these diseases.
Collapse
Affiliation(s)
- Brody Holohan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | |
Collapse
|
26
|
Leskovac A, Petrovic S, Guc-Scekic M, Vujic D, Joksic G. Radiation-induced mitotic catastrophe in FANCD2 primary fibroblasts. Int J Radiat Biol 2014; 90:373-81. [PMID: 24512567 DOI: 10.3109/09553002.2014.892224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE As the Fanconi anemia (FA) pathway is required for appropriate cell cycle progression through mitosis and the completion of cell division, the aim of the present study was to determine the destiny of FA cells after irradiation in vitro and to elucidate any difference in radiosensitivity between FA and control cells. MATERIALS AND METHODS Analyses of phosphorylated histone H2AX (γ-H2AX) foci, micronuclei formation and cell cycle analysis were performed in unirradiated (0 min) and irradiated primary FA fibroblasts and in a control group at different post-irradiation times (30 min, 2 h, 5 h and 24 h). RESULTS The accumulation of γ-H2AX foci in irradiated FA fibroblasts was observed. At 24 h post-irradiation, 57% of FA cells were γ-H2AX foci-positive, significantly higher than in the control (p < 0.01). The cell cycle analysis has shown the transient G2/M arrest in irradiated FA fibroblasts. The portion of cells in the G2/M phase showed initial increase at 30 min post-irradiation and afterwards decreased over time reaching the pretreatment level 24 h after irradiation. Irradiated FA fibroblasts progressed to abnormal mitosis, as is shown by the production of cells with different nuclear morphologies from binucleated to multinucleated surrounded with micronuclei, and also by a high percentage of foci-positive micronuclei. The majority of radiation-induced micronuclei were γ-H2AX foci-positive, indicating that radiation-induced micronuclei contain fragments of damaged chromosomes. In contrast, in the control group, most of the micronuclei were classified as γ-H2AX foci-negative, which indicates that cells with unrepaired damage were blocked before entering mitosis. CONCLUSION The results clearly indicate that mitotic catastrophe might be an important cell-death mechanism involved in the response of FA fibroblasts to ionizing radiation.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade , Belgrade , Serbia
| | | | | | | | | |
Collapse
|